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Abstract Trusted Computing gives rise to a new supply of trusted third parties on which
distributed systems can potentially rely. They are the secure system components
(hardware and software) built into nodes with Trusted Computing capabilities .
These trusted third parties may be used for supporting communications in dis­
tributed systems. In particular, a trusted third party can check and certify the data
sent from anode A to anode B, so that B can have some confidence in the prop­
erties of the data despite A's possible incompetence or malice. We present and
explore this application of Trusted Computing, both in general and in specific
instantiations .

1. INTRODUCTION
Trusted third parties can be useful in a variety oftasks in distributed systems.

For instance, certification authorities are helpful in associating public keys with
the names of users and other principals; in multi-player games, servers can
contribute to preventing some forms of cheating; and smart-cards with lim­
ited resources may rely on trusted, off-card servers for verifying downloaded
bytecode dass files. Unfortunately, resorting to trusted third parties is not al­
ways practical, as it typically results in deployment difficulties, communication
overhead, and other costs. Moreover, well-founded trust is scarce in large-scale
distributed systems, and so are reliable trusted third parties .

This paper considers new trusted third parties that may appear in general­
purpose computing platforms as a result of several current efforts. Those ef­
forts include substantial projects in industry, such as the work of the former
Trusted Computing Platform Alliance (TCPA) and its successor the Trusted
Computing Group (TCG), and Microsoft's Next Generation Seeure Comput­
ing Base (NGSCB, formerly known as Palladium) [England et al., 2003]. They
also include research projects such as XOM [Lie et al., 2000] and Terra [Gar-
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finkel et al., 2003]. The trusted third parties are the secure system components
(hardware and software) built into nodes with Trusted Computing capabilities.

These trusted third parties can contribute to both secrecy and integrity prop­
erties in distributed systems. In particular, when two nodes A and B communi­
cate, the trusted third party embedded in A can check and certify the messages
that Asends to B. This verification may have a variety of meanings-it can
for example ensure the well-formedness of data fields, the absence of known
viruses, the safety of mobile code, or the validity of certificate chains. The
verification can offer security guarantees to B, often more efficiently than if B
performed the check itself. Although the verification clearly depends on A's
secure system components, it is protected against malfunctions in the rest ofA,
and can prevent their spread to B. The description and study of this scenario
are the main contents of this paper.

The next section discusses efforts such as TCPA, the appearance of new
trusted third parties, and (briefly) the applications that they may enable. Sec­
tion 3 sets out our assumptions. Section 4 explains the use of a trusted third
party for verified communications. Section 5 considers some examples, and
section 6 summarizes benefits and drawbacks. Section 7 develops an exam­
ple . Seetion 8 diseusses extensions in which data is partly secret or generated
by the trusted third party. Section 9 concludes. An extended version of this
paper contains additional details and outlines more general mechanisms for
verified communications, relying on machinery for remote invocation and on
extensible runtimes.

2. NEW TRUSTED THIRD PARTIES?
Next we identify more precisely the new third parties described in the in­

troduction, and consider whether they should be trusted. We also discuss the
applications (some old, some new) that may rely on this trust.

2.1 The new third party

With systems such as NGSCB, a computing platform includes a protected
execution environment, with protected memory, storage, and 1/0. The platform
is open in that it can run arbitrary programs like today's ordinary PCs, but
those arbitrary programs should not compromise the security kerneI or any
subsystem under its protection. Moreover, the security kernel can authenticate
the programs, and it in turn can be remotely authenticated.

Therefore, the security kernel may serve as a trusted third party for an inter­
action in a distributed system. Conveniently, this trusted third party is local to a
node . In particular, the security kernel may assist a remote principal in interac­
tions with the rest of the node, which may be arbitrarily corrupted. Moreover,
the security kernel may communicate directly with a local human user, through
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Figure 1. A typicaIpieture of a system with NGSCB

secure I/O; it may therefore assist the user in its interactions with the rest of
the node.

A subsystem protected by the security kernel mayaIso play the role of
trusted third party. Through standard delegation techniques (e.g., [Lampson
et al., 1992]), the protected subsystem can act on behalf of the security kernel
and its clients. The main advantage of relying on a protected subsystem is to
retain, to the extent possible, the simplicity, manageability, and security of the
kernel proper.

Figure I is a typicaI picture of a system with NGSCB. It shows a system
with two sides: a Ieft-hand side with arbitrary software (not necessarily trusted)
and a right-hand side with secure system components, including an operating
system and user-mode code.

2.2 Applications

This trusted third party can contribute to security in distributed systems, in
several ways. The trusted third party can contribute to secrecy properties, for
example holding secrets for auser, and presenting those secrets only to appro­
priate remote servers. The secrets would be kept from viruses that may come
with arbitrary programs. The trusted third party can also contribute to integrity
properties, for example checking incoming and outgoing data. In particular,
as suggested in the introduction and explained in section 4, the trusted third
party embedded in anode A can check and certify the messages that Asends
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to another node B. The trusted third party can protect B against Ns incompe­
tence or malice, for example against Ns viruses. While the secrecy properties
have received a fair amount of attention, we believe that the opportunities and
problems related to integrity are also important. They are the focus of this
paper. One may wonder also about availability properties-for example, ask­
ing whether the trusted third party can help protect against denial-of-service
attacks. We address availability only indirectly (see seetion 6).

Trusted Computing is often narrowly associated with protecting movies and
other proprietary content on commodity platforms, but it enables other signif­
icant applications. Several of those applications remain in the broad realm of
Digital Rights Management (DRM). For instance, users may want to attach
rights restrietions to their e-mail messages and documents; protected execu­
tion environments can help in enforcing those restrietions. Similarly, however,
it has been argued that protected execution environments enable censorship
and other worrisome applications [Anderson, 2003b]. Beyond DRM, NGSCB
could be employed for secure document signing and transaction authoriza­
tion [England et al., 2003], for instance. Notwithstanding such intriguing
ideas , it appears that the thinking about applications remains active, and far
from complete. One of the goals of this paper is to contribute to this thinking.

2.3 Limits on trust
TCPA, TCG, and NGSCB have been rather controversial. While they are as­

sociated with the phrases "Trusted Computing" or "Trustworthy Computing",
they have also been called "Treacherous Computing" [Stallman, 2002]. Rely­
ing on them in the manner described in this paper will perhaps be considered
naive. Even putting aside any consideration of treachery, trust should not be
absolute, but relative to a set of properties or actions, and it is dangerous to
confuse trusted and trustworthy.

Following Anderson [Anderson, 2003a], we mostly use an acronym rather
than "Trusted Computing" or a similar name . We pick SCB, which may stand
for "Seeure Computing Base" (or "Sneaky Computing Base") because the de­
scriptions in this paper focus on NGSCB, as we explain in seetion 3. Byan
SCB we loosely mean a collection of system components, hardware and soft­
ware, including a security coprocessor with cryptographic keys and capabil­
ities, a microkemel or other operating system, and possibly some protected
subsystems running on top of these . Section 3 lists our assumptions more
specifically.

The trust that one places on an SCB may be partly based on the properties
of its hardware. If this hardware is easy to subvert, then assurances by the
SCB may be worthless. On the other hand, a modest level of tamper-resistance
may be both achievable and sufficient for many applications. First, attacks
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on hardware (unlike buffer-overflow attacks, for instance) are not in general
subject to large-scale automation . Moreover, many nodes (and their SCBs)
are in physical environments in which serious tampering is hard or would be
easily detected-for example, in shared workspaces and data centers. In other
environments , a key question is whether the people who are in a position to
perform the tampering would benefit from it. Whenever the SCB works on
behalf of users, defending them from viruses and other software attacks, we
may not need to worry about protecting the SCB from the users.

Trust in an SCB mayaiso be partly based on trust in its developer, its ad­
ministrators, and other principals. For instance, if Acme makes chips with em­
bedded secret keys, and issues certificates for the corresponding public keys,
then the chips are reasonable trusted third parties only if Acme can be trusted
to manage the secret keys appropriately. Thus, Acme is a trusted third party
too. However, trust in Acme may be based on an open review, and may be
further justified if Acme never has direct access to the secret keys.

On this basis, it seems reasonable or at least plausible that SCBs would be
trusted third parties-and even trustworthy third parties-in specific contexts.

3. ASSUMPTIONS
We focus on NGSCB partly because of its practical importance, partly for

the sake of concreteness, but most of the paper applies verbatim to other sys­
tems such as XOM; it mayaiso apply to future versions ofthese systems, which
continue to evolve. This section presents the main assumptions on whieh we
rely.

We expeet that the SCB in a system is able to eommunieate with other parts
ofthe system, typieally at a modest eost; in particular, this eommunieation may
be through local memory. In addition, we make the following assumptions:

• Authentieity: The capability ofmaking assertions that can be verified by
others (Ioeal or remote) as eoming from this SCB, or from an SCB in a
partieular group. For instanee, in a eommon design, the SCB holds a sig­
nature key that it ean use for signing statements; a certification authority
(perhaps operated by the SCB's manufacturer, owner, or adelegate) is­
sues eertifieates for the eorresponding publie key, associating the publie
key with this SCB or with a group of trusted SCBs.

• Proteetion: Proteetion from interferenee from the rest of the system
when performing loeal eomputations.

Two additional assumptions are not essential, but sometimes eonvenient:

• Persistent state: The SCB may keep some persistent state aeross runs.
This state may be as simple as a monoton ie counter. Using this mono­
tonie counter, the SCB may implement meehanisms for maintaining
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more complex state. In particular, assuming that the SCB has a mono­
tonic counter, it can maintain other state on untrusted storage, using dig­
ital signatures and encryption; the counter should be incremented, and
its value attached to the state, whenever an update happens , thus offering
protection against replay attacks .

• Weak timeliness : The SCB has secure means to know the time, to within
the precision allowed by network and scheduling delays. In particular,
the SCB may get the correct time signed by a trusted network time server
TS for which it knows the public key. In each exchange with TS, the
SCB would challenge TS with a fresh nonce (for example by applying a
one-way hash function to a secret plus a monotonie counter) . Network
and scheduling delays may lead the SCB to accept an old value for the
time, but never a future value. Without this assumption, the SCB can
include nonces as proofs of timeliness for its assertions to on-line inter­
locutors. The nonces would be provided as challenges by those inter­
locutors . The assumption removes the need for the challenge messages .

4. VERIFIED COMMUNICATIONS WITH
ANSCB

In this section we show how an SCB can serve as a trusted third party for
checking and certifying communications. First, in section 4.1, we review ex­
amples of input verification, and their importance for security. Then, in sec­
tion 4.2, we explain how these examples can rely on SCB support. Later sec­
tions are concemed with refining the examples, discussing benefits and draw­
backs, and generalizing.

Throughout this paper, we emphasize communications that involve pro­
grams at their endpoints. Accordingly, we often refer to the sender as the
caller and to the receiver as the callee . However, many of the ideas and tech­
niques that we present do not require that the messages being exchanged are
calls to program functions; they apply more broadly to arbitrary messages in a
distributed setting.

4.1 Checking inputs

When a program receives data, it is prudent that it verify that the data has
the expected properties before doing further computation with it (e.g., [Howard
and LeBlanc, 2003]). These verifications may for example include:

• Checking that an argument is ofthe expected size, thus thwarting buffer­
overflow attacks.

• Checking that a graph is acyclic, so as to avoid infinite loops in later
graph manipulations.
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• Checking that an argument is of the expected type or structure .

• Checking the validity of a "proofof work" (evidence that the sender has
performed some moderately hard computation, of the kind suggested for
discouraging spam; e.g., [Dwork and Naor, 1992; Jakobsson and Juels,
1999]).

• Checking that cryptographic parameters have particular properties (often
number-theoretic properties) needed for security [Anderson and Need­
harn, 1995, Principle 6].

• Checking that a set of credentials forms a chain and implies some ex­
pected conclusion, for example that the sender is a member of a group.

Further, interesting examples arise in cases where the data is code (or may
include code):

• Checking that the data does not contain one of a set of known viruses.

• Checking that a piece of mobile code is well-typed. This mobile code
might be written in a source language, an intermediate language, or in
binary. As in Java Virtual Machines [Lindholm and Yellin, 1999] and
the Common Language Runtime (CLR) [Box et al., 2002], the typing
provides a base level of security. With some research type systems
(e.g., [DeLine and Fahndrich, 2001; Myers, 1999]), the typing may en­
sure further properties, such as compliance with resource-usage rules
and secure information-flow properties .

• Checking the legality of a logical proof that a piece of mobile code sat­
isfies some property, for example an application-specific safety prop­
erty, termination, or an information-flow property. Research on proof­
carrying code [Necula, 1997] explores these ideas.

• More speculatively, checking that compiled mobile code is a correct im­
plementation of a given source program (that is, that the compiler did
not make amistake in a particular run). Research on translation valida­
tion [Pnueli et al., 1998] explores these ideas.

As these and other examples illustrate, authenticating the origin of data is
often essential, but further checking can be essential too. In particular, the
checking can serve in preventing the spread of infections from senders to re­
ceivers.

Some checking may be done automatically by standard machinery in dis­
tributed systems; for example, remote procedure call (RPC) machinery can en­
force simple typing properties before delivering arguments to remotely invoked
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Figure 2. A verified input

procedures. Such automatie checking is particularly justified for generic prop­
erties that are easy to verify. On the other hand, application-specific properties
and properties that are expensive to verify tend to be treated on a case-by-case
basis .

4.2 Using an SCB
Suppose that a piece of code relies on a certain property of its inputs, and

that therefore this property should be checked. The checking can happen at
the code's boundary or deeper inside the code. It could also happen at the
caller, though in general the caller may not know what property to ensure, and
crucially the caller cannot always be trusted.

Having an SCB in the caller leads to a new possibility, depicted in Figure 2:
the SCB can serve as a trusted third party that is responsible for the checking,
and that certifies that the checking has succeeded.

This certification consists in a signed assertion that the call (including its
arguments) satisfies a given property. The signed assertion should contain a
proofof timeliness, such as a timestamp or a nonce . The signature may simply
be a public-key digital signature. When the SCB and the consumer of the
signature share a secret, on the other hand, the signature may be an inexpensive
MAC (message authentication code). This MAC may be applied automatically
if caller and callee communicate over an authenticated channel, such as can be
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implemented on top of the SSL and SSH protocols . This authenticated channel
has another clear benefit: proving the identity of the caller to the callee.

When it receives a certificate, the callee should check that it matches the
call, that it is timely, that it claims the expected property, and also that it is
issued by a sufficiently trusted SCB. All these checks but the last should be
straightforward. Checking that the certificate is issued by an appropriate SCB
is a classical authorization problem (a matter of trust rather than of remote
integrity verification). When the SCB is identified with a public key, the public
key may be in a group of keys trusted for the purpose. On the other hand,
the SCB may prove only that it is a proper SCB in a certain group, without
revealing its exact identity; this case is more elaborate but does not introduce
new difficulties.

There is no requirement that the callee have an SCB. However, an SCB at
the callee can provide a secure environment in which to perform the checks
just described; it can also serve for certifying properties of communications in
the opposite direction, such as the result (if any) of the call.

There remains the problem of letting the caIler's SCB know what property
to check. This information may be hard-wired on a case-by-case basis. In
general, it is attractive to envision that the property would be advertised along
with the interface to the code being called. Much like the caller learns about the
existence of the code entry point, and about the expected types and semantics
of arguments, the caller should learn about the expected properties of these
arguments.

Using an SCB for checking inputs has a number of desirable features, as
weIl as some potentially problematic ones. Before we discuss them, however,
it is useful to consider a few instantiations of the method for particular checks.

5. EXAMPLES

Next we consider four examples, both because oftheir intrinsic interest and
in order to elucidate general features ofthe method described in section 4.2.

5.1 Typechecking

In the simplest example, the SCB of the caller typechecks the caIl, and
writes a corresponding certificate.

For simple typing properties ofsmall arguments, this example is wasteful. If
the caIler's SCB and the callee are not already communicating on an authenti­
cated channel, then the callee may need to check some public-key certificates;
when typechecking is simple and fast, trading it for a public-key operation is
hardly attractive.

As arguments get larger, delegating the typechecking to the caIler's SCB
becomes more reasonable. For instance, suppose that the caller is uploading a
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large amount of data into the callee's database, and that this data is supposed
to be in a particular format. In general, checking or imposing this format may
require some processing and some buffering. Ifthe caller's SCB can guarantee
that the format is obeyed, then the callee may need to compute a message digest
(relatively fast) and perform at most one public-key operation, independently
of the size of the data, without any buffering.

Delegating the typechecking to the caller's SCB also becomes more reason­
able for complex typing tasks. For instance, the callee may be relieved to avoid
the task of checking that a piece of XML conforms to a particular schema, or
that a piece of mobile code is well-typed. Indeed, the typechecking of mobile
code can be fairly expensive, to the point where it is difficult or impossible on
resource-constrained environments.

In arecent paper [Leroy, 2002], Leroy discusses the cost oftraditional byte-
code verification on Java cards, and also discusses alternatives . Leroy writes:

bytecode verification as it is done for Web applets is a complex and expensive
process, requiring large amounts of working memory, and therefore believed to
be impossible to implement on a smart card.

The alternatives include both off-card verification and the combination of off­
card code transformations with easier on-card verification. Leroy ingeniously
develops this latter alternative. On the former alternative, Leroy writes :

The drawback ofthis approach is to extend the trusted computing base to include
off-card components. The cryptographic signature also raises delicate practical
issues (how to deploy the signature keys?) and legal issues (who takes liability
for a buggy applet produced by faulty off-card tools?).

Having the off-card verification done in the ealler's SCB mitigates these eon­
cerns:

• Extending the trusted computing base to an SCB appears less problem­
atic than extending it to an arbitrary machine with arbitrary software and
arbitrary viruses.

• The deployment of SCBs should include the deployment of their keys
and of certifieates for those keys.

• The off-card verifier ean be chosen by the eonsumer of the code, or a
delegate, and the SCB ean guarantee that it is this verifier that it runs.
Therefore, the SCB would not be liable for a faulty verifier. (However,
other parties would still have to be responsible for more fundamental
infrastructure failures such as bugs in SCBs or leak of the master secret
keys.)

Moreover, any work done in the caller's SCB needs to be done only once, while
work done at the consumer needs to take place onee per eonsumer (and even
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more often when consumers obliviously download the same piece of mobile
code multiple times).

In addition to smart-cards, servers can also be resource constrained. In the
design ofbusy servers that deal with many clients, one typically shifts as much
work as possible to the clients. In our case, the client's SCB would be respon­
sible for checking code uploaded to the server (servlets). For instance, when
the server is a database, and its data cannot be sent to the client because ofpri­
vacy considerations or sheer size, the client may upload code to run against the
data; the client's SCB could ensure the safety of the code. More broadly, the
client's SCB could also ensure that the code confonns to any server policies.

In short, although there exist clever alternatives, typechecking in the caller's
SCB appears as a viable approach to an actual problem. Although it is not
always advantageous, it does have some appealing properties, and it can be a
good choice.

5.2 Proof checking

Research on proof-carrying code develops the idea that mobile code should
be accompanied by proofs that establish that the code satisfies logical prop­
erties. As a special case, the properties may represent basic guarantees such
as memory-safety, which can also be obtained by typechecking. However,
proof-carrying code is considerably more general. As suggested above, the
properties may include application-specific safety properties, termination, and
infonnation-flow security properties. For example, a proof may guarantee that
the code uses only certain limited resources, or that it does not leak pieces of
private user data. Such properties may be attractive whether the receiver of the
code is a resource-constrained personal smart-card or a busy database server.

Although the verification of proofs is typically simpler than their construc­
tion, it is not a trivial task. It is roughly as hard as typechecking (discussed in
section 5.1), and in fact proof checking can be fonnulated as a kind of type­
checking. In addition, proofs can be bulky, creating communication overhead.
For example, arecent paper [Henzinger et al., 2002] that treats device-driver
properties includes proof sizes, for instance up to 156 KB of proof for a pro­
gram of around 17 KLOC. Other proof encodings are possible (e.g., [Necula,
200 I]), and may lead to a reduction of proof sizes by an order of magni­
tude. While these encodings are both insightful and effective, they can lead
to slower proof checking,and in any case the proofs often remain much larger
than signed statements. For example, a proof for the hotjava code takes 354
KB [Necula, 2001], substantially less than the code itself(2.75 MB), but more
than a thousand times the size of a signature; checking the proof took close
to one minute on a 400 MHz machine, much more than checking a signed
statement.
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Altematively, with our approach, the SCB of the code producer could be
responsible for checking the proof. The proofcould be constructed outside the
SCB, by whatever means, and given to the SCB with a cheap, local memory
transfer, rather than network communication. The SCB could then transmit
an assertion that the proof exists, in a certificate, rather than the proof itself.
The consumer of the code would simply check the certificate rather than the
proof. Leroy's concems about off-card bytecode verification apply also to this
scenario, though again the use of an SCB should mitigate them and offer some
advantages.

To date, there is only limited experience in the deployment and use ofproof­
carrying code technology. Therefore any assessment of the use ofSCBs in this
context may remain rather speculative. Nevertheless, as for typechecking, this
use ofSCBs appears as a sensible and potentially attractive variant.

5.3 Certificate checking

For access control in distributed systems, the reference monitor that eval­
uates arequest typically needs to consider digitally signed certificates and
assemble evidence on whether the request should be granted. If the request
comes from a source S ·and it is for an operation 0 on a target object T, the
certificates may for example say that S is a member of a group G, that G is
included in another group G', that all members of G' can perform 0 on objects
owned by a principal P, and that P does in fact own T. Examples with chains
of 5-6 certificates are not uncommon in some systems (e.g., [Clarke et al.,
2001; DeTreville, 2002]) . The certificates may be obtained by a variety of
methods (pushed or pulled); selecting the relevant certificates and assembling
them into a proof can be difficult. Therefore, several systems have, to various
extents, shifted the work of providing proofs to the sources of requests [Wob­
ber et al., 1994; Appel and FeIten, 1999; Bauer et al., 2002]. Nevertheless, the
checking ofproofs remains in the reference monitor.

Using an SCB, we can go further: the source of arequest need not present a
pile of certificates or even a proof, but rather its SCB can provide a certificate
that it has checked a proof. (In addition, the SCB should present certificates
to establish its trustworthiness, and the reference monitor should check them,
but these certificates may be trivial, and in any case they should not vary much
from request to request.) Thus, the task of the reference monitor becomes
simpler.

This approach could also have privacy advantages: the source's SCB need
not reveal all the source's certificates-including the exact identity ofthe sour­
ce and its group memberships-as those are processed locally. Private infor­
mation about the source can thus be kept from the reference monitor, and also
from any parties that somehow succeed in compromising the reference mon-
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itor, which may not have an SCB. Conversely, the reference monitor may be
able to disclose its access-control policy to the source's SCB without making
it public . (However, this disclosure is not essential: the SCB may provide only
a partial proof if it does not know the access-control policy, so the approach
applies in that case also.) Clearly, realizing this privacy advantage may require
additional machinery, such as specifications of privacy properties that control
the flow of certificates; the development ofthis machinery is perhaps interest­
ing but beyond the scope of this paper.

While the explanation above concems a reference monitor that evaluates a
request, much the same applies to an on-line authority that issues certificates­
for example, an authority that issues a certificate of membership in a group G
to anyone who proves membership in another group G' .

More generally, the protected environment of an SCB appears as an appeal­
ing place for certificate processing and manufacturing. With some care, its
weak timeliness properties should be adequate for this application .

5.4 Virus confinement and communications
censorship?

Preventing the spread ofviruses is an eminently worthy application ofSCBs.
Because viruses can in general attack anti-virus software, it is attractive to run
that software under the protection ofSCBs. In particular, when two nodes com­
municate, either or both can use their SCBs to check and certify the absence of
known viruses in the data they exchange.

One may ask, however, whether any negative applications of SCBs might
make them unattractive overall. In particular, the same infrastructure that
blocks viruses could weIl be used for censoring other kinds of contents . Fortu­
nately, communications censorship-at least in the form described here-can
be avoided. First, there may be legal protections against it. Hardware attacks
on SCBs mayaIso defeat censorship, though they negate protection against
viruses at the same time. Finally, censorship may be avoided at the software
level, since communications between consenting nodes can circumvent SCBs.
(We note however that there has been prior discussion of other forms of cen­
sorship, in which local files would be deleted [Anderson, 2003b].)

6. ASSESSMENT

In light of the preceding examples, we see that the shift of checking to the
sender's SCB has a number of consequences, some of them rather attractive:

• The work is done at the sender, not the receiver. Therefore, we may not
mind if there is quite a lot of work. In particular, we remove one op­
portunity for denial-of-service attacks on the receiver. This point is only
significant if the work is substantial (more expensive than whatever sig-
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nature verification is required). It may be particularly significant when
the receiver is a resource-constrained device such as a smart-card or a
server.

• Any auxiliary data needed for the checking is communicated only 10­
cally, not to the receiver across a network. This feature can result in
simplifications and efficiency gains (as in the proof-carrying code ex­
ample), and possibly also in privacy gains (as in the certificate-checking
example).

• If the data is sent to multiple destinations, the checking of each property
needs to be done only once at the sender, not once at every destination.
(For example, the data might be mobile code being widely distributed,
as discussed above.)

• The receiver should trust the sender's SCB. Specifically, if that SCB is
somehow compromised (say, with a hardware attack), the checking may
be circumvented. On the other hand, the receiver need not trust the rest
of the sender, which may be incompetent, compromised, or malicious.

Some of these features are also obtained when the checking is done by a
trusted third party placed at a firewall or at another machine managed by trusted
system administrators. In comparison, using an SCB may increase concems
about hardware attacks. On the other hand, it may reduce any concems about
administrators, it saves communication, and it does not require special infras­
tructure.

7. AN EXAMPLE, STEP BY STEP
As a more concrete example, suppose that a server offers a generic comput­

ing service, initially with the following interface:

public void compute(p
f
i
o

Principal,
Code,
FileName,
FileName)

Here f is code to be executed (possibly in binary format), i a source of inputs
for the code, 0 adestination for the outputs, and p the identity of the invoking
principal. The secure-communication machinery can guarantee that p is not
spoofed [Lampson et al., 1992]. Intemally, the server may check p against ac­
cess controllists, for example those for i and o. The server mayaIso check that
it is safe to run f , somehow-for example, by checking f for known viruses
and also by relying on any types and other evidence of safety included with f.

With our approach, the interface may specify the requirements of the call,
leaving their verification to the caller's SCB:
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public void compute(p Principal,
f Code,
i FileName,
o FileName)

requires p says safe(f),
p says may-read(p,i),
p says may-write(p,o),
GoodSCB(p)

For simplicity, this interface identifies the principal p with its SCB. It is how­
ever easy to write versions in which the SCB need not put its full author­
ity behind the call, in particular by requiring only that p be of the form "s
quoting r" [Lampson et aL, 1992], for some SCB s and some identity r:

public void compute(p Principal,
f Code,
i FileName,
o FileName)

requires for some r, s.
p = (s quoting r),
GoodSCB(s),
s says safe(f),
s says may-read(p,i),
s says may-write(p,o)

Such requirements are particularly appropriate when r represents a piece of
code at the dient. Even when the SCB and its user are trustworthy (so in
particular the user does not attempt hardware attacks on the SCB), some dient
code may not be.

When a dient p imports this interface, it also leams about the requirements
that calls should satisfy. When the dient wishes to call compute (p, f , i, 0) , it
somehow finds proofs of safe (f), may-read (p, L), and may-write (p, 0) .

The proofofsafe (f) may consist ofa logical proofofsome property off and
a certificate that associates the predicate name "safe" with this property. The
proofs of may-read (p , L) and may-write (p , 0) may be assertions signed by
a trusted authority, perhaps by the server itself. In all cases, further certifi­
cates may be required, for instance certificates for the keys ofthe authorities in
question, and certificates that place p, f, i, and 0 in particular groups.

The dient provides this material to its SCB, along with the data for the
call. The SCB can then verify and assert safe (f); it can similarly assert
may-read (p , L) and may-read (p ,0) . The dient should present these signed
assertions along with its call, and with a certificate that its SCB is in the group
GoodSCB. Upon receipt of the call, the server automatically verifies that the
SCB's assertions match its requirements before launehing the execution off.
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The server can be even more forthcoming on its expectations. In partic­
ular, it can provide some information on how safe (f ), may-read (p , i) ,

may-write(p,o), and GoodSCB(s) may be established. For instance, the
server could supply a piece of code that implements safe, and a rule that
implies that (in its view) if s is a good SCB and r is a good program then s
quoting r may read i and write o. These can also be attached to the interface
that the dient imports.

8. EXTENSIONS

In this section we briefly consider variants and extensions of the ideas de­
scribed above.

A first, minor extension consists in taking into account auxiliary state that
the SCB may keep. For instance, an SCB can certify network requests from
its host up to some number (say, 1,000) per day. The requests may include
calls on web services, such as search engines, and also requests to send e-mail
(via SMTP) or to create free e-mail accounts. Of course, the requests can be
broken into classes, with a different limit for each. Anyone that receives a non­
certified request would have reason to suspect that it is generated by a program
rather than a human user, and may disregard it or give it low priority. For this
example, the SCB can simply rely on monotonic counters.

As this example shows, one advantage of performing checks at the caller's
SCB is that the SCB can rely on any relevant auxiliary state it can keep. The
state may not readily be available at the callee.

In further extensions, an SCB may do more than checking data: it can supply
all or part of an input. The SCB can thus guarantee that the input is generated
in a certain way. For example, the SCB can guarantee that the input is gen­
erated with a particular protocol stack; by running a particular compiler; with
inlined safeguards that enforce a security policy, such as an inlined reference
monitor [Erlingsson and Schneider, 2000]; with a particular application (for
example, with a trusted tax-preparation package); by completing a particular
form; or directly by auser, through secure I/O. Although these seenarios may
be attractive, some of them may require running substantial pieces of code on
the SCB. These seenarios often tend to fit into a fairly controlled approach to
systems, which enforces not only what hosts say but also why they say it (what
code they run).

In addition, the SCB can help when the input in question contains sensitive
information (such as personal medical records). The SCB may be in charge of
holding the sensitive information, and occasionally encrypting it and sending it
to designated parties, or displaying it on a trusted output device. In such exam­
ples, the SCB is involved not in order to guarantee how the data is generated,
but in order to protect its secrecy.
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9. CONCLUSIONS
Trusted Computing gives rise to a new supply of potential trusted third

parties. These trusted third parties may find a variety of applications in dis­
tributed systems-keeping sensitive personal information, preventing cheating
in games, and possibly many more. In this paper we investigate the use of
these trusted third parties for verified communications. We consider several
instances ofremote input checking, such as remote typechecking, proofcheck­
ing, and certificate checking.

Despite the lively controversy on Trusted Computing, and despite the sub­
stantial progress in the development of its basic machinery, there remains much
room for further thinking and experimentation. In particular, this thinking and
experimentation should shed more light on the potential uses of this techno1­
ogy, which are important whether one prefers Trusted, Trustworthy, or Treach­
erous Computing.
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