
Finite Instantiations in Equivalence Logic with
Uninterpreted Functions

Yoav Rodeh and Ofer Shtrichman

Weizmann Institute of Science, Rehovot, Israel
IBM Haifa Research Laboratory

{yrodeh,ofers}@wisdom.weizmann.ac.il

Abstract. We introduce a decision procedure for satisfiability of equiv-
alence logic formulas with uninterpreted functions and predicates. In a
previous work ([PRSS99]) we presented a decision procedure for this
problem which started by reducing the formula into a formula in equal-
ity logic. As a second step, the formula structure was analyzed in order
to derive a small range of values for each variable that is sufficient for
preserving the formula’s satisfiability. Then, a standard BDD based tool
was used in order to check the formula under the new small domain. In
this paper we change the reduction method and perform a more careful
analysis of the formula, which results in significantly smaller domains.
Both theoretical and experimental results show that the new method is
superior to the previous one and to the method suggested in [BGV99].

1 Introduction

Deciding equivalence between formulas with uninterpreted functions is of major
importance due to the broad use of uninterpreted functions in abstraction. Such
abstraction can be used, for example, when checking a control property of a
microprocessor, and it is sufficient to specify that the operations which the ALU
performs are functions, rather than specifying what these operations are. Thus,
by representing the ALU as an uninterpreted function, the verification process
avoids the complexity of the ALU. This is the approach taken, for example, in
[BD94], where a formula with uninterpreted functions is generated, such that its
validity implies the equivalence between the CPU checked and another version
of it, without a pipeline. Another example is given in [PSS98], where formulas
with uninterpreted functions are used for translation validation, a process in
which the correct translation of a compiler is verified by proving the equivalence
between the source and target codes after each run.

In the past few years several different BDD-based procedures for checking
satisfiability of such formulas have been suggested (in contrast to earlier de-
cision procedures that are based on computing congruence closure [BDL96] in
combination with case splitting). Typically the first step of these procedures is
the reduction of the original formula ϕ to an equality formula (a propositional
formula plus the equality sign) ψ such that ψ is satisfiable iff ϕ is. As a second
step, different procedures can be used for checking ψ.

G. Berry, H. Comon, and A. Finkel (Eds.): CAV 2001, LNCS 2102, pp. 144–154, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Finite Instantiations in Equivalence Logic with Uninterpreted Functions 145

Goel et al. suggest in [GSZAS98] to replace all comparisons in ψ with new
Boolean variables, and thus create a new Boolean formula ψ′. The BDD of ψ′ is
calculated ignoring the transitivity constraints of comparisons. They then tra-
verse the BDD, searching for a satisfying assignment that will also satisfy these
constraints. Bryant et al. at [BV00] suggested to avoid this potentially exponen-
tial traversing algorithm by explicitly computing a small set of constraints that
are sufficient for preserving the transitivity constraints of equality. By checking
ψ′ conjoined with these constraints using a regular BDD package they were able
to verify larger designs.

In [PRSS99] we suggested a method in which the Ackermann reduction
scheme [Ack54] is used to derive ψ, and then ψ’s satisfiability is decided by
assigning a small domain for each variable, such that ψ is satisfiable if and only
if it is satisfiable under this small domain. To find this domain, the equalities in
the formula are represented as a graph, where the nodes are the variables and the
edges are the equalities and disequalities (disequality standing for 6=) in ψ. Given
this graph, a heuristic called range allocation is used in order to compute a small
set of values for each variable. To complete the process, a standard BDD based
tool is used to check satisfiability of the formula under the computed domain.

While both [PRSS99] and [GSZAS98] methods can be applied to any equality
formula, Bryant et al. suggest in [BGV99] to examine the structure of the original
formula ϕ. They prove that if the original formula ϕ uses comparisons between
variables and functions only in a certain syntactically restricted way (denoted
positive equality), the domain of the reduced formula can be restricted to a unique
single constant for each variable. This result can also be applied for only subsets
of variables (and functions) in the formula that satisfy this condition. However,
this result cannot be obtained using Ackermann’s reduction. Rather they use
the reduction proposed in [BV98].

The method which we propose in this paper roughly uses the framework we
suggested in [PRSS99]. We will use the reduction scheme suggested in [BV98]
(rather than Ackermann’s scheme) in order to generalize their result in the case
of positive equality formulas. We also show how this shift, together with a more
careful analysis of the formula structure, allows for a construction of a different
graph, which results in a provably smaller domain. The smaller implied state
space is crucial, as our experiments have shown, for reducing the verification
time of these formulas.

2 Preliminaries and Definitions

We define the logic of equality with uninterpreted functions formally. The syntax
of this logic is defined as follows:

〈Formula〉 ←− 〈Boolean-V ariable〉 |
〈Predicate-Symbol〉(〈Term〉, . . . , 〈Term〉) |
〈Term〉 = 〈Term〉 | ¬〈Formula〉 | 〈Formula〉 ∨ 〈Formula〉

〈Term〉 ←− 〈Term-V ariable〉 |
〈Function-Symbol〉(〈Term〉, . . . , 〈Term〉) |
ITE(〈Formula〉, 〈Term〉, 〈Term〉)

146 Yoav Rodeh and Ofer Shtrichman

We refer to formulas in this logic as UF-formulas. We say that a UF-formula ϕ
is satisfiable iff there is some interpretation M of the variables, functions and
predicates of ϕ, such thatM |= ϕ.

An equivalence logic formula (denoted E-formula) is a UF-formula that does
not contain any function and predicate symbols. Throughout the paper we use
ϕ and ψ to denote UF-formulas and E-formulas, respectively.

We allow our formulas to contain let constructs of the form let X = ψ in
ϕ(X), which allows term sharing or the representation of circuits.

For simplicity of presentation, we will treat UF-formulas with no Boolean
variables and predicates. Also, we will assume there are no ITE terms, and every
uninterpreted function has just one argument. All these extensions, including the
full proofs and examples, are handled in the full version of the paper [PRS01].

3 Deciding Satisfiability of E-Formulas

We wish to check the satisfiability of an E-formula ψ with variables V . In theory
this implies that we need to check whether there exist some instantiation of V
that satisfies ψ. Since ψ only queries equalities on the variables in V , it enjoys
the small model property, which means that it is satisfiable iff it is satisfiable over
a finite domain. It is not hard to see that the finite domain implied by letting
each variable in V the range over {1 . . . |V |} is sufficient. However, this approach
is not very practical, since it leads to a state space of |V ||V |.

In [PRSS99] we suggested a more refined analysis, where rather than con-
sidering only |V |, we examine the actual structure of ψ, i.e. the equalities and
disequalities in ψ. This analysis enables the derivation of a state space which
is empirically much smaller than |V ||V |. In this section we repeat the essential
definitions from this work, except for several changes which are necessary for the
new techniques that will be presented in later sections.

Definition 1. (E-Graphs): An E-graph G is a triplet G = 〈V, EQ,DQ〉, where
V is the set of vertices, and EQ (Equality edges) and DQ (Disequality edges)
are sets of unordered pairs of vertices.

Given an E-graph G = 〈V, EQ,DQ〉, we let V (G) = V , DQ(G) = DQ and
EQ(G) = EQ. We use ≤ to denote the sub-graph relation: H ≤ G iff V (H) =
V (G), EQ(H) ⊆ EQ(G) and DQ(H) ⊆ DQ(G). We will use E-graphs to repre-
sent partial information derived from the structure of a given E-formula; they
can be viewed as a conservative abstraction of E-formulas.

We say that an assignment α (assigning values to the variables in V) satisfies
edge (a, b) if (a, b) is an equality edge and α(a) = α(b), or if (a, b) is a disequality
edge and α(a) 6= α(b). We write α |= G if α satisfies all edges of G. G is said to
be satisfiable if there exists some α such that α |= G.

Construction of E-Graph G(ψ): For an E-formula ψ we construct the E-
graph G(ψ) (this is a construction suggested in [PRSS99]) by placing a node in
G(ψ) for each variable of ψ, and a (dis)equality edge for each (dis)equality term

Finite Instantiations in Equivalence Logic with Uninterpreted Functions 147

of ψ — by “equality” term we mean that the equality term appears under an
even number of negations, and by “disequality”, under an odd number.

Example 1. The E-formula ψ1 = (a = b) ∧ (¬(c = b) ∨ (a = c)), results in the
E-graph:

G(ψ1) = 〈{a, b, c}, {(a, b), (a, c)}, {(c, b)}〉
Notice that every proper subgraph of G(ψ1) is satisfiable.

The important property of G(ψ) is that any two assignments α1 and α2 that
satisfy exactly the same edges of G(ψ), will give the same result for ψ; i.e.,
α1 |= ψ iff α2 |= ψ. This means that if ψ is satisfiable, then there is some
satisfiable H ≤ G(ψ) such that every assignment that satisfies all edges of H
will satisfy ψ (this H consists of all the edges of G(ψ) that are satisfied by ψ’s
satisfying assignment). We wish to generalize this property of G(ψ).

Definition 2. (Adequacy of E-Graphs to E-Formulas): An E-graph G is ade-
quate for E-formula ψ, if either ψ is not satisfiable, or there exists a satisfiable
H ≤ G such that for every assignment α such that α |= H, α |= ψ.

For example, G(ψ) is adequate for ψ. We use the fact that an E-graph is adequate
for ψ for finding a small set of assignments that will be sufficient for checking ψ:

Definition 3. (Adequacy of Assignment Sets to E-Graphs): Given an E-graph
G, and R, a set of assignments to V (G), we say that R is adequate for G if for
every satisfiable H ≤ G, there is an assignment α ∈ R such that α |= H.

Proposition 1. If E-graph G is adequate for ψ, and assignment set R is ade-
quate for G, then ψ is satisfiable iff there is α ∈ R such that α |= ψ.

Example 2. For our E-formula ψ1 of Example 1, the following set is adequate
for G(ψ1):

R = {(a← 0, b← 0, c← 0), (a← 0, b← 0, c← 1), (a← 0, b← 1, c← 0)}
Indeed, the assignment (a← 0, b← 0, c← 0) ∈ R, satisfies ψ1.

The range allocation procedure of [PRSS99] calculates an adequate assignment
set R for a given input E-graph G. In that procedure, the resulting R has an extra
property: every α ∈ R is diverse w.r.t. G. By this we mean that for every u, v ∈
V (G), if u and v are not connected via equality edges in G, then α(u) 6= α(v). In
[PRS01] we show how to alter any range allocator so that its output assignment
set will be diverse w.r.t. the input E-graph (while retaining adequacy), without
increasing the assignment set size. In light of this, we alter Definition 2 and
Definition 3, by considering only assignments that are diverse w.r.t. to G (replace
“assignment” by “assignment that is diverse w.r.t. G” in both these definitions).
This leaves Proposition 1 true, does not cause an increase in the size of the
possible adequate assignment sets (as we just commented), and makes it easier
for us to find an adequate E-graph for a given E-formula.

We will now rephrase the decision procedure for the satisfiability of UF-
formulas as suggested in [PRSS99] according to the above definitions:

148 Yoav Rodeh and Ofer Shtrichman

1. Reduce UF-formula ϕ to E-formula ψ using Ackermann’s reduction.
2. Calculate the E-graph G(ψ).
3. Calculate an adequate set of assignments R for G(ψ).
4. Check if any of the assignments in R satisfies ψ. (This step is done symbol-

ically, not by exhaustive search of R).

In this paper we alter Steps 1 and 2 of this procedure by replacing the reduction
scheme, and by calculating a different adequate E-graph for ψ. We will later
show that these changes guarantee smaller state spaces and thus a more efficient
procedure.

4 Bryant et al. Reduction Method

We will denote this type of reduction of a UF-formula ϕ to an E-formula ψ by
TBV (ϕ). The main property of TBV (ϕ) is that it is satisfiable iff ϕ is satisfiable.
The formula TBV (ϕ) is given by replacing for all i, the function application Fi

in ϕ by a new term F ?
i . We explain the reduction using an example (see [PRS01]

or [BV98] for details):

Example 3. Consider the following formula:

ϕ1 := [F (F (F (y))) 6= F (F (y))] ∧ [F (F (y)) 6= F (x)] ∧ [x = F (y)]

We number the function applications such that applications with syntactically
equivalent arguments are given the same index number:

ϕ1 := [F4(F3(F1(y))) 6= F3(F1(y))] ∧ [F3(F1(y)) 6= F2(x)] ∧ [x = F1(y)]

TBV (ϕ1) is given by:

TBV (ϕ1) := (F ?
4 6= F ?

3) ∧ (F ?
3 6= F ?

2) ∧ (x = F ?
1)

F ?
1 := f1 F ?

2 :=
{
f1 x = y;
f2 Otherwise;

F ?
4 :=



f1 F ?

3 = y;
f2 F ?

3 = x;
f3 F ?

3 = F ?
1 ;

f4 Otherwise;

F ?
3 :=

{
f1 F ?

1 = y;
f2 F ?

1 = x;
f3 Otherwise;

The general idea is that for every function application Fj of ϕ we define a new
variable fj which is the “basic” value of Fj. This means that F ?

j = fj if no
smaller (index wise) function application “overrides” fj . This can happen, when
there is some i < j such that the argument of Fi and Fj are equal. In this case,
for the minimal such i, we have F ?

j = fi.
In comparison, Ackermann’s reduction for ϕ1 is given by TA(ϕ1):

 (y = x → f1 = f2) ∧ (y = f1 → f1 = f3) ∧
(y = f3 → f1 = f4) ∧ (x = f1 → f2 = f3) ∧
(x = f3 → f2 = f4) ∧ (f1 = f3 → f3 = f4)


∧(f4 6= f3)∧(f3 6= f2)∧(x = f1)

A hint to why Bryant’s reduction is better for our purposes is the following
claim:

Finite Instantiations in Equivalence Logic with Uninterpreted Functions 149

Claim. For every UF-formula ϕ, if α |= TA(ϕ) then α |= TBV (ϕ).

While the converse does not hold. Thus, TBV (ϕ) has more satisfying assignments
and therefore it should be easier to satisfy.

5 New E-Graph Construction

Given a UF-formula ϕ, we wish to construct a minimal E-graph that will be
adequate for TBV (ϕ). We will first try to disregard all function arguments.
Denote by simp(ϕ) the E-formula received by replacing every function appli-
cation Fi by its corresponding variable fi. For example, for ϕ1 of Section 4,
simp(ϕ1) = ((f4 6= f3)∧ (f3 6= f2)∧ (x = f1)). Our initial E-graph will therefore
be G(simp(ϕ)).

If we take for example ϕ2 = F1(x) 6= F2(y), then simp(ϕ2) = f1 6= f2.
G(simp(ϕ2)) then contains just one disequality edge between f1 and f2. An ade-
quate assignment set for G(simp(ϕ2)), must contain an assignment α that assigns
a different value for every variable in the E-graph, since α should be diverse w.r.t.
to G(simp(ϕ2)). For example: α(f1) = 0, α(f2) = 1, α(x) = 2, α(y) = 3. Since
TBV (ϕ2) = f1 6= ITE(x = y, f1, f2), we get that α |= TBV (ϕ2). And so we
found an assignment that satisfies the formula.

Assume however, that our formula is slightly different: ϕ3 = F1(x) 6= F2(y)∧
((x = y) ∨ True)1. In this case simp(ϕ3) = f1 6= f2 ∧ ((x = y) ∨ True). Now,
G(simp(ϕ3)) will also contain an equality edge between x and y. In this case, a
possible adequate assignment set for this E-graph contains just one assignment
α: α(f1) = 0, α(f2) = 1, α(x) = α(y) = 2. In this case however, α 6|= TBV (ϕ3).
This is because the equality edge we added, indirectly caused the disequality edge
between f1 and f2 to be disregarded. We will therefore add a rule to augment
our E-graph with more edges in this case:

Tentative Rule 1. If there is a disequality edge between fi and fj , add a dis-
equality edge between their corresponding arguments.

But this rule is not enough. We consider the following formula:

ϕ4 = (F1(x) = z) ∧ (F2(y) 6= z) ∧ ((x = y) ∨ True)
G(simp(ϕ4)) appears in Figure 1 as G1. In this case, the above Tentative Rule 1
does not apply, and we are left with the same problem, since a possible adequate
assignment set for this E-graph contains just one assignment α: α(f1) = α(z) =
0, α(f2) = 1, α(x) = α(y) = 2, and α does not satisfy TBV (ϕ4). This is because a
disequality edge between f1 and f2 is only implied in this E-graph, and so we wish
to change Tentative Rule 1 so that it identifies implied disequality requirements.

We write u �G v if there exists a simple path between u and v in G consisting
of equality edges except for exactly one disequality edge. This is what we mean
by “implied” disequality edge. What this means is that an assignment where u
and v differ may be needed to satisfy the formula. We alter Tentative Rule 1:
1 Of course, any decent procedure will remove the right clause, but this True can be

hidden as a more complex valid formula.

150 Yoav Rodeh and Ofer Shtrichman

Rule 1. If for fi and fj , fi �G fj then add a disequality edge between their
corresponding arguments.

We now consider a similar UF-formula:

ϕ5 = (True ∨ (F1(x) = z)) ∧ (F2(y) 6= z) ∧ (x = y)

G(simp(ϕ5)) is exactly the same as before, and Rule 1 adds the disequality edge
(x, y) to give G2 in Figure 1. The problem here is that a satisfying assignment
α must satisfy α(x) = α(y), and therefore α(F ?

2) = α(f1). Since we also must
have α(F ?

2) 6= α(z) to satisfy the formula, it implies α(f1) 6= α(z). This may
not necessarily happen in any assignment given by the range allocator for our
E-graph. This is because in our E-graph there is no representation for the fact
that f1 may “override” f2. If we add an equality edge between f1 and f2 it will
solve the problem. G3 of Figure 1 is the result of adding this edge.

We denote by u ≈G v the case where there is an equality path between u and
v in G.

Tentative Rule 2. For fi and fj , with xi and xj their corresponding argu-
ments, if xi ≈G xj then add the equality edge (fi, fj).

This indeed solves our problem, but is not the best we can do. We have added an
equality edge between f1 and f2 in our example, but it was not really necessary.
We could have instead copied all edges involving f2 to f1. This is because there
is no need for f1 to be equal to f2 if their arguments are equal. All that is needed
is that the value f1 gets respects all the requirements of f2. Notice that this case
is asymmetric: since f1 may override f2, only f1 is required to answer to f2’s
requirements.

We change Tentative Rule 2 to the following rule:

Rule 2. For fi and fj, where i < j, with xi and xj their corresponding argu-
ments, if xi ≈G xj then do one of the following:

1. add equality edge (fi, fj), or
2. for every (dis)equality edge (fj , w) add a (dis)equality edge (fi, w).

And so, in our example, instead of adding an equality edge (f1, f2), we add a
disequality edge (f1, z) — see G4 of Figure 1.

The general idea of our new construction is therefore to start with
G(simp(ϕ)), and then apply Rule 1 and Rule 2 until no new edges are added.
There are some missing details, specifically, the second option of Rule 2 needs
to be postponed until the whole E-graph is constructed. We show the exact E-
graph construction in the next section. Notice that this construction has a cone-
of-influence flavor, since in simp(ϕ) the arguments of uninterpreted functions
disappear, and then only edges emanating from edges already in the E-graph
are added.

Finite Instantiations in Equivalence Logic with Uninterpreted Functions 151

yx yx yx

G1 G2 G3 G4

f2

yx

z

f1 f2

z

f1 f2

z

f1 f2

z

f1

Fig. 1. The Iterative E-Graph Construction Process. Dashed lines represent equality
edges, solid lines represent disequality edges.

6 Formal Description of E-Graph Construction

We define an A-graph (marked by G) to be an E-graph with the addition of
assignment edges, which are directed. For an A-graph G denote by flat(G) the
E-graph resulting from replacing every assignment edge of G by an equality edge.

For function application Fi of ϕ, define arg(Fi) to be the variable of TBV (ϕ)
corresponding to the argument of Fi. This means that if the argument of Fi

is a variable v, then arg(Fi) = v, and if it is a function application Gj, then
arg(Fi) = gj.

The E-graph construction procedure is divided to two parts:

1. A-graph construction: Given a UF-formula ϕ we construct an A-graph G:
(a) Let the vertices of G be the variables of TBV (ϕ).
(b) Add all edges of G(simp(ϕ)) to G.
(c) For every Fi and Fj such that i < j and arg(Fi) ≈flat(G) arg(Fj), add

the following edges:
i. Add assignment edge (fi, fj) to G.
ii. If fi �flat(G) fj then add disequality edge (arg(fi), arg(fj)) to G.

(d) Repeat step 1c until a no new edges are added.

Example 4. For the UF-formula ϕ1 of Example 3, the algorithm constructs
the A-graph G of Figure 2, while G is the E-graph constructed by the pro-
cedure suggested in [PRSS99].

2. Transforming the A-graph to an E-graph: The second step of the
procedure is to transform the A-graph G to an E-graph G. For two vertices
u and v, we denote v vG u, if:
(a) for every (v, w) ∈ EQ(G), (u, w) ∈ EQ(G).
(b) for every (v, w) ∈ DQ(G), (u, w) ∈ DQ(G).
We proceed:
(a) Initially, G = 〈V (G), EQ(G), DQ(G)〉
(b) While there are vertices u, v, such that (u, v) is an assignment edge of

G, and either (u, v) /∈ EQ(G) or v vG u, choose one of the following
options:

152 Yoav Rodeh and Ofer Shtrichman

i. add edge (u, v) to EQ(G).
ii. A. for every (v, w) ∈ EQ(G) add (u, w) to EQ(G).

B. for every (v, w) ∈ DQ(G) add (u, w) to DQ(G).
Theorem 1. If E-graph G is constructed by the above procedure run on UF-
formula ϕ, then G is adequate for ϕ.

Note that the Part 2 of the procedure requires a choice between two options. In
our implementation we choose greedily between the two options, choosing the
one which minimizes the number of equality edges added to G.
Example 5. G1 and G2 in Figure 2 are the two possible E-graphs resulting from
applying this Part 2 to G. As we can see both G1 and G2 are much smaller than G
(the E-graph constructed by [PRSS99]). In fact, we can show that any adequate
assignment set for G is of size at least 16, and on the other hand, there is an
assignment set of size 4 for G1, and of size 2 for G2.

GG
G2

G1

f1 f3

f4

f2

x

y

f1 f3

f4

f2

x

y f1 f3

f4

f2

x

y

f1 f3

f4

f2

x

y

Fig. 2. Dashed lines represent equality edges, solid lines represent disequality edges,
and dashed directed lines represent assignment edges.

7 Comparison with Previous Methods

If we examine the E-graph construction of [PRSS99], we see that it is basically
the same as this new construction, except there is no conditioning on when
to add new edges, instead, they are always added. In other words, remove all
conditions of Step 1c in Part 1 of the procedure, and for every Fi and Fj add a
disequality edge between their arguments, and an equality edge between fi and
fj. Therefore, our E-graph will always be smaller than in [PRSS99], resulting in
a smaller state space.

Finite Instantiations in Equivalence Logic with Uninterpreted Functions 153

In [BGV99], it is proved that for a UF-formula ϕ in positive equality, every
variable of TBV (ϕ) can be instantiated to a single constant. A UF-formula ϕ is
said to be of positive equality if no equality terms of ϕ are in the input cone of
a function application, and all equality terms of ϕ appear under an odd number
of negations — they are in negative polarity2. It is easy to see that our A-graph
construction for such formulas will result in an A-graph with no equality edges.
Then, if we use our greedy heuristic for the Part 2 of the procedure, it will result
in an E-graph consisting of only disequality edges. An adequate range for such an
E-graph contains just one assignment, assigning each variable a distinct constant.
We therefore achieve this optimal result for the positive equality segment of the
formula, while improving on the other variables (since they give a range of 1 . . . i
to the i-th variable, resulting in a state space of n!, which we will always improve
upon — see [PRSS99]).

8 Experimental Results and Conclusions

We implemented our new graph construction procedure, and then used the range
allocator of [PRSS99] to construct a new procedure for checking satisfiability of
UF-formulas. We compared our decision procedure with that of [PRSS99] on
many example formulas that were generated by a tool for compiler translation
validation [PSS98]. The results appear in Table 1, where the prefix New denotes
the results of this paper, and the prefix Old the results of [PRSS99]. space denotes
the resulting assignment set size. Since in all cases encountered the verification
procedure either proved that the formula valid in less than 1 sec, or ran out of
memory, we do not write the exact running time. Instead we write

√
if the run

completed, and × if it didn’t. Num. vars denotes the number of variables in the
example. There were many examples were both methods resulted in a very small
state space (and running time), and therefore we mention only those were there
was a significant difference between the two methods.

Table 1. New vs. Old E-graph Construction.

Example New-finished Old-finished New-space Old-space Num. vars

15
√ × 121 121 13

22
√ × 2 9.8 · 1046 114

25
√ × 1 5.9 · 1047 114

27
√ √

2 11520 26
43

√ × 4 3.4 · 10108 160
44

√ √
4 2.5 · 1011 46

46
√ √

2 1.6 · 1022 67
47

√ √
1 4.9 · 109 52

2 The confusion between ’positive’ equality and ’negative’ polarity is due to the fact
that in [BGV99], where this term was introduced, the analysis referred to validity
checking, rather than satisfiability as in this paper.

154 Yoav Rodeh and Ofer Shtrichman

As can be seen from the table, the new graph construction has an extreme
effect on the state space size. Indeed, by using the new graph construction we
were able to verify formulas which we could not with the previous method.

To conclude, we showed that the combination of Bryant et al. reduction
method, Pnueli et al. range allocation, and a more careful analysis of the formula
structure are very effective for verifying equality formulas with uninterpreted
functions.

References

[Ack54] W. Ackermann, “Solvable Cases of the Decision Problem”, Studies in logic
and the foundations of mathematics, North-Holland, Amsterdam, 1954.

[BD94] J.R. Burch and D.L. Dill, “Automatic Verification of Microprocessor Con-
trol”, In Computer-Aided Verification CAV ’94 .

[BDL96] Clark W. Barrett, David L. Dill and Jeremy R. Levitt, “Validity Check-
ing for Combinations of Theories with Equality”, In Formal Methods in
Computer Aided Design FMCAD ’96 .

[GSZAS98] A. Goel, K. Sajid, H. Zhou, A. Aziz and V. Singhal, “BDD Based
Procedures for a Theory of Equality with Uninterpreted Functions”, In
Computer-Aided Verification CAV ’98 .

[HIKB96] R. Hojati, A. Isles, D. Kirkpatrick and R. K. Brayton, “Verification Using
Finite Instantiations and Uninterpreted Functions”, In Formal Methods
in Computer Aided Design FMCAD ’96 .

[PRSS99] A. Pnueli, Y. Rodeh, M. Siegel and O. Shtrichman, “Deciding Equality
Formulas by Small Domain Instantiations”, In Computer-Aided Verifica-
tion CAV ’99 .

[PSS98] A. Pnueli, M. Siegel and O. Shtrichman, “Translation Validation for Syn-
chronous Languages”, In International Colloquium on Automata, Lan-
guages and Programming ICALP ’98 .

[PRS01] A. Pnueli, Y. Rodeh and O. Shtrichman, “Finite Instan-
tiations in Equivalence Logic with Uninterpreted Func-
tions”, Technical report, Weizmann Institute of Science, 2001.
http://www.wisdom.weizmann.ac.il/~verify/publication/2001/

yrodeh tr2001.ps.gz

[BV98] R.E. Bryant and M. Velev, “Bit-level Abstraction in the Verification
of Pipelined Microprocessors by Correspondence Checking”, In Formal
Methods in Computer Aided Design FMCAD ’98 .

[BGV99] R.E. Bryant, S. German and M.N. Velev, “Exploiting Positive Equality
in a Logic of Equality with Uninterpreted Functions”, In Computer-Aided
Verification CAV ’99 .

[BV00] R.E. Bryant and M. N. Velev, “Boolean satisfiability with transitivity
constraints”, In Computer-Aided Verification CAV 2000 .

	1 Introduction
	2 Preliminaries and Definitions
	3 Deciding Satisfiability of E-Formulas
	4 Bryant et al Reduction Method
	5 New E-Graph Construction
	6 Formal Description of E-Graph Construction
	7 Comparison with Previous Methods
	8 Experimental Results and Conclusions
	References

