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Abstract
A flexible priority discipline with time-limited schedule of controllable parameters

(T}, Ty, -, Ty is presented in this paper, which operates as follows: After the last visit of

a single-server at queue n, the server serves messages in queue n, n = 1, 2, -, N until
either queue 7 becomes empty or a timer with time-limit T, expires, whichever occurs first.
In succession, the highest class message present in the system is next served according to
the time-limited service. For two-class (N = 2), Markovian priority queues with time-
limited schedule (T, T,), we determine a generating function of a steady-state, joint

queue-length distribution. In the case of (T =T, = eo), this model reduces to the
alternating priority queues, while in the case of (T; =0, T, =0), (he ordinary preemptive-
resume priority queues, where this priority model is also a limiting case of two queues with
alternating service periods first studied by Coffman, Fayolle and Mitrani (1987). Through
a generating function approach, we provide Laplace-Stieltjes transforms of distribution
functions of the response time and the waiting time of each class, and present numerical

examples for the mean performance measures and the mean completion time.
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1. INTRODUCTION

A number of priority queueing models have been analyzed for the performance
evaluation of communication, computer and manufacturing systems; However,
most classical priority disciplines, such as the preemptive/nonpreemptive (head-
of-the-line), the shortest/longest-job-first, and the exhaustive-service priority
disciplines, have no controllable parameters. A flexible priority discipline with
time-limited schedule is defined by a vector of time-limit parameters T :=
(T, T, Ty), 0T, < o, and operates as follows: After the last visit of
a single-server at queue n, the server serves messages (or customers) in queue n,
n =1, 2, -, N until either queue n becomes empty or a timer with time-limit (also
called maximum-attendance-time) T, expires, whichever occurs first. This service
discipline is called a time-limited service. In succession to the time-limited service
for class-n messages, the highest class message present in the system is next served
according to the time-limited service, where class 1 is the highest, and class N
the lowest. In this paper, we will analyze the simplest but practical two-class,
Markovian (M/M/1-type) priority queues with time-limited schedule (T, T,) as
a special case of the general parameter T, which is applicable to the performance
analysis of asymmetric half-duplex transmission systems in optical subscriber

networks and a multiplexer of voice and data packet transmission used in wideband
packet networks. If T, =T, = oo, then this reduces Lo the alternating priority

discipline, whereas if T| = = and T, = 0, it reduces to the ordinary preemptive
priority discipline. Setting appropriate timer values, such a flexible priority
discipline is effective for performance optimization, and has potential applicability
to processing systems with multiple grades of service requirements, e.g. the routing
scheme with priority classes used in packet processing systems in the Internet and
the broadband ISDN considered in Prycker [15].

Despite flexibility and effectiveness of the time-limited schedule, analytical
results have not yet been obtained for the above priority system. However, there
have been fruitful results related to polling systems (or cyclic-service systems) and
vacation systems with time-limited service: Leung (1994) studied an M/M/1-type
cyclic-service system with nonpreemptive, time-limited services with the general
.parameter T using the numerical approach based on discrete Fourier transforms.
In the simplest setting, Coffman, Fayolle and Mitrani (1987) derived analytically
a generating function of a joint queue-length distribution in an M/M/1-type,
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alternating service queues with time-limits (7';, T,) distributed exponentially by
using the boundary-value technique for the first time. Komatsu and Hinomoto
(1989) evaluated the mean waiting times in a two-queue model with constant time-
limited service (T, = T) and preemptive/nonpreemptive priority disciplines by using
numerical inversion of Laplace transforms. Several analytic approximations for
polling systems with time-limited service have been presented by Yue and Brooks
(1990), Tangemann and Sauver (1991) and Chang and Sandhu (1994), e.g. Yue et
al. analyzed a polling system with high-priority stations controlled by the token
holding timer and low-priority stations by the token rotation timer. Various vacation
systems with time-limited service have been analyzed by Leung and Eisenberg
(1990, 1991), Takagi and Leung (1994), Chiarawongse, Srinivasan and Teorey
(1994) and Alfa (1995), e.g. Takagi et al. analyzed a discrete-time vacation model
with preemptive-resume, exhaustive time-limited service by using the technique of
discrete Fourier transforms. Alfa also analyzed a discrete-time vacation model with
Markovian arrival process and phase-type service time distribution using the matrix-
geometric method.

The rest of this paper is organized as follows: In Section 2 we describe the
model in detail, and give some definitions and notation. In Section 3 we determine
a generating function of a steady-state, joint queue-length distribution using
a solution of an iterative functional equation. In Section 4 we analyze important
performance measures such as the response time (also called system time or sojourn
time) and the wailing time in each priority class, and give some numerical
examples. In Section 5 we summarize the paper and further research.

2. MODEL AND NOTATION

The two-class priority model with time-limited schedule analyzed in this paper
consists of two-parallel queues with infinite capacity waiting rooms, @, and Q,, for
messages of class-1 and class-2, respectively. The arrivals of class-n messages
form a Poisson process with rate A,, n=1,2. Messages in Q, and 0, are served
according to the time-limited schedule (T, T, < <o) as follows: Once starting service
of class-2 messages, a single-server serves class-2 messages until either Q,
becomes empty or a timer with maximum-attendance-time T, expires, whichever
occurs first. In the latter case, the interrupted service is resumed in the next service
period. In succession to the time-limited service with T, <o, class-1 messages,
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if any, are next served according to the time-limited service with 7' < co. Here note
that class-1 messages are served until @, becomes empty successively, because
class-1 messages have priority over class-2 messages at completion of the time-
limited service, i.e. the parameter is equivalent to (T} =oo,T, Soo). While, if there
are no class-1 messages at completion of the time-limited service with T,, class-2
messages are served according to the next time-limited service with a new value T,.
If there is no message in the system, the server waits for a new arrival. Messages of
the same class are served according to the FCFES (first-come first-served) discipline.

Service time H,, n = 1, 2 for class-n messages has an exponential distribution,
H (1), with service rate 4, n = 1, 2. The maximum-attendance-time T, has also
an exponential distribution, T,(0), with rate @2 0. The Laplace-Stieltjes transform
(LST) and the first moment of H,(f) are denoted by H,’(s) and h,, n = 1, 2,
respectively. The LST of the distribution function (DF) T(¢) is denoted by Tz*(s).

Throughout, we will use

H"*(s) = —EL, h, =—1—, n=1,2,
s+/'l'll l’l'"
¥ o 1
T, )= E(T,) =— (1)
S+0 o

pp=MAh, n=1,2, p=p+p, <l

Additional notation will be introduced in Sections 3 and 4. Here note that the
distribution of a busy period (or the workload process in the system) of our priority
model is identical with that of an M/G/1 queue with the arrival rate A := A, + A, and
the LST for the service time (A,H ,*(s) + AQHZ*(S))/}L, i.e. the mean service time &
:= (Ahy + Ahp)IA. Therefore, from the M/G/1 queueing theory, that Ah = p < L is

a necessary and sufficient condition for system stability.

Remark 2.1. The above priority modql represents a limiting case of the
alternating service queues with (T, T, < o) analyzed by Coffman et al.[5].
However, their results require still more a substantial effort to obtain the numerical
solution of integral and functional equations, and no waiting time analysis is
provided. In contrast, the above model becomes tractable by a classical but different
analysis of functional relationships (9) and (10) as discussed in the next section. In
addition, the above model does not fall within the class of queues with service
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interruptions or breakdowns analyzed by Sengupta [16], because of the state
dependent mechanism for switching from one queue to the other. 1

3. GENERATING FUNCTION ANALYSIS

3.1 Functional Relationships
We first define the steady-state joint probabilities

PG, j) = Pr {server at Q,, i messages in Q; and j messages in 0, }

forn=1,2and i+j21,
p(0, 0) := Pr {there is no message in the system},
where the number of messages i (or j) includes the one being in service. Here, note

that p (0, j) = p,(i, 0) = 0 for any i, j > 0. We also define its generating functions,
for Ixl, iyl £ 1,

Py(x, y) = 21, ZO i, ) Xy, 2a)
i=1 j=

P, y)i= 2 2 plis ¥V (2b)
i=0 j=

In addition, define an indicator function §g = 1 if S holds and &g = 0 otherwise,
where S denotes membership in some subset of {(i, j): i, j 2 0}. Then, we obtain
the following balance equations for the joint queue-length distribution {p,(i, /)}:

(A + Ay + p)p (s ) = 8500 polis ) + G+ 1, ) + 65 A0\ G-1, )
+ 85 A (G j-1F 8 otoDy (i, 1) + 8 (6 o Ap(0, 0),
for i21,j20, (3a)
Ay + Ay + 1y + 8,5 000po (G, J) = topo(i, j+1) + 8,5 o Ap,(i-1, )
+ 8,5 1 Aapa(i J-1) + 8- ottyp (1, ) + 6,208 A0, 0),
for i20,j21, (3b)

(A1 + A)p(0, 0) = ,p (1, 0) + 1,p,(0, 1). (3c)
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After some algebraic manipulation using (2), (3a)-(3c), we oblain the following

functional relationships:

le(x’ y)Pl(x? y) = ay[PZ(xr }’) - PZ(Or )’)] - ,‘LlPl(Or )’) + lu'Z[Pz(xr 0) - PZ(O, 0)]
+ Axp(0, 0), 4)

ylo+ Ry(x, »IPy(x, y) = uy[P (0, y) - P (0, 0)] + ayPy(0, y) - 4,P5(x, 0)

+ A p(0, 0), (5)
where
Ri(x,3) = B0 y) - EEA0, Ry, y) = o) - 2 (1), ©
and
B(x, y) i= A4(1-x) + Ay(1-y). M

Putting x = 0 and y = 0 in (5) and (4), respectively, and using (3c) yield

P (0, y) = yRy(0, y)P5(0, y) + B0, y)p(0, 0), (8a)

LP,(x, 0) = xR, (x, 0)P,(x, 0) + B(x, 0)p(0, 0). (8b)
From rearranging after substituting (8a) and (8b) for P,(0, y) and P,(x, 0) on the
right-hand sides of (4) and (5), respectively, we get

1
xR, (x, y)[a + Ry(x, y)]

- y(or + Ry(0, y))P5(0, »)} + p,Ry(x, y)P(0, 0) )]
+ {Ajox - B0, y)(er + Ry(x, ¥)) }p(0, 0)],

P(x,y) = [Ry(x, y){XRl(X, 0P (x, 0)

Py(x, y) = ———————— [y(a+Ry(0, ))P;(0, y) - xR,(x, OP,(x, 0)

yla + Ry(x, y)]
+ [P0, 0) - Bx, 0)p(0, 0)]. (10)

These equations are the starting point for our analysis. It is necessary to determine
unknown functions P, (x, 0) and P,(0, y) and unknown probabilities P,(0, 0),
P,(0, 0) and p(0, 0) in the numerators on the right-hand sides of (9) and (10).
The factors in the denominators on the right-hand sides of (9) and (10), xR (x, y)
and y[a + Ry(x, y)] are called “kernels”, the zeros of which in the unit circle play

an essential role in what follows.
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Remark 3.1. The definition of (2) leads to simplification of (9) and (10) as
follows: If we use the ordinary generating function P,(x, y) delined by

Py y) =2, 2 pG )XY, (11a)

i=0 j=0

the right-hand sides of (4) and (5) have the terms P (x, 0) and

PLOY =[P i) (1)

3.2 Determination of P (x, 0) and P,(0,y)
The kernel appearing in (9) is rewritten as
XR(x, y) =+ B, yx - H (s + A(1-x)], sy i=4,(1y).  (12)

Therefore, x = H,”(s, + A,(1-x)) has only one root x = §,(y) in the unit circle
Ixl €1 given by

1
6(y) = 2_

{1+ 0N (aeBO Y-, | (13
1

under the condition p; <1 and Iyl £ 1, see Takacs' lemma in [17]. Similarly,
the other equation derived from the kernel in (10),

ylo+ Ry(x, )]
=+ a+ B, ) [y - Hy (s, + H(A-m)] =0, s:=a+A(1-x),  (14)

has only one root, y = §,(x), in the unit circle [yl < 1 as

1
Oy(x) = E[#z + o+ B(x, 0)—\/ {u,+a+B(x, 0)} 24,1, ] (15)
From the regularity of P,(x, y) and P,(x, y), the numerators on the right-hand sides
of (9) and (10) should be equal to zero for x = 6,(y) and y = §,(x), respectively.
Thus, we obtain the following functional relationships between P (x, 0) and
PO, y): For I, y1 £ 1,
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Rz(al()’)’ y)[51()’)R1(51()’), O)Pl((sl()’): 0) - y(a"'Rz(O’ )/'))Pz(o, )’)]

+ H1R2(51(>’), )’)Px(oy 0)+ [l,aS,(y) - ,B(Oy Y)(a'f'Rz(é]()’)v )’))]I)(O, 0)=0,
(16)
S, (x)(a +R 0, 8,(x))Py(0, 8,(x)) - xR (x, O)P (x, 0) + u,P,(0, 0)

- B(x, 0)p(0, 0) = 0. A7)

Here, eliminating P,(0, 8,(x)) from (16) and (17) alter setting y = 6,(x) in (16),

we have

PL] - o(x) = p(0, 0)g(x), (18)
where

o) = xR (x, 0)P(x, 0) + u, P,(0, 0),

Jx) 1= 61[8,(x)], (19)

aﬂ( 61(52(X)), 62(-1))
Rz( 51( 52(x)), 51(4\))

g(x) := Blx, 6,(x)) +

Using the iterative scheme (Kuczma et al. [10]), ¢(x) can be expressed as

o(x) = 1 - p(0, 0, glox)], (20)
=0
where
oy(x)i=x, 12x20, o,,,x):=f[cx)], =012, 21

The constant 77 in (20) is independent of the sequence {o;(x)}. From a boundary

condition,
»0)=0 (22)

which follows from (19), the constant 717 can be determined. Finally, we have

p(x) = p(0, 0)G(x), (23)

where

G(x) := ZO [2(c(0)) - g(a:0N)]. (24)
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Using (16) and ¢(x) determined above, we can find the other function P(0, y) with

unknown probabilities.
3.3 Calculation of Unknown Probabilities

The remaining work for us is to find the unknown probabilities appearing in
(9) and (10). Letting x, y — 1 in (9) and (10), and using the normalizing condition,
we have simultaneous linear equations with nine unknowns, from which we get

P(Ov O) = 1 - p;
P1(0,0) = (1 - )G,y (25)
Py0,0) = (1 - p){ Ay + A, - G(8,(0)) }/pty.

Finally, this completes the formulas to obtain the generating functions P,(x, y) and
P,(x, y), leading to the following result:

Theorem 1. For a2 0,

(1-p)R,(x, y)

Px,y)=
%y XR (x, y)(0+Ry(x, ¥))
) aB(x,y) . aB(8,(), )
X[G(” GO RN Ry ] 0
P(x,y)=———————[G(5( N-Gx)-Px,y)- —————=| @7
) = Ry L O1OD = G =P )= 5 0 )

a

4. ANALYSIS OF PERFORMANCE MEASURES

4.1 Mean Response Time and Mean Waiting Time

Let E(©,) and E(W,), n = 1, 2 denote the expectations of response time ©,
and waiting time W, (until beginning service) of class-n messages, n = 1, 2,
respectively, where the response time means the total time spent by a message in the
system, also called system time or sojourn time. Then, we get the following mean
delay formulas;
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Theorem 2. For o # 0,

E(@D:l_,_lﬂ.._%c'(l)’ (28)
a l-p; oap(l-p)
2 - ’
E(®2)= plplhl'*'(l-pl) hZ _pl+ahz+ (1 p)hl G(l), (29)
p,(1-p)(1-p) ap; opy(1-p,)
where
! < ! i'l !
G'()=- 2 g (]I o) (30)
i=0 j=0
and the null product is unity.
E(Wn) = E(G)n) - E(C"), n=1,2, (€1))]
where
E(C)) =h,, (32)
E(C)) = 11,2+[& _d-plhy G'(l)] hy. (33)
Py paAl-p))

Proof: Let L,(x) and Q,(x), n = 1, 2 be the generating tunctions for the number of
class-n messages present in the system and the number of messages waiting in Q,,

n=1, 2, respectively. Then, we get

L) =p(0, 0) + 2, >, p\(i, ) ¥ + X, D, poliy j) &

i=1 j=0 i=0 j=1
=p(0, 0) + xP,(x, 1) + Py(x, 1) (34)

and
L,(») =p(0, 0) + P,(1, y) + yPy(1, y). (35

Little's result,

L'()=AE®,, n=1,2, (36)
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and the extensive calculation using L'Hospital's rule for derivative terms obtained
by differentiating the right-hand sides of (34) and (35) yield (28) and (29).
Similarly, we get

0,(0) = p(0, 0)+22p.(z s Z 21)2(: j) X

i=1 j=0 i=0 j=1
=p(0, 0) + Py(x, 1) + Py(x, ). 37
Little's result,
0, (1) = L E(W)), (38)

leads to (31) and (32) since we know P (1, ) =p,, n =1, 2.

Here, it should be noted that for calculating E(W,), we can not use the same
way used to obtain the above results, since the number of class-2 messages waiting
in Q, is not j for the state probability p,(i, j) if a class-2 message is in service-
interruption due to the timer expiration. Hence we have to find the following state-

probabilities defined as

P16 )y i =Pr {server at Q,, i messages in Q,, j messages in Q, and

a class-2 message is in scrvice-intcrruption },

PG, J) 7 :=Pr {server at Q,, i messages in Q,, j messages in @, and

any message of class-2 is not interrupted }
which satisfy

pl(i’j)lk +pl(lvj)lﬁ =[)|(le) [01. ”J 21 (39)

and its generating functions, for ixl, Iyl < I,

P(A)y)m zzl)l(l ])IR"'
= (40)

Pyx,y) g = 2 2 P1G ) g x7 Y

i=1 j=1

From Appendix and (39), we have
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Pi% Y = TR 0y [Pk 3) - A&, ) (1)
Pi(x, y) g =Py(x, y) - Py(x, 0) - Py(x, y)e (42)

Consequently we obtain

0, = p(0, 0) + Zp,u 0)+ Z Z P )z ¥+ Z Z PGy D) ¥

i=1 j— i=1 j—

> 0yl ) ! @3)

J=1

+

i

S8

=p0,0)+P(LO)+P(L,y) g+ 3 P(l Y+ Py(1,y)
and
Qz'(1)=L2'(1)'P2(1,l)'P1(17l),R_ (44)

Then, applying Little's formula to (44) yields (31) and (33), where we have used

1-p)hy
P, 1), = py- M G (45)
I-p,

which can be obtained from (41) and Theorem 1.

Here, E(C,), n =1, 2 represents the so-called mean completion time for class-n
messages. The comple{ion time, C,, n =1, 2 is defined as the duration of a period
that begins from the instant the service ol a class-n message starts and ends at the
instant the server becomes free to take the next message of class n, i.e. ©, =
W,+ C, n=1,2 (Jaiswal [7]).

n

It is seen from Theorem 2 that the expressions for E(©,) and E(W,), n = 1,2
have terms with infinitive sum and infinitive product, however, we can provide
delay formulas without infinitive terms only for the following boundary cases,
o =0 (alternating-priority discipline) and & - oo (preemptive resume discipline),
which are directly derived from the previous results of the M/G/1 queues
(e.g., (4.4a) and (8.28a) in Chap. 3 in Takagi [18]):



Two-class priority queueing system

Corollary 1. For a =0,

n P2 2
E©)) =——+ [p,ph+ (1-p)° i),
YT e (p)-p)-pr2pipy T
h
E(©,) = 2 - [ (1-pp* i +pipaha),

+
1-p,  (L-p)(1-p)(1-p+2p,p;)
E(Wn) = E(en) - E(C"), n=1,2,
E(Cu) = hur n=1, 2

and, for o — oo,

h

E©)= —4,
1-p,
E®,)= plhl+(1—pl)hz,
(1-p)(1-p)
and
E(Wn) = E(en) - E(C,,), n= 1, 2,
where
Iy
E(Cl) = hl’ E(CZ) =
1-p,

225

(46a)

(46b)

47

(48)

(49a)

(49b)

(50)

5D

Proof: From (23), G'(1) = ¢'(1)/p(0, 0) and G"(1) = ¢"(1)/p(0, 0). Using these
and setting x = 1 after differentiating both sides of (18) one or two times by x, we

have, for ¢ =0,

G(1y =)

I-p

2
G”(l)" 2 /11 p2

= hy+ (1-p)*h,),
(1-p)(1-p+2pp5) o1t (1-p)°hy]

(52)

where we have used that 6,(1) = 1 and (1) = 1. Therelore, [rom (34), (35), (52)
and differentiating P,(x, y), n = 1, 2 with respect to x or y after setting & =0 in
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Theorem 1, we obtain (46a) and (46b). Substituting G'(1) for (33) leads to (48).
On the other hand, letting & — oo in (28) and (29) leads to (49a) and (49b),
respectively. By setting y = O after letting ot — oo in (26) in Theorem 1, we get

xR (x, 0P (x, 0) = @(x) - 4, P(0, 0) = - (1-p) B(x, 0), (53)

where we have used that yR,(6,(y), y) # 0 for y = 0. From ¢'(1) = (1-p)G'(1),

we have
G'()=4, 54)
Therefore, substituting G'(1) for (33) leads to (51). ' O

Remark 4.1.

(i) Eqgs. (28)-(33) in Theorem 2 and (46a)-(51) in Corollary 1 also hold for the
work- conserving service discipline beyond the FCFS discipline in each queue.
(ii) The mean response times E(®,), # = 1, 2 in Theorem 2 and Corollary 1 satisfy

the workload conservation law, respectively (Wolff [22]),

2

p.E©,) =;’;<p,hl+ Py, (55)
n=1 -

It can also be confirmed that the mean waiting times E(W,), n = 1, 2 satisfy the

conservation law,

2
PEW,) = L= (o, + pyhy) (56)
n=1 1-p
by setting as
EW/y =EW)), (57a)
EW,’) := E(W) + E(C)) - hy, (57b)

where p,E(W,) represents the mean workload associated with waiting messages
in Q,, while p,(E(C,) - h,), the mean unfinished workload associated with
a message in service-interruption, since the probability of finding a class-2 message
in service-interruption is A,(E(C,) - h,) = P|(1, 1), which follows from (33) and
(45) for a2 0. |
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4.2 LSTs and Higher Moments of the Response Time
and the Waiting Time

Let @,,*(s) and W,,*(s), n =1, 2 be the LSTs of the distribution functions of
the response time @, and the waiting time W, of class-n messages, respectively.

Then, we obtain the following theorem:

Theorem 3. For a = 0,
0,7 (s) = L,(1-s/A,), (58)
W, ) =0,(1-s/A), n=1,2, (59)

where L,(x) and Q,(x), n = 1, 2 are given by (34), (35), (37) and (43),
respectively; The mth (m =2, 3, ') moments of the response time and the waiting

time are obtained by

E@©") =— L V(1 D + P D)+ PO D),
1
I 1 - 1 (60)
E@©,") = 2 [mP, V1, 1y + P, "1, 1) + P, 1]
and
EW™ = P, "1, )+ P, ™, 1
( 1) Am[ Ix ( ) 2 ( )] (61)

n m-k

EW, "y = - [sz(m)(l 1) + Ply(m)(l 1)z + le( 1) ly(k)(l, 1) e ]7
2

where, for k=0, 1,2, -,

k
an(k)(l' D= I:_Q? P"(X, y):l (62)
dx 1
and P,(x, y), n=1,2, P\(x, y), and P\(x, y) 7 are given in Theorem 1, (41) and
(42), respectively.

Proof: Since the sample paths of queue-length for each priority class are step
functions with upward/downward unit jumps, the generating function for the
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number of class-n messages in the system at a class-n message departure is identical
to L,(x), n =1, 2 given by (34) and (35) because of the PASTA property (Wolff
[22]) and Finch's departure theorem (or Burke's result in Cooper [6]).
Furthermore, from the fact that, under the FCFS discipline in each queue, the
number of class-n messages left behind by the departing class-n message is equal to
- the number of class-n messages that arrive while it has been waiting and in service,

we have
@"*(A"(l-X)) = L,,(X), n=1,2 (63)

which leads to (58). Therefore, from (34) and (35), we get (60). Likewise, from
the above argument on the number of class-n messages in the waiting room, we

also get
W, (A, (1-x)) = Q,(x), n=1,2 (64)

which leads to (59). Hence, from (37) and (41)-(43), we get (61). (]

Remark 4.2. The LST for the completion time of class-2 messages, Cz*(s), is
not given by CZ*(S) = @2*(5')/W2*(s), since C, depends on W,. (Recall that at a
service starting epoch for a class-2 message, the workload in Q, is not always zero

as the ordinary preemptive/non-preemptive priority queues). |

4.3 Numerical Examples

In getting the numerical results for the niean performance measures using
Theorem 2, our main work is the calculation of G'(1) given by (30). Accordingly
we need computer programming for the iterative calculation based on (21),
however, it has been confirmed that the convergence of the sequence {0;(x)} is
very rapid. Table 1 shows values of the mean response times E(0©,), n = 1, 2 for
the server utilization p = 0.2 to 0.9 and the mean maximum-attendance-time E(T)
= I/ = 0.01, 1.00 and 100, where the service times H,, n = 1, 2 and the
maximum-attendance-time T, are exponentially distributed, /1, =h,=1and A, =
A,. Under the same condition with Table 1, Table 2 shows values of the mean
completion time E(C,) as a function of E(T,) for p = 0.2 to 0.9. For E(T,) = 0.01,
1.00, 100 and p=0.2 10 0.9, E(W,) = E(©,) - E(C,), n = 1, 2 are obtained from
Tables 1 and 2, where E(C,) = h; = 1. In the case of E(T,) = 0.0, the value of
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E(C,) is identical with that of E(C,) = h,/(1-p,) given by (51) for the ordinary
preemptive-resume priority queues.

It is scen from Tables | and 2 that E(©,) and E(W ), n = 1, 2 can be widely
changed by E(T,), especially in the case of high server utilization. That is, we can
select an appropriate value of the controllable parameter o = L/E(T,) in order to

optimize the mean performance measures.

Table 1 Mean response times E(©,), n =1, 2 as a tunction of the server
utilization p

E(T)) 0.01 1.00 100

E©,) E©) E(©)) E©)) E(©,) E(©)) E(0,)
p=02 1.1122 1.3878 11715 1.3285 1.2481 1.2519
04 1.2525 2.0809 1.4008 1.9325 1.6590 1.6743
0.6 1.4328 3.5672 1.7237 3.2763 24721 2.5279
0.8 1.6733 8.3267 2.2091 7.7909 4.8525 5.1475
0.9 1.8264 18.174 2.5224 17.448 9.3706 10.629

Table 2 Mean completion time E(C,) as a function of mean maximum-attendance-
time E(T,) for the server utilization p = 0.2 t0 0.9

E(T,) 0.0 0.01 0.1 1.0 10 100 oo

p=02 11111 11101 1.1022 1.0604 1.0122  1.0014 1.0000
04 12500 1.2482 12335 1.1508 1.0352  1.0041  1.0000
0.6 14286 1.4264 14082 1.2951 1.0843  1.0104 1.0000
0.8 1.6667 1.6649 1.6496 1.5424 1.2225  1.0319  1.0000
09 18182 18171 1.8171 1.7342 1.4164  1.0755 1.0000
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5. CONCLUSIONS & FURTHER RESEARCH

For the two-class Markovian priority queues (M, M,/M,, M, /1) with
preemptive-resume, time-limited schedule (T, = o0, T, < o), we have derived the
generating function of a joint queue-length distribution, and have obtained LSTs for
the response time and the waiting time in each queue. Besides, explicit mean delay
formulas have been provided for the performance measures and the completion
time. From some numerical examples, we have confirmed the effectiveness of the
time-limited schedule.

As the subjects of future research, we may consider (i) three or more priority
queues (N = 3) with time-limited schedule, (ii) two-class priority queues with
general distributions of T, and H,, n = 1, 2 and general arrival processes, (iii) the
same priority queues with nonpreemptive, time-limited schedule, and (iv) discrete-
time priority queues with time-limited schedule. For the first subject, in the case of
N =3, we need a solution of a functional equation with two variables corresponding
to (18), which may be new in the literature, in order to find the joint queue-length
distribution. For the second subject, the same approach used for the generating
function analysis in this study can be applied to priority models with general
maximum-attendance-time distribution, e.g. M,, M,/G,, M,/1, by using the method
of supplementary variables. For generalization of the arrival process, we need
furthermore the busy period analysis, e.g. Machihara [14] and Takine and
Hasegawa [20], by taking account of the fact stated in Remark 4.2, though
previous works for the ordinary preemptive priority queues with non-Poisson
arrival processes are closely related to this subject. For the third subject, the results
of Katayama and Takahashi [8] for priority queues with Bernoulli schedules
p,, p,] can be directly applied to a two-class priority model (M, M,/G,, G,/1)
with general service time distributions and nonpreemptive, time-limited schedule
(T} =00, T, < e0) distributed exponentially by setting the Bernoulli parameters
lp,=1,p,=Pr{H,<T,}= Hz*(a)]. Hence, analysis of the multi-class priority
queues with nonpreemptive, time-limited schedule (T, T,, -+, T)) distributed
exponentially reduces to that of the priority queues with Bernoulli parameters
[Py, Py, - Pyl For the fourth subject, we need also to study the discrete-time
versions of the above models. Indeed, as the other research direction, we may
apply numerical techniques based on the Laguerre-function approximation
developed by Leung et al. [11, 12] and discrete Fourier transforms used in [13, 19]
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to analysis of our priority queues, and we need also to study the numerical analysis
for the results of Coffman et al. [5] obtained by the boundary-value technique as

mentioned in Remark 2.1.
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Appendix  Derivation of P,(x,y),,
We obtain a balance equation for {p,(i, D) 88
(A) + A’Z + lul)pl(i’j)m = A«l])](i'lvj)m'*' A’Z])l(i’j'l)m + #11)[(i+lvj)m+ a[)z(l,_])
for ,j=1, (A.1)

where the last term corresponds the timer expiration with rate o when the single-
server serves a class-2 message. Some algebraic manipulation using (2), (40) and
(A.1) yield

XR (%, y)P (%, ), = 0y [Py(x, ) - Py(0, )] - 1,0, y),, (A2)

Since the right-hand side of (A.2) is also zero for x = §,(y) given by (13),
it follows that

P (0, y), = ay[Py(8,(3), y) - P50, »)]. (A.3)

Therefore, we obtain P,(x, ¥), given by (41) from (A.2) and (A.3).



