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Abstract. Adaptive utilization of resources in a highly heterogeneous
computational environment such as the Grid is a difficult question. In
this paper, we address an object-oriented approach to the solution us-
ing requirement-driven parallel objects. Each parallel object is a self-
described, shareable and passive object that resides in a separate mem-
ory address space. The allocation of the parallel object is driven by the
constraints on the resource on which the object will live. A new paral-
lel programming paradigm is presented in the context of ParoC++ - a
new parallel object-oriented programming environment for high perfor-
mance distributed computing. ParoC++ extends C++ for supporting
requirement-driven parallel objects and a runtime system that provides
services to run ParoC++ programs in distributed environments. An in-
dustrial application on real-time image processing is used as a test case
to the system. The experimental results show that the ParoC++ model
is efficient and scalable and that it makes easier to adapt parallel appli-
cations to dynamic environments.

1 Introduction

The emerging of computational grid [1, 2] and the rapid growth of the Internet
technology have created new challenges for application programmers and system
developers. Special purpose massively parallel systems are being replaced by
loosely coupled or distributed general-purpose multiprocessor systems with high-
speed network connections. Due to the natural difficulty of the new distributed
environment, the methodology and the programming tools that have been used
before need to be rethought.

While traditional distributed HPC applications usually view the performance
as a function of processors and network resources, we will address the question:
How to tailor the application with a desired performance to the distributed
computational environment.

We developed an object-oriented model that enables the user to express high-
level resource requirements for each object. This model is implemented in a par-
allel object-oriented programming system for HPC called ParoC++. ParoC++
is a programming language and a runtime system. We did not try to create a
new language but we extended C++ to support our model. The runtime system
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of ParoC++ is responsible for managing and monitoring distributed computa-
tional environment and is partially written using ParoC++ itself. The current
prototype runtime system supports the ability to map an arbitrary object onto
a resource in a heterogeneous environment. We have modelled a wide area envi-
ronment as a dynamic graph of resources. The resource discovery process during
parallel object allocation takes place on this graph by mechanism of request
matching and forwarding.

In ParoC++, the user does not directly deal with processes. Instead, he
handles the so-called ”parallel objects” which encapsulate processes. A parallel
object is a self-described object that specifies its resource requirements dur-
ing the lifetime. Parallel objects can be computational objects, data objects or
both. Each parallel object resides in a separate memory address space. Similar
to CORBA, parallel objects are passive objects that communicate via method
invocations. The selection of resource for a parallel object is driven by the object
requirement and is transparent to the user.

This paper focuses on the programming language aspect of the ParoC++
and the requirement-driven parallel object. In section 2, we will explain our
requirement-driven parallel object model. Parallel object is the central concept
in ParoC++ which we describe in section 3. We also present in this section some
experimental results on low-level performance of ParoC++. Next, we demon-
strate using ParoC++ in an industrial real-time application in the field of image
processing in section 4. Some related works are discussed in section 5 before the
conclusions in section 6.

2 Requirement-driven parallel object

2.1 A parallel object model

We envision parallel object as the generalization of the traditional object such
as in C++. One important support for parallelism is the transparent creation of
parallel objects by dynamic assignments of suitable resources to objects. Another
support is various mechanisms of method concurrency: parallel, sequential and
mutex.

A parallel object, in our definition, has all properties of a traditional object
plus the following ones:

– Parallel objects are shareable. This property is described in section 2.2.
– Parallel objects support various method invocation semantics: synchronous,

asynchronous, sequential, mutex and concurrent. These semantics are dis-
cussed in section 2.3.

– Objects can be located on remote resources and in a separate address space.
Parallel objects allocations are transparent to the user. The object allocation
is presented in section 2.4.

– Each parallel object has the ability to dynamically describe its resource
requirement during its lifetime. This feature will be discussed in detail in
the section 2.5.
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It has to be mentioned that as normal objects, parallel objects are passive
objects that can only go into active mode upon executing a method invocation
request. We believe that using the passive object is easier and more familiar to
the traditional object-oriented programming paradigm. The passive object allows
the user to fully control object execution, thus allowing a better integration into
other software components and making the maintenance of components simple.

2.2 Shareable parallel objects

All parallel objects are shareable. Shared objects with encapsulated data provide
a means for the user to implement global data sharing in distributed environ-
ments. Shared objects can be useful in many cases. For example, computational
parallel objects can synthesize the output data simultaneously and automatically
into a shared output parallel object.

2.3 Invocation semantics

Syntactically, invocations on parallel objects are identical to invocations on tra-
ditional sequential objects. However, the parallel object invocation supports var-
ious semantics. The semantics are defined by two parameters:
1. Interface semantics:

– Synchronous invocation: the caller waits until the execution of the requested
method on the server side is finished and returned the results. This corre-
sponds to the traditional way to invoke methods.

– Asynchronous invocation: the invocation return immediately after sending
the request to the remote object. The results of the invocation can be actively
returned to the caller object if the callee knows the ”call back” interface of
the caller.

2. Object-side semantics:

– Sequential invocation: the invocation is executed sequentially. The serializ-
able consistency of sequentional invocations is guaranteed.

– Mutex invocation: the invocation request is blocked until all instances of
methods are terminated.

– Concurrent invocation: the execution of method occurs in a new thread (mul-
tithreading) if no sequential or mutex method is currently invoked.

All invocation semantics are specified during the design phase of parallel
objects.

2.4 Parallel object allocation

The allocation of parallel object is transparent to users. It consists of two phases:
first, the system need to find a resource where the object will live; then the object
code is transmitted and executed on that resource, the interface is connected to
the object.
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2.5 Requirement-driven parallel objects

We believe that the high performance in highly heterogeneous and dynamic en-
vironments such as the Grid can only be obtained if the two following conditions
are satisfied:

– The application should be able to adapt to the environment.
– The programming environment should somehow enable application compo-

nents to describe their resource requirements.

The first condition can be fulfilled by multi-level parallelism, dynamic utiliza-
tion of resources or adaptive task size partitioning. One solution is to dynamically
create parallel objects on demand that will be expressed in section 3 where we
describe the ParoC++.

In the second condition, the requirements can be expressed in form of quality
of services that components desire from the environment. Number of researches
on the quality of service (QoS) has been performed [3–5]. Most of them consist in
some low-level specific services such as network bandwidth reservation, real-time
scheduling, etc.

Our approach integrates the user requirements into parallel objects in the
form of high-level resource descriptions. Each parallel object is associated with
an object description (OD) that depicts the needed resources to execute the
object. The resource requirements in OD are expressed in terms of:

– Resource name (host name) (low level).
– The maximum computing power that the object needs (e.g. the number of

Mflops needed).
– The amount of memory that the parallel object consumes.
– The communication bandwidth with its interfaces.

An OD can be "power>= 150MFlops :100MFlops; memory=128MB" which
means the object requires a power of 150MFlops although 100MFlops is accept-
able (non-strict item) and a memory storage of at least 128MB (strict item).

The construction of OD occurs during the parallel object creation. The user
can initiate the OD for each object constructor. The OD can be parameterized
by the input parameters of the constructor.

It can occur that, due to some changes on the object data or some increase
of computation demand, the OD needs to be re-adjusted. If the new requirement
exceeds some threshold, the adjustment can request for object migration. The
migration process should be handled by the system transparently to the user.

3 ParoC++ programming language

ParoC++ is an extension of C++ that supports parallel objects. We try to
keep this extension as close to C++ as possible so that the programmer can
easily learn ParoC++ and the existing C++ libraries can be parallelized using
ParoC++ without too much effort.

We claim that all C++ classes with the following restrictions can be imple-
mented as parallel object classes without any changes in semantic:
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– All data attributes of object are protected or private
– The object does not access any global variable
– There is no user-defined operator
– There is no method that returns the memory address references

In other word, to some extension, ParoC++ is a superset of C++. This is
important if we want to construct mechanisms for coarse-grain auto-parallelism.
In many case, the compiler can efficiently decide among objects which ones are
parallel objects and which ones are sequential objects and thus automatically
generates the codes for each kind of object. Auto-parallelism is not yet imple-
mented in ParoC++.

In this section, we will refer our parallel object as object.

3.1 ParoC++ parallel class

Developing ParoC++ programs mainly consist of designing parallel classes. The
declaration of a parallel class begins with the keyword parclass following the
class name:

parclass myclass {...};
As sequential classes, parallel classes contain methods and attributes. Method

accesses can be public, protected or private while attribute accesses must be
protected or private. For each method, the user should define the invocation
semantics by using ParoC++ keywords: async, sync, conc, seq and mutex
for asynchronous, synchronous, concurrent, sequential and mutex invocations.
These semantics are described in section 2.3.

The combination of the interface and object-side semantics defines the over-
all semantics of a method. For instance, the following declaration defines an
asynchronous concurrent method that returns an integer number:

async conc int mymethod();
Two important properties of object-oriented programming: multiple inheri-

tance and polymorphism are supported in ParoC++.

3.2 Object description

Object description (OD) is declared along with object constructor statement.
Each constructor of a object associates with an OD that resides right after the
argument declaration between ”@{...}”. An OD contains a set of expressions
on the reserved keywords power (for the computing power), network (for the
communication bandwidth between the object server and the interface), mem-
ory (for the memory) and host (user-specified resource). Each expression is
separated by a semi-colon (”;”) and has the following format:

[power | memory | network ] [>= | =] <number expression 1> [”:” num-
ber expression 2];

or host = [string expression];
The existence of host expression will make all other expressions be ignored.
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3.3 Parallel object creation and destruction

Syntactically, the creation and the destruction of a parallel object are identical to
those of C++. The object creation process consists of locating a resource satisfy-
ing the OD, transmitting object code, remote executing object code, establishing
communication, transmitting arguments and invoking the object constructor.
Failures on object creation will raise an exception to the caller.

Each object has a counter that defines the number of reference to the object.
A counter value of 0 makes the object be physically destroyed. The object counter
is managed by the ParoC++ run-time system transparently to the user.

3.4 Inter-object communication: method invocation

The conventional way to communicate between distributed components in ParoC++
is through method invocations. The semantic of invocations is fixed during the
class declaration.

The current prototype of ParoC++ implements the communication using
TCP/IP socket and Sun XDR as its data representation. All data transmitted
over the network conforms to XDR format.

3.5 Intra-object communication: shared data vs. event sub-system

In an object, there are two ways for concurrent operations to communicate:
using shared data attributes or via the event sub-system. Using shared attributes
is simple but it requires the programmer to manually verify and synchronize the
data access.

Another method is communication via event sub-system. Each object has its
own event queue. An event is a positive integer whose semantic is application
dependent. An object can raise (eventraise(n)) or can wait (eventwait(n))
for an event ”n” in its own queue. Raising an event in one object will not affect
the waiting-for-event in other objects.

Event sub-system is a very powerful feature to deal with signalling and syn-
chronization problems in distributed environments. For instance, it can be used
in conjunction with the shared data attributes to notify the status of data during
the concurrent invocations of read/write operations. It can also be used to tell
the others about occurrence of failure or the changes in the environment.

3.6 Mutual exclusive execution

When concurrent invocations occur, some parts of executions might access an
attribute concurrently. To deal with these situations, it is necessary to provide a
mutual exclusive mechanism. ParoC++ supports this feature by using the key-
word mutex. Inside a given object, all block of codes starting with the keyword
mutex will be executed mutual exclusively.
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3.7 Communication cost

We wrote a program containing two objects called ”Ping” and ”Pong” running
on two different machines. Ping invokes methods of Pong with different argu-
ments (size and type) and with two different invocation semantics: synchronous
and asynchronous. Invocation speed and the communication bandwidth are mea-
sured.

ParoC++ Invocation speed
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Fig. 1. Parallel object communication cost

Figure 1(a) shows the invocation speed of objects on 8-bit and 32-bit integer
messages. Asynchronous invocations are more efficient than synchronous ones,
especially for small messages due to message aggregation. The latency of asyn-
chronous invocation is about 6.9 µsec (MPICH: 43 µsec) and of synchronous
one is about 94 µsec (MPICH: 123 µsec).

The communication bandwidth, in Fig. 1(b), shows that asynchronous in-
vocations, due to the overlapping, utilize better bandwidth than synchronous
invocations. This bandwidth is slightly better than asynchronous send (one way)
of MPICH. The bandwidth of asynchronous calls almost reaches the limit of the
Fast Ethernet throughput (11.3 MB/s). For synchronous invocation, MPICH
achieves somehow better bandwidth in our experiment (15-20% better for large
messages). This is due to the extra cost for multiplexing remote method in
ParoC++.

4 Example application

We present in this section the development of Pattern and Defect Detection
System (PDDS) using ParoC++. PDDS is part of the European project Forall-
11 in textile manufacturing. The main function of PDDS is to analyze continuous
tissue images to find pattern positions and to discover defects on the tissue. This
process should be in real-time with the capacity of analysis up to 3.3 Mpixels/s
or about 10MBytes/s for 24bits RGB images.

Figure 2 demonstrates the parallel object diagram of PDDS using ParoC++.
The main program create two objects ImageBuf and OuputData and several ob-
jects Analyzer. ImageBuf and OutputData are shared among Analyzer objects.
1 European project E!1955/CTI 5130.1 financed by Swiss Government in the Eureka
program
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The Analyzer access ImageBuf to get the images, analyze them and then store
the results in OutputData. The main program also plays the role of a monitoring
agent. It monitors the real speed of ImageBuf. If the main program detects that
the system overworks due to some increase on the computation demand or some
external changes to the resources, it reacts by creating some more Analyzer
objects (allocated more resources). Hence, in PDDS we also deal with the adap-
tation of the application to the user requirement and to the dynamic state of
the environment.

We have performed two experiments. First, we run PDDS in homogeneous
networks to measure the performance, the scalability and the efficiency in term
of number of Analyzer objects. The second experiment is done in a heterogeneous
network where we take into account the changes on the computation demand
and on the environment.

The input image for the first experiment consists of 100 frames of size 2048x2048
pixels. ImageBuf splits the frame into several sub images of the size 512x512 pix-
els. No adaptation is considered in this test. Figure 3 shows the speedup of two
types of tissues: small patterns (Sict2) and big patterns (Monti) on a network
of Sun sparc workstations and on a cluster of Pentium 4. We see that in both
environments, almost linear speedup is achieved. PDDS runs about 14 times
faster on 16 processors.

In the second experiment, PDDS isPerformance Adaptation
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launched in a heterogeneous environment
of Solaris/sparc and Linux/Intel with the
adaptation monitor turned on. Figure 4
shows the dependency between the anal-
ysis speed (in term of MPixel/s) and the

time. The dash line presents the required power whereas the continuous line is the
real power of PDDS. In the test, we dynamically change the requirement speed
every 2 minutes. Due to these external changes, additional Analyzer objects (re-
sources) are automatically allocated in order to satisfy the required performance.
One interesting note is that at a certain time, the actual performance goes down
(at the second of 220). The reason is that we have changed the load of a machine
used by PDDS . The system reacts to this change and is soon recovered to the
normal speed. By this experiment we want to show the two important points:

– ParoC++ application can efficiently deal with the computation on demand.
– ParoC++ can adaptively use the heterogeneous resources efficiently.
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5 Related works

On the language aspect, Orca[6], MPL[7] and PO[8, 9] are some examples. Orca
provides a new language based shared objects. The programming model that
Orca used is Distributed Shared Memory (DSM)[1] for task parallelism. While
Orca aims at using the objects as a mean to share data between processes, our
approach combines the two concepts of shared data object and the process into
a single parallel object.

MPL on the other hand, is an extension of C++ with some so-called metat
classes for parallel execution. MPL follows the data-driven model. The paral-
lelism is achieved by concurrent invocations on these objects. The Mentat run-
time system is responsible for the instantiation of mentat objects, the invocation
of method and keeping objects consistency. While the metat object supports only
asynchronous invocation and is not shareable, ParoC++ provides a more general
approach with various invocation types (synchronous, asynchronous, concurrent,
sequential, mutex) and the capacity of sharing objects. Moreover, both Orca and
MPL do not allow specifying the resource requirement within the object.

Our parallel object and PO both share the inter-object and intra-object par-
allelism. The difference is on the object model: PO follows active object mode[10]
with capability of deciding when and which invocation requests to serve while
our Parallel Object uses passive object model that is similar to C++. Abstract
Configuration Language (ACL) in PO to specify high-level directives for the
object allocation is similar to our Object Description (OD); however, the ACL
directives are only expressed at the class-level and cannot be parameterized
for specific instances whereas our OD deals directly with each object instance.
Therefore, our OD can be customized based on the real input parameters of the
object.

On the tool aspect, COBRA[11] and Parallel Data CORBA[12] extend CORBA
by encapsulating several distributed components (object parts) within an object
and by implementing the data parallelism based on data partitioning: data is
automatically split and distributed to several object parts in difference mem-
ory address spaces. This differs from our approach in which each parallel object
resides in a single memory address space and the parallelism is achieved by con-
current interaction of objects and concurrent invocations of methods on the same
object. In addition, the specification of resource requirement is not defined in
both Data Parallel CORBA and COBRA.

6 Conclusions

Adaptive utilization of the highly heterogeneous computational environment for
high performance computing is a difficult question that we tried to answer in
this paper. Such adaptation has two forms: or the application components should
somehow decompose dynamically based on the available resources of the envi-
ronment; or the components should allow the infrastructure to select suitable
resources by providing descriptive information about the resource requirement.
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We have addressed these two forms of adaptation by introducing our paral-
lel object and ParoC++-a parallel object-oriented programming language. The
integration of requirement driven by object-description into the shareable par-
allel object is a distinct feature or our approach. We have described ParoC++
that extends C++ to support the parallel object. ParoC++ also offers various
mechanisms such as event sub-systems, synchronization, and mutual exclusive
execution to support the concurrency within the parallel object. Programming
in ParoC++ is rather easy since ParoC++ is very similar to C++.

Some primary experiments on ParoC++ have been performed. Low-level
tests on different types of method invocations give a good latency and a good
bandwidth compared to MPICH on the same architecture. An industrial appli-
cation on real-time image analysis has also been demonstrated. The results have
showed the efficiency, scalability, adaptability and the ease-to-use of ParoC++
in dealing with the computation on demand of the HPC application in hetero-
geneous and distributed environments.
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