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Abstract 
A f1exible priority discipline with time-limited schedule of controllable parameters 

(Tp T2, "', TN) is presented in this paper, which operates as follows: After the last visit of 

a single-server at queue n, the server serves messages in queue n, n = 1, 2, "', N until 

either queue n becomes empty or a timer WiUl time-limit T" expires, whichever occurs iirst. 

In succession, the highest class message present in the system is next served according to 

the time-limited service. For two-class (N = 2), Markovian priority queues WiUl time­

limited schedule (Tp T2), we determine a generating function of a steady-state, joint 

queue-length distribution. In the case of (T 1 = T 2 = 00), this model reduces to the 

altemating priority queues, while in the case of (Tl = 00, T2 = 0), Ule ordinary preemptive­

resume priority queues, where Ulis priority model is also a limiting case of two queues with 

altemating service periods first studied by Coffman, Fayolle and Mitrani (1987). Through 

a generating function approach, we provide Laplace-Stieltjes transforms of distribution 

functions of the response time and the waiting time of each class, and present numerical 

examples for Ole mean perfonllance measures and Ole mean completion time. 
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1. INTRODUCTION 

A number of priority queueing models have been analyzed for the performance 

evaluation of communication, computer and manufacturing systems; However, 

most classical priority disciplines, such as the preemptive/nonpreemptive (head­

of-the-line), the shortest/longest-job-first, and the exhaustive-service priority 

disciplines, have no controllable parameters. A l1exible priority discipline with 

time-limited schedule is defined by a vector of time-limit parameters T := 
(T\, "', Tn' .. ·,TN), o:s; Tn :s; "", and operates as follows: After the last visit of 

a single-server at queue n, the server serves messages (or customers) in queue n, 
n = 1,2, "', N until either queue n becomes empty or a timer with time-limit (also 
called maximum-attendal1ce-time) Til expires, whichever occurs first. This service 

discipline is called a time-limited service. In succession to the time-limited service 

for clasH! messages, the highest class message present in the system is next selved 

according to the time-limited service, where class I is the highest, and class N 

the lowest. In this paper, we will analyze the simplest but practical two-class, 
Markovian (M/M/l-type) priority queues with time-limited schedule (Tl' T2 ) as 

a special case of the general parameter T, which is applicable to the performance 

analysis of asymmetric half-duplex transmission systems in optical subscriber 

networks and a multiplexer of voice and data packet transmission used ill wide band 
packet networks. If T J = T2 = "", then this reduces to the alternating priority 

discipline, whereas if T J = "" and T2 = 0, it reduces to the ordinary preemptive 

priority discipline. Setting appropriate timer values, such a flexible priority 

discipline is effective for performance optimization, and has potential applicability 

to processing systems with multiple grades of service requirements, e.g. the routing 

scheme with priority classes used in packet processing systems in the Internet and 

the broadband ISDN considered in Plycker [15]. 

Despite flexibility and effectiveness of the time-limited schedule, analytical 

results have not yet been obtained for the above priority system. However, there 

have been flUitful results related to polling systems (or cyclic-service systems) and 

vacation systems with time-limited service: Leung (1994) studied an M/Mll-type 

cyclic-service system with nonpreemptive, time-limited services with the general 

parameter T using the numerical approach based on discrete Fourier transforms. 

In the simplest selling, Coffman, Fayolle and Mitrani (1987) derived analytically 

a generating function of a joint queue-length distribution in an M/Mll-type, 
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alternating service queues with time-limits CT\, T2 ) distributed exponentially by 

using the boundary-value technique for the first time. Komatsu and Hinomoto 

(1989) evaluated the mean waiting times in a two-queue model with constant time­
limited service CTl = T) and preemptive/nonpreemptive priOlity disciplines by using 

numerical inversion of Laplace transforms. Several analytic approximations for 

polling systems with time-limited service have been presented by Yue and Brooks 

(1990), Tangemann and Sauer (1991) and Chang and Sandhu (1994), e.g. Yue et 

al. analyzed a polling system with high-priority stations controlled by the token 

holding timer and low-priority stations by the token rotation timer. Various vacation 

systems with· time-limited service have been analyzed by Leung and Eisenberg 

(1990, 1991), Takagi and Leung (1994), Chiarawongse, Srinivasan and Teorey 

(1994) and Alfa (1995), e.g. Takagi et al. analyzed a discrete-time vacation model 

with preemptive-resume, exhaustive time-limited service by using the technique of 

discrete Fourier transforms. Alfa also analyzed a discrete-time vacation model with 

Markovian anival process and phase-type selvice time distribution using the mau'ix­

geomeuic method. 

The rest of this paper is organized as follows: In Section 2 we describe the 

model in detail, and give some definitions and notation. In Section 3 we determine 

a generating function of a steady-state, joint queue-length distribution using 

a solution of an iterative functional equation. In Section 4 we analyze important 

perfonnance measures such as the response time (also called system time or sojOUl11 

time) and the waiting time in each priority class, and give some numerical 

examples. In Section 5 we summarize the paper and fUlther research. 

2. MODEL AND NOTATION 

The two-class priority model with time-limited schedule analyzed in this paper 

consists of two-parallel queues with infinite capacity waiting rooms, Q I and Q2' for 

messages of class-l and class-2, respectively. The arrivals of claSS-II messages 
form a Poisson process with rate An,n = 1,2. Messages in QI and Q2 are served 
according to the time-limited schedule (Tl' T2 ::;; 00) as follows: Once statting service 

of class-2 messages, a single-server serves class-2 messages until either Q2 

becomes empty or a timer with maximum-attendance-time T2 expires, whichever 

occurs first. In the latter case, the intenupted service is resumed in the next service 
period. In succession to the time-limited service with T2 ::;; 00, class-l messages, 



216 Part VI Time-Limited Service Queues 

if any, are next served according to the time-limited service with T\ ~ 00. Here note 

that class-l messages are served until Q I becomes empty successively, because 

class-l messages have priority over class-2 messages at completion of the time­
limited service, i.e. the parameter is equivalent to (T\ = 00,T2 ~ 00). While, if there 

are no class-l messages at completion of the time-limited service with T2, class-2 

messages are served according to the next time-limited service with a new value T2. 

If there is no message in the system, the server waits for a new an·ivaI. Messages of 

the same class are served according to the FCFS (first-come first-served) discipline. 

Service time H", I! = 1,2 for claSS-I! messages has an exponential distribution, 

H,,(t), with service rate )1", I! = 1, 2. The maximum-attendance-time T2 has also 

an exponential distribution, T2(t), with rate a ~ O. The Laplace-Stiel~jes transform 

(LST) and the first moment of H,,(t) are denoted by H,"(s) and II", II = 1, 2, 

respectively. The LST of the distribution function (DF) T2(t) is denoted by T2 \s). 

Throughout, we will use 

H,,*(s) =~, 
s+)1" 

* a Tz (s)=-, 
s+a 

1 
11,,=-, 

)1" 

1 
E(T) =-

Z a 

p" := 1."11,,, Il = 1, 2, 

II = 1, 2, 

(1) 

Additional notation will be introduced in Sections 3 and 4. Here note that the 

distribution of a busy period (or the workload process in the system) of our priority 

model is identical with that of an MIC/l queue with the arrival rate A := Al + Az and 

the LST for the service time (AIH\ *(s) + AzH2 *(s»IA, i.e. the mean service time II 

:= (A1h l + Azl!z)/A. Therefore, from the MIC/l queueing theory, that AI! = p < 1 is 

a necessary and sufficient condition for system stability. 

Remark 2.1. The above priority model represents a limiting case of the 
alternating service queues with (T\, T2 !; (0) analyzed by Coffman et aI. [5]. 

However, their results require still more a substantial effOit to obtain the numeIical 

solution of integral and functional equations, and no waiting time analysis is 

provided. In contrast, the above model becomes tractable by a classical but different 

analysis of functional relationships (9) and (10) as discussed in the next section. In 

addition, the above model does not fall within the class of queues with service 
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intenuptions or breakdowns analyzed by Sengupta [16], because of the state 

dependent mechanism for switching from one queue to the other. I 

3. GENERATING FUNCTION ANALYSIS 

3.1 Functional Relationships 

We first define the steady-state joint probabilities 

p,,(i,j) := Pr {server at Q", i messages in QI andj messages in Q2} 

for n = 1, 2 and i + j:2: I, 

p(O, 0) := Pr {there is no message in the system}, 

whel'e the number of messages i (or j) includes the one being in service. Here, note 

that P I(O,j) = P2(i, 0) = ° for any i,j > 0. We also define its generating functions, 

for lxi, Iyl ~ I, 
00 00 

PI(X, y):= L L PI(i,j) Xi-I;, 
i=1 j=O 

00 00 

P2(X, y) := L L P2(i,j) Xi ;-1. 
i=O j=1 

(2a) 

(2b) 

In addition, define an indicator function 8." = 1 if S holds and 8." = ° otherwise, 

where S denotes membership in some subset of {(i,j): i,j:2: OJ. Then, we obtain 

the following balance equations for the joint queue-length disttibution (p,,(i, j)}: 

(AI + A.z + I1I)PI(i,j) = 0>Oap2(i,j) + 111P1(i+I,j) + 0;> IA1PI(i-I,j) 

+ 0>oAzPI(i,j-I)+ 0=ol1liJ2(i, 1) + 0;= 10=oA1P(0, 0), 

for i:2: 1,j:2: 0, (3a) 

(AI + A.z + 112 + 0; > Oa)p2(i, j) = I1zP2(i, j+ I) + 0; > oA1P2(i-I, j) 

+ 0> IA.zJJ2(i,j-l) + 0; = of1IPI(l,j) + O;=O~=IA.zJJ(O, 0), 

for i:2: O,j:2: I, (3b) 
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After some algebraic manipulation using (2), (3a)-(3c), we obtain the following 

functional relationships: 

xR,(x, y)P,(x, y) = ay[P2(x, y) - P2(0, y)] - Ji,P,(O, y) + Jiz[Pz<x, 0) - P2(0, 0)] 

+ A,xp(O, 0), (4) 

y[a + R2(x, y)]P2(x, y) = Ji,[P,(O, y) - P,(O, 0)] + ayP2(O, y) - Ji2P2(X, 0) 

+ Azy p(O, 0), (5) 

where 

R,(x, y) := /3(x, y) - ~I (I-x), R2(x, y) := /3(x, y) - ~2 (l-y), 

and 

/3(x, y) := A,(I-x) + Az(l-y). 

Putting x = 0 and y = 0 in (5) and (4), respectively, and using (3c) yield 

JiIP,(O, y) = yR2(0, y)P2(0, y) + /3(0, y)p(O, 0), 

Ji2P2(X, 0) =xRI(x, O)P,(x, 0) + /3(x, O)p(O, 0). 

(6) 

(7) 

(8a) 

(8b) 

From rearranging after substituting (8a) and (8b) for PI(O, y) and Pix, 0) on the 

right-hand sides of (4) and (5), respectively, we get 

I 
P,(x, y) = [R2(x, y){xR,(x, O)P,(x, 0) 

xR,(x, y)[a + Rz<x, y)] 

-y(a+ RiO,y»P2(0, y)} + Ji,Rix,yWI(O,O) (9) 

+ {A, ax - /3(0, y)(a + R2(x, y» }p(O, 0)], 

I 
Pix, y) = [y(a+RiO, y»P2(O, y) - xR I (x, OW,(x, 0) 

yea + RzCx, y)] 

+ Ji2P 2(0, 0) - /3(x, O)p(O, 0)]. (10) 

These equations are the slatting point for our analysis. It is necessary to determine 

unknown functions P,(x, 0) and P2(0, y) and unknown probabilities PI(O, 0), 

P 2(0, 0) and p(O, 0) in the numerators on the right-hand sides of (9) and (10). 

The factors in the denominators on the right-hand sides of (9) and (10), xR,(x, y) 

and yea + R2(x, y)] are called "kel'lle!s", the zeros of which in the unit circle play 

an essential role in what follows. 
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Remark 3.1. The definition of (2) leads to simplification of (9) and (10) as 

follows: If we use the ordinary generating function P I (x, y) detined by 

00 00 

(Ila) 

the right-hand sides of (4) and (5) have the terms PI(x, 0) and 

(llb) 

I 

3.2 Determination ofP1(x, 0) andP 2(0,y) 

The kernel appearing in (9) is rewlitten as 

Therefore, x = HI*(SI + A.1(1-x» has only one root x = 0l(y) in the unit circle 

Ixi S 1 given by 

(13) 

under the condition PIS 1 and Iyl S 1, see Takacs' lemma in [17]. Similarly, 

the other equation derived from the kernel in (10), 

y[a + R2(x, y)] 

= (112 + a + p(x, y»[y - H2*(S2 + 1I.z(1-y»] = 0, S2 := a + A.l(1-x), (14) 

has only one root, y = 8z(x), in the unit circle Iyl S 1 as 

From the regularity of P1(x, y) and P2(x, y), the numerators on the right-hand sides 

of (9) and (10) should be equal to zero for x = 0l(Y) and y = 02(X), respectively. 

Thus, we obtain the following functional relationships between P l(X, 0) and 

P2(0, y): For lxi, Iyl S 1, 



220 Part VI Time-Limited Service Queues 

R2(c5)(y), y)[c5)(y)R)(c5)(y), O)P)(c5)(y), 0) - y(a+R2(0, y»P2(0, y)] 

+ f.1)R2(c5)(y), y)p)(O, 0) + [A)ac5)(y) - {J(O, y)(a+Ric5)(y), y»]p(O, 0) = 0, 

(16) 

c5ix)(a +R2(0, c5z<x»P2(0, c52(x» - xR)(x, O)p)(x, 0) + f.12P2(0, 0) 

- {J(x, O)p(O, 0) = o. (17) 

Here, eliminating P2(0, c52(x» from (16) and (17) after selling y = c52(x) in (16), 

we have 

where 

/P(f(x») - /p(x) = p(O, O)g(x), 

/p(x) := xR)(x, O)p)(x, 0) + f.1)p)(O, 0), 

fix) := c5)[c5z(x»), 

( ) '- {J( c5 ( .» a{J(c5)(c5ix», c52(x» g X.- x, 2 X + 
R2(c5)(c52(x», c52(x» 

Using the iterative scheme (Kuczma et al. [10]), qJ(x) can be expressed as 

00 

/p(x) = Tl-p(O, O)L.g[O';(x)], 
;=0 

where 

(18) 

(19) 

(20) 

O'o(x) := x, 1 ~ x ~ 0, 0'; +) (x) := /[<i;(x)], i = 0, 1,2, .... (21) 

The constant Tl in (20) is independent of the sequence {O';(x)}. From a boundary 

condition, 

/p(0) = 0 (22) 

which follows from (19). the constant Tl can be determined. Finally. we have 

qJ(x) = p(O. O)G(x). (23) 

where 

00 

G(x) := L. [g(O';(O» - g(O';(x»]. (24) 
;=0 
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Using (16) and cp(x) determined above, we can find the other function P2(0, y) with 

unknown probabilities. 

3.3 Calculation of Unknown Probabilities 

The remaining work for us is to find the unknown probabilities appearing in 

(9) and (10). Letting x, y ~ 1 in (9) and (10), and using the normalizing condition, 

we have simultaneous linear equations with nine unknowns, from which we get 

p(O, 0) = I - p, 

PI(O, 0) = (l - p)G(81(0»IJiI' (25) 

P2(0, 0) = (1 - p){ Al + A.z - G(81(0» }/Ji2' 

Finally, this completes the formulas to obtain the generating functions PI(x, y) ,and 

P2(x, y), leading to the following result: 

Theorem 1. For a ~ 0, 

P( ) _ (l-P)R2(X,y) 
I x,y -

xRI(x, y)(a+R 2(x, y» 

X[G(X) - G(8 ( » - a{3(~, y) + a{3(81 (Y), y) ], 
I y Rix, y) Ri81(y), y) 

(26) 

P2(x,y) = I-p [G(81(y»-G(X)-{3(X,Y)- a{3(81(Y),Y)]. (27) 
y(a+R 2(x, y» R2(81(y), y) 

o 

4. ANALYSIS OF PERFORMANCE MEASURES 

4.1 Mean Response Time and Mean Waiting Time 

Let E(0n) and E(W,,), n = 1, 2 denote the expectations of response time 0" 
and waiting time W" (until beginning service) of claSS-I! messages, Il = 1, 2, 

respectively, where the response time means the total time spent by a message in the 

system, also called system time or sojourn time. Then, we get the following mean 

delay fOlmulas: 
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Theorem 2. For a '" 0, 

where 

E(01)=1+~- (l-p)hl G'(!), 
a I-PI aPI(l-PI) 

E(02) = PIP21l1+(l-PI)2172 PI+alI2 + (l-p)1l1 d(!), 

p20-p)(l-p) ap2 aP2(l-PI) 

00 i-I 

d(l) = - 2,g'(O";(l»I1/(Oj(l» 
i=O j=O 

and the null product is unity. 

E(W,,) = E(0,,) - E(C,,), 11 = 1,2, 

where 

E(C I ) :=17 1, 

E(C2) := 112 + [PI - (l-p)1l1 G'( 1)J "2. 
P2 P2(l-P.) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

Proof: Let L,,(x) and Q,,(x), n = 1,2 be the generating functions for the number of 

c1ass-l1messages present in the system and the number of messages waiting in Q", 

11 = 1, 2, respectively. Then, we get 

00 00 00 00 

= p(O, 0) + xPI(x, 1) + P2(x, 1) (34) 

and 

L2(y) = p(O, 0) + Pll, y) + yP2(1, y). (35) 

Little's result, 

(36) 
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and the extensive calculation using L'Hospital's rule for derivative terms obtained 

by differentiating the right-hand sides of (34) and (35) yield (28) and (29). 

Similarly, we get 

00 00 00 00 

QI(X) = p(O, 0) + L L PI(i,j) Xi-1+ L L pii,j) Xi 
i= 1 )=0 ;=0 )= I 

(37) 

Little's result, 

(38) 

leads to (31) and (32) since we know P,,(l, 1) = p", 11 = I, 2. 

Here, it should be noted that for calculating E(W2), we can not use the same 

way used to obtain the above results, since the number of class-2 messages waiting 

in Q2 is notj for the state probability PI(i,j) if a class-2 message is in service­

intenuption due to the timer expiration. Hence we have to find the following state­

probabilities defined as 

PI(i,j)/R := Pr {server at QI' i messages in QI,j messages in Q2 and 

a class-2 message is in service-interruption}, 

PI(i,j) iR := Pr {server at QI' i messages in QI,j messages in Q2 and 

any message of class-2 is not intenupted} 

which satisfy 

for i,j~ I (39) 

and its generating functions, for lxI, Iyl :$ I, 

00 00 

(40) 
00 00 

From Appendix and (39), we have 
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(41) 

(42) 

Consequently we obtain 

00 00 00 00 00 

Q2(Y) = p(O, 0) + IpICi, 0) + I I PICi, j) iiO) + I I PICi,j)IR }J-l 
;= 1 ;= I j= 1 ;= 1 j= 1 

00 00 

+ II P2(i,j);-1 (43) 
;=0 j=l 

and 

(44) 

Then, applying LillIe's formula to (44) yields (31) and (33), where we have used 

(45) 

which can be obtained ii'om (41) and Theorem 1. 

Here, E( C,,), II = 1, 2 represents the so-called mean completion time for class-n 

messages. The completion time, C", II = 1, 2 is defined as the duration of a period 

that begins from the instant the service of a class-n message statts and ends at the 

instant the server becomes free to take the next message of class II, i.e. ell = 
W" + C", n = 1, 2 (Jaiswal [7]). D 

II is seen from Theorem 2 that the expressions for E( ell) and E( W,,), 11 = 1, 2 

have terms with infinitive sum and infinitive product, however, we can provide 

delay formulas without infinitive terms only for the following boundary cases, 

a = 0 (alternating-priority discipline) and a -t 00 (preemptive resume discipline), 

which are directly derived from the previous results of the M fGIl queues 

(e.g., (4.4a) and (S.2Sa) in Chap. 3 in Takagi [IS]): 
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Corollary 1. For a = 0, 

(46a) 

(46b) 

E(WII ) = E(0,,) - E(C,,), 11 = I, 2, (47) 

E(C,,) = Iz", 11=1,2 (4S) 

and, for a ~ 00, 

(49a) 

(49b) 

and 

E(WII ) = E(0,,) - E(C,.), 11 = I, 2, (50) 

where 

(51) 

Proof: From (23), G'O) = ql(l )/p(O, 0) and G"(l) = qJ"(l )/p(O, 0). Using these 

and setting x = 1 after differentiating both sides of (IS) one 01' two times by x, we 

have, for a = 0, 

G'O) = A.1(1-PI), 
I-p 

(52) 

G"(I) 2 A.12p2 [ I (1 2] = 2 PIP2 11+ -PI) 112 , 
(l-p) (l-P+2PIP2) 

where we have used that 82(1) = 1 andf(l) = 1. Therefore, from (34), (35), (52) 

and differentiating P,,(x, y), 11 = I, 2 with respect to x or y after setting a = 0 in 
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Theorem 1, we obtain (46a) and (46b). Substituting C'(1) for (33) leads to (48). 
On the other hand, letting a ~ 00 in (28) and (29) leads to (49a) and (49b), 

respectively. By setting y = 0 after letting a ~ 00 in (26) in Theorem 1, we get 

(53) 

where we have used that yRiDI(y), y):t; 0 for y = O. From cp'(1) = (l-p)C'(l), 

we have 

Therefore, substituting C'(1) for (33) leads to (51). 

Remark 4.1. 

(54) 

D 

(i) Eqs. (28)-(33) in Theorem 2 and (46a)-(51) in Corollary 1 also hold for the 

work- conserving service discipline beyond the FCFS discipline in each queue. 

(ii) The mean response times E(0,.), 11 = 1, 2 in Theorem 2 and Corollary 1 satisfy 

the workload conservation law, respectively (Wolff [22]), 

(55) 

It can also be confirmed that the mean waiting times E(W,.), 11 = 1, 2 satisfy the 

conservation law, 

(56) 

by setting as 

(57a) 

(57b) 

where pzE(Wz) represents the mean workload associated with waiting messages 

in Q2' while P2(E(Cz) -1z 2), the mean unfinished workload associated with 

a message in service-intenuption, since the probability of finding a class-2 message 
in service-intenuption is Az(E(C2) - 112) = PI(l, 1)rR' which follows from (33) and 

(45) for a ~ O. • 
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4.2 LSTs and Higher Moments of the Response Time 

and the Waiting Time 

227 

Let 9 11* (s) and WII * (s), 11 = I, 2 be the LSTs of the distribution functions of 

the response time 9,. and the waiting time W" of class-ll messages, respectively. 

Then, we obtain the following t11eorem: 

Theorem 3. For a;;:: 0, 

(58) 

WII*(S) = Q,,(I-sIA,,), 11=1,2, (59) 

where L,,(x) and Q,,(x), 11 = I, 2 are given by (34), (35), (37) and (43), 

respectively; The mth (m = 2, 3, ... ) moments of the response time and the waiting 

time are obtained by 

E(9 111)=_I_[ P (1II-1)(II)+P (111)(11) +P (111)(11)] 
1 A 1/1 m Ix , Ix' 2x" 

1 

E(9 fII)=_I_[ P (111-1)(1 1)+P (1/1)(1 1)+P (111)(1 1)] 
2 A 1/1 m 2y , 2y' Iy , 

2 

(60) 

and 

E(W til) = _1_[p (111)(1 1) + P (111)(1 1)] 
1 A'" Ix , 2x ' , 

t (61) 

[
til III-k ] ", __ 1_ (III) (1/1) , ~ (k) 

E(W2 )- III P2y O,l)+P ly (l,I)iii+ m .L k' PlY (l,l)/R' 
A2 k=O • 

where, for k = 0, I, 2, ... , 

(k) • [ ak 
] P'IX 0,1).= -k PII(x, y) ax x = y = 1 

(62) 

and P,,(x, y), 11 = 1,2, Pt(x, Y)/R and PI(x, y) iii are given in Theorem I, (41) and 

(42), respectively. 

Proof: Since the sample paths of queue-length for each priority class are step 

functions with upward/downward unit jumps, the generating function for the 
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number of class-I! messages in the system at a class-I! message depmture is identical 

to L,,(x), I! = 1,2 given by (34) and (35) because of the PASTA propelty (Wolff 

[22]) and Finch's departure theorem (or Burke's result in Cooper [6]). 

Furthermore, from the fact that, under the FCFS discipline in each queue, the 

number of claSS-I! messages left behind by the departing claSS-I! message is equal to 

the number of claSS-II messages that arrive while it has been waiting and in service, 

we have 

8,,*(A,,(l-X» = L,,(x), I! = 1,2 (63) 

which leads to (58). Therefore, from (34) and (35), we get (60). Likewise, from 

the above argument on the number of claSH! messages in the waiting room, we 

also get 

W"*(A,,O-X» = Q,,(x), Il = 1,2 (64) 

which leads to (59). Hence, from (37) and (41)-(43), we get (61). o 

Remark 4.2. The LST for the completion time of class-2 messages, Cz *(.1'), is 

not given by Cz*(s) = 8 z*(s)/Wz*cs), since Cz depends on WZ' (Recall that at a 

service starting epoch for a class-2 message, the workload in Q1 is not always zero 

as the ordinar-y preemptive/non-preemptive priority queues). I 

4.3 Numerical Examples 

In getting the numerical results for the mean performance measures using 

Theorem 2, our main work is the calculation of d( 1) given by (30). Accordingly 

we need computer programming for the iterative calculation based on (21), 

however, it has been confirmed that the convergence of the sequence {(Jj(x)} is 

very rapid. Table 1 shows values of the mean response times E(8,,), I! = 1, 2 for 

the server utilization p = 0.2 to 0.9 and the mean maximum-attendance-time E(Tz) 
= I1a = 0.01, 1.00 and 100, where the service times H", 11 = 1, 2 and the 

maximum-attendance-time T2 are exponentially distributed, hi = h2 = 1 and Al = 
A2• Under the same condition with Table 1, Table 2 shows values of the mean 

completion time E(C2 ) as a function of E(Tz) for P = 0.2 to 0.9. For E(Tz) = 0.01, 

1.00, 100 and p = 0.2 to 0.9, E(W,,) = E(8,,) - E(C,,), 11 = 1,2 are obtained from 

Tables 1 and 2, where E(C I ) = hi = 1. In the case of E(Tz) = 0.0, the value of 
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E(C2) is identical with that of E(C 2) = h/(l-PI) given by (51) for the ordinary 

preemptive-resume priority queues. 

It is seen from Tables 1 and 2 that E(8,,) and E(W,), II = 1,2 can be widely 

changed by E(Tz), especially in the case of high server utilization. That is, we can 

select an appropriate value of the controllable parameter a = IIE(Tz) in order to 

optimize the mean performance measures. 

Table 1 Mean response times E(8,,), n = 1, 2 as a function of the server 

utilization P 

E(Tz) 0.01 1.00 100 

£(8,,) £(8 1) £(82) £(81) £(82) £(8 1) £(82) 

p=0.2 1.1122 1.3878 1.1715 1.3285 1.2481 1.2519 

0.4 1.2525 2.0809 1.4008 1.9325 1.6590 1.6743 

0.6 1.4328 3.5672 1.7237 3.2763 2.4721 2.5279 

0.8 1.6733 8.3267 2.2091 7.7909 4.8525 5.1475 

0.9 1.8264 18.174 2.5224 17.448 9.3706 10.629 

Table 2 Mean completion time E( C2) as a function of mean maxiIllum-attendancc­

time E(T2) for the server utilization P = 0.2 to 0.9 

E(T2) 0.0 0.01 0.1 1.0 10 100 00 

P =0.2 1.1111 1.1101 1.1022 1.0604 1.0122 1.0014 1.0000 

0.4 1.2500 1.2482 1.2335 1.1508 1.0352 1.0041 1.0000 

0.6 1.4286 1.4264 1.4082 1.2951 1.0843 1.0104 1.0000 

0.8 1.6667 1.6649 1.6496 1.5424 1.2225 1.0319 1.0000 

0.9 1.8182 1.8171 1.8171 1.7342 1.4164 1.0755 1.0000 
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5. CONCLUSIONS & FURTHER RESEARCH 

For the two-class Markovian priority queues (M l' M i M I' M 2' 1) with 

preemptive-resume, time-limited schedule (T1 = 00, T2 ::;; 00), we have derived the 

generating function of ajoint queue-length distribution, and have obtained LSTs for 

the response time and the waiting time in each queue. Besides, explicit mean delay 

formulas have been provided for the performance measures and the completion 

time. From some numerical examples, we have confirmed the effectiveness of the 

time-limited schedule. 

As the subjects of future research, we may consider (i) three or more priority 

queues (N ~ 3) with time-limited schedule, (ii) two-class priority queues with 
general distlibutions of T2 and HII , n = 1,2 and general arrival processes, (iii) the 

same priOlity queues with nonpreemptive, time-limited schedule, and (iv) discrete­

time priority queues with time-limited schedule. For the first subject, in the case of 

N = 3, we need a solution of a functional equation with two variabLes corresponding 

to (18), which may be new in the literature, in order to find the joint queue-IeJigth 

distribution. For the second subject, the same approach used for the generating 

function analysis in this study can be applied to priority models with general 
maximum-attendance-time distribution, e.g. MI' MiGI' Mil, by using the method 

of supplementary variables. For generalization of the arrival process, we need 

furthermore the busy period analysis, e.g. Machihara [14] and Takine and 

Hasegawa [20], by taking account of the fact stated in Remark 4.2, though 

previous works for the ordinary preemptive priority queues with non-Poisson 

an'ival processes are closely related to this subject. For the third subject, the results 

of Katayama and Takahashi [8] for priority queues with Bernoulli schedules 
[PI'P2] can be directly applied to a two-class priority model (M I'M iGI' Gil) 

with general service time distributions and nonpreemptive, time-limited schedule 
(TI = 00, T2 ::;; 00) distributed exponentially by setting the Bernoulli parameters 

[PI = I,P2 = PI' {H2 < T2} = H2*(a)]. Hence, analysis of the multi-class priority 

queues with nonpreemptive, time-limited schedule (Tl' T2, ... , TN) distributed 

exponentially reduces to that of the priority queues with Bernoulli plU'ameters 
[PI'P2' ... , PN]' For the fourth subject, we need also to study the discrete-time 

versions of the above models. Indeed, as the other research direction, we may 

apply numerical techniques based on the Laguerre-function approximation 

developed by Leung et al. [11, 12] and discrete Fourier transforms used in [13, 19] 
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to analysis of our priority queues, and we need also to study the numerical analysis 

for the results of Coffman et a1. [5] obtained by the boundary-value technique as 

mentioned in Remark 2.1. 
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Appendix Derivation of Pl(X'Y)/R 

We obtain a balance equation for {p,(i,j)/R} as 

for i,j:?: I, (A.I) 

where the last term corresponds the timer expiration with rate a when the single­

server serves a class-2 message. Some algebraic manipulation using (2), (40) and 

(A.I) yield 

(A.2) 

Since the right-hand side of (A.2) is also zero for x = 0, (y) given by (13), 

it follows that 

(A.3) 

Therefore, we obtain Pl(x, Y)/R given by (41) from (A.2) and (A.3). 


