AN ABSTRACT REDUCTION MODEL FOR
COMPUTER SECURITY RISK

Mohamed Hamdi, Noureddine Boudriga
Computer Network and Security Research Lab.
SUP’COM, University of 7th of November, Carthage, Tunisia

mmh@certification.tn, nab@supcom.rnu.tn

Abstract This paper presents an approach for decision making under security risks in a
computer network environment. The proposed method relies on a many sorted
algebraic signature and on a rewriting system. This latter is shown to be termi-
nating and yielding a normal form, called the risk analysis equation, that models
the cost-benefit balance. Furthermore, a gradual algebraic resolution of the risk
analysis equation is described.

This formalism helps security analysts to automate the selection of the opti-
mal security solutions that minimize the residual risk.

Keywords: Risk management, algebraic specifications, rewriting systems, risk analysis equa-
tion.

1. INTRODUCTION

AS the use of information systems and sophisticated communication infras-
tructures becomes widespread in modern enterprises, the growth of various
attacks against those systems is inevitable. In spite of the important invest-
ments made by companies to secure their assets, they are continuing to be the
target of harmful actions. To this end, security ought to be considered as a
part of the management process. A variety of Risk Analysis (RA) methods
have been proposed in this context [Alberts and Dorofee, 2002; Stonebumer
et al., 2002; GoC, 1996; GAQO, 1999] . They aim at evaluating accurately the
loss resulting from potential attacks in order to make the appropriate decisions.
Nonetheless, those approaches still have numerous shortcomings. In fact, most
of them rely on qualitative reasoning which is, by nature, non precise despite of
its ease. For instance, defining a four or five-step scale to assess the probability
of success of an attack does not allow a suitable differentiation between threats.
Moreover, existing RA approaches have not involved a considerable theoret-
ical development. They introduce several simple concepts (e.g., RA matrix)
that are intended to make their manual application simpler. However, in a sys-

Y. Deswarte et al. (eds.), Security and Protection in Information Processing Systems

© IFIP International Federation for Information Processing 2004

2

tem where hundreds (or even thousands) of assets, vulnerabilities, threats and
decisions are considered, security management can not be addressed manually.
Therefore, automated RA is a key concern which should be emphasized.

In this paper, we present a reduction system that permits to automate the
reasoning made by security experts when performing RA. Our optimization
framework consists of an algebraic rewriting system which yields the candidate
security solutions and an algorithm for selecting the optimal countermeasure
configuration through the use of an order relation on a lattice structure. The
major merit of this work is that it allows to handle complicated situations where
human intervention is not applicable. Furthermore, the algebraic framework
includes a logic which offers the possibility to perform inferences and proofs.
In addition, a formal proof of the efficiency of our approach is given through
a demonstration of the termination of the rewriting system (using polynomial
interpretations) and of the convergence of the algorithm. This shows that the
system reaches the optimal security solutions independently from the situation.

The remaining part of the paper is organized as follows. Section 2 describes
the RA signature representing the extension with a previous work [Hamdi and
Boudriga, 2003]. Section 3 defines the rewriting system and studies its proper-
ties. Section 4 discusses the application of the concept of many-sorted algebras
to RA. Section 5 proposes an algorithm to solve the RA equation. Section 6
concludes the paper.

2. THE RISK ANALYSIS SIGNATURE
2.1 Related work

Many-sorted signatures and first-order predicate logic have been previously
used to model the RA problem [Hamdi and Boudriga, 2003]. Basically, a
many-sorted signature 3 is characterized by a set S of sort names, an S* x S-
sorted set of operation names (denoted (2), and an S*-sorted set of predicate
symbols (denoted II).

In [Hamdi and Boudriga, 2003], the authors have proposed the signature 3¢
depicted in Table 1 to model the RA process. The richness of this algebraic
signature allows the representation of attack scenarios (i.e., attacks performed
on multiple steps). The introduction of this concept affects considerably the
decision making process as the efficiency of a decision differs for two scenar-
ios having two distinct semantic structures. This stems from the fact that the
quantitative comparison attributes (e.g., probability of success, impact) of the
main attack is computed using the attributes of the elementary attacks.

It can be demonstrated that security countermeasures can be viewed as
pseudo-inverses of potential threats with respect to the composition law .
More precisely, decisions aim at making the system recover from the effect
of the various possible attacks. The major interest of this reasoning resides in

An Abstract Reduction Model for Computer Security Risk 3

Sig Eo:
sorts asset, vuln, attack, decision
opns — x—: attack x attack — attack
1o :— attack
(—,—)®(—,—) : decision x asset x decision x asset — decision
xasset

a* :— asset
preds ispresent : asset X vuln
exploits : attack X vuln
ispossible : attack x asset
isminimal : attack
— <4 —: attack x attack
matigates : decision X attack
(=, =) >=c (—,—) : decision x asset x decision x asset

Table 1. Many-sorted signature representing the RA process.

the fact that the decision making process, which is the essence of RA, is per-
formed through the resolution of the equation a x d = 1,, where a models the
possible attacks, d represents the potential countermeasures and 1, is the neu-
tral element of x. Despite its interesting properties, this algebraic framework
does not allow a rigorous resolution of the above equation since the operation
* can be applied only for two attacks to build a scenario. For instance, at; xaty
expresses a scenario where at; occurs before aty. Therefore, the expression
a * d is mathematically incorrect since the second term (i.e., the decision d
in this case) should be of sort attack. Hence, the signature mentioned above
should be extended in order to allow a more accurate representation of the RA
problem that relies on the same basic idea.

2.2 A more general framework

Basically, RA consists in studying the environment of the target system in
order to predict the potential threats and to derive the corresponding security
solutions. To support this reasoning, the signature presented in [Hamdi and
Boudriga, 2003] should be enriched in order to allow a convenient modeling
of both the environment and the potential events. As these events can be either
destructive or preventive, a balance between the potential threats and a set of
security countermeasures should be considered. To this purpose, we introduce
the following definition of a RA signature.

DEFINITION 1 Risk analysis signature. A RA signature is a many-sorted algebra
¥ = (S, Q, 1) that verifies the following conditions:

(1) sysenv, action € S,

(2) ® : sysenv X sysenv — action € (),

(3) ® : sysenv X action — action € Q,

(4) ® : action X action — action € €,
(5) <act: action X action € IL

The alert reader would have noticed that this definition is more general than
Yo in the sense that it just specifies kernel representing of basic risk manage-
ment concepts. Two special sorts, sysenv and action, have been considered
‘to provide a formal view of the state of the analyzed system. Effectively, this
state is characterized by the environment of the system (modeled by sysenv)
and the actions that take it from one state to another (modeled by action).
Furthermore, a special category of -operations has been highlighted in this
definition. They show the different methods that can be used to build actions.
Three combinations to construct actions from the other sorts are provided. In
fact, an action can be deduced purely from the system environment (using @),
or by taking into account a specific action (using ®). In addition, the combi-
nation of two actions can constitute an action (using ®). Finally, a predicate
symbol <, has to be included in the signature so that actions can be com-
pared.

A major advantage of this formal representation is that it translates perfectly
the reasoning steps followed by the risk analyst which are: (1) the identifica-
tion of the key components of the analyzed system, (2) the identification of
the potential actions on the target system (i.e., attacks and countermeasures),
(3) the selection of the best security decisions according to several preference
criteria.

Table 2 gives an example of a RA signature. Four sorts are added to those
mentioned in the above definition. Operations ispresent, exploits, mitigates
and C give the environment information that the risk analyst should know at
the first step. In fact, ispresent expresses the existence of a vulnerability inside
a given resource while exploits tells whether a given vulnerability should be
present to carry out a corresponding attack. On the other hand, mitigates means
that a specified decision reduces, in a certain manner, the effect of a given
attack. The last operation C states that an attack is a part of a more global
attack scenario (i.e., the first attack is a sub-scenario of the second).

The second class of operators are related to the construction of attack scenar-
ios. The composition law * is a precedence operator used to build composite
attacks. The constant 1, stands for the null attack which correspond to "no

action” on the system.

3. THE REWRITING SYSTEM

Having built a RA signature, its properties must be correctly expressed in or-
der to conduct an appropriate reasoning from RA point of view. Typically, this
involves a set of axioms (or equations) and a corresponding inference system
which derives all possible consequences from those axioms. In [Hamdi and

An Abstract Reduction Model for Computer Security Risk 5

sig =
sorts asset, vuln, attack, decision, sysenv, action
opns ispresent: asset X vuln — sysenv
exploits : attack X vuln — sysenv
mitigates : decision x attack — sysenv
C: attack X attack — sysenv
— % — : attack x attack — attack
1q :— attack
@ : sysenv X sysenv — action
® : sysenv X action — action
® : action X action — action
lgct :— action
o : attack x asset — action
o : decision X asset — action
preds <, action X action

Table 2. Example of a RA signature.

Boudriga, 2003], we used a first-order predicate logic and a classical Gentzen
system to automate the deduction process. However, as this approach relies on
replacement of equals by equals, it requires a special attention. In fact, know-
ing that at x 1, = 1, (i.e., 1,4 is the neutral element on the set of attacks), the
term at; in the equation at3 = at; x ats can be replaced by at; * 1, leading
to the equation atz = at; * 1, ~ atp. This does not conform with the risk
analyst’s objective which is to go through several deduction steps towards an
equation representing the balance between attacks and security decisions. It
turns out that rewriting systems (composed of directed equations) provide this
possibility. In this section, we present a specific class of rewriting systems that
is suitable for RA problems and we discuss its main properties.

3.1 Defining the rewriting rules

Term rewriting systems are widely used in the field of formal modeling.
Their main feature is that they give the ability to automate the generation of
canonical terms. Typically, a rewriting system (7" (2, x) , —) is a finite set of
rewriting rules which are ordered pairs of terms denoted 7 — 7/, where — is a
binary relation on T (X,) (the set of X-terms). A term ¢ rewrites to a term ¢/,
denoted by t — ¢/, if there exists arule 7 — 7’ in (T" (%, x) , —), a position w
in ¢, a substitution o, satisfying t|, = o (7), such that t' = t[o (7')],,. A term
t is called a normal form if there is not ¢’ such that t — ¢’ (¢ is then denoted by
t l(T(Z,x),—O in this case).

(p1) ispresent(v,as) @ exploits(at,v) — at o as
(p2) mitigates(d,at) ® atoas — atoas @ do as
(p3) (at1i¢as)® (atz 0 as) — (at1 % atz) ¢ as
(pa) at1 C at2® (at1 0 as @ at2 ¢ as) — at1 0 as
(p5) atx1, — at

(ps) laxat— at

(p7) act®act — act

Table 3. Example of a RA rewriting system.

In our context, we build a rewriting system p = (T'(%, x),—,) which
simulates the reasoning of the human risk analyst. It allows the representation
of the state of the analyzed system suitably for the decision selection process.

DEFINITION 2 Risk analysis rewriting system. Let Y. = (S,Q,TI) be a RA signa-
ture. A RA rewriting system p = (T (3, x) , —,) is a set of rewriting rules which have one of
the following forms:

(i) Type I rules: T — 7' such that 7,7’ € T (X, x) and 7’ is a sub-term of T,

(ii) Type Il rules: T — 7' such that 7,7 € T (X,%), T contains one function symbol and

7' does not contain any function symbol,
o1, 1

(iii) Type LI rules: o1 — 7" 7" such that 7,7, 7", 7" € T(X,x) and p,¢’ €
b4
{8, ®,®}.

This definition asserts that rewriting rules expressing RA reasoning are re-
stricted to three types. This may seem constraining to the security specialist
but we will show through some examples that RA rewriting systems are suffi-
ciently general to allow an efficient representation of a practical context. For
instance, the system pg given in Table 3 is a RA rewriting system. In fact,
the reader can easily check that (p4) is a type I rule (at; ¢ as is a sub-term
of (at; ¢ as ® atg ¢ as) ® at; T at2) and that {(ps), (ps) , (07)} are type 11
rules. In addition, {(p1), (p2),(p3)} are type III rules.

The first rule shows how to state whether a threat is actually possible to
perform on the system. In fact, this threat has to exploit a vulnerability which
effectively exists in the corresponding asset.

The rule (p2) is a heuristic that reduces the space where the security analyst
searches for the optimal countermeasures. Instead of considering the whole
set of security solutions, only those which potentially mitigate the effect of
the possible attacks should be addressed. The two following rewriting rules
are related to attacks scenarios. (p3) states that if two attacks are possible
to carry out on an asset, then so does their composition. On the other hand,
(pa) gives that if several attacks are considered as potential actions, then the
system would focus on the one that includes the others (in the sense of the
operator C). Rules (ps) and (pg) simply mean that 1, is the neutral element of

An Abstract Reduction Model for Computer Security Risk 7

the operation x. The last rule permits to avoid redundancies when addressing
potential attacks or candidate security solutions.

3.2 Termination and confluence of the rewriting
system

The two main properties of a rewriting system are confluence and termina-
tion. A rewriting rule — is said to be confluent if it satisfies * « o —»*C—*
o* «, where — denotes the inverse of —, and o and * represent respectively
the composition and the transitive closure of binary relations. On the other
hand, termination means that there is not infinite chains of related elements
t1 =ty — ... =t — ...

Confluence means that the order of application of the rewriting rules to a
given term is not important. In other terms, two normal forms obtained through
applying two distinct sequences of rewriting rules to the same term must be
equal. This property is not important in our case since the order that should be
followed is known a priori. In fact, a typical scenario-based RA consists of the
following steps: (1) threat identification, (2) attack scenario identification, (3)
candidate security solutions identification, and (4) countermeasure selection.
This situation is relatively easy to handle since operations are clearly ordered
within each step. In other contexts where concurrent rewriting rules may be
applied to achieve the same task, confluence would be seriously considered.

On the opposite, termination is an essential property in our context as it
guarantees that the system reaches the normal forms, which is an major re-
quirement from the RA point of view. In this paper, we adopt polynomial
interpretations as a tool to demonstrate termination. This consists in assigning
to each X-operation a polynomial verifying three basic requirements: (1) for
each Y-operation o of arity (i.e., number of variables) n, a polynomial of the
same arity, denoted [o] (X1, ..., X,), is associated, (2) the variables X7, ..., X,
of any polynomial of arity n are supposed to be integers greater than or equal
to a constant ¢, and (3) all polynomials should have non-negative integers co-
efficients.

This polynomial representation can be extended to terms by induction. For
example, if [x] (X1, X2) = X1 + X2 and [C] (X1, X2) = X1.X>, then the
interpretation of at; T (at; % aty) is expressed by X;. [x] (X1, X2), which
is equal to X;.(X; + X3). Thus, a polynomial function [¢] (X1, ..., X) can
be mapped to every t € T'(>_, x). Moreover, an order relation on 7' (%, x),
denoted by <[, can be set through the use of these interpretations such that
t <) t'if, and only if [t] < [t'] for every two terms ¢,2’ € T (X, x), where <
is the order relation on positive integers.

In [B. Cherifa and Lescanne, 1987], it has been shown that this order is
stable by instantiation and that it can therefore be used to prove the termination

8

of rewriting systems. In fact, to terminate, every rule 7 — 7’ of the rewriting
system has to verify [r] < [7/]. This method can be applied to RA rewriting
systems.

THEOREM 3 Let ¥ = (S,,II) be a RA signature and p be a RA rewriting
system on ¥ consisting only of type Il rules.

Let > be a binary relation on T (X, x) defined as follows:

1> if Jp, ¢ € {6,0,®}, 3,74 € T (Z,x) st. (1173 — Top'14) €
p.

If > is non-reflexive, non-symmetric and transitive then the rewriting system
p terminates.

Proof. To the demonstration purpose, we associate the polynomial inter-
pretation [ro] = > ¢ ..y [7] to each term 7o appearing in type III rules.
Since > is non-reflexive, non-symmetric and transitive, it can be concluded
that {7 | o> 7} C {7 | 71 > 7} if 71 > 72. Which implies:

if 7 > 79 then [Tl] > [TQ] . 1

We assume now that the polynomial interpretation [p] (X1, X2) = X7 + Xo
correspond to every function ¢ in {®, ®, ®}. Thus, for every type III rewriting
rule 779 — T3¢'14, We have to prove that [11] + [12] > [73] + [74] . This can
be achieved for a rewriting rule 779 — 73’74, using Equation 1 and the fact
that 71 > 73,70 > ’7'4.[:]

From the above theorem, it can be concluded that a system composed of
type III rewriting rules terminates if it verifies:

If 71 appears in the left term of a rewriting rule and T appears in the right
term of the same rule, and if T\appears in the right term of an other rewriting
rule, then 9 does not appear in the left term of the latter rule.

EXAMPLE 4 Counter-example of termination. The above theorem gives a
sufficient condition for termination of type Il rewriting rules. Obviously, if a
specific system does not fulfill this condition, we can not conclude that it does
not terminate. Nonetheless, we discuss the following example to show how this
condition can affect the termination.

Consider the RA rewriting system consisting of the two following type II1
rewriting rules:

(p1) mitigates(d,at) ® at o as — at o as® d o as,
(p2) at ¢ as ® d o as — mitigates(d, at).

It is clear that this system does not verify the assumption of the above theorem
as (p1) gives that mitigates(d,at) > d o as and it comes from (p2) that d o
as > mitigates(d, at). In addition, the system does not terminate because the
rewriting sequence p1, p2, p1, P2-.. IS infinite cycle.

An Abstract Reduction Model for Computer Security Risk 9

[ispresent] (X1, X2) = X1 + X2, [exploits] (X1, X2) = X1 + X2,
[mitigates] (X],XQ) = X1 + Xo, [E] (X1,X2) = X1.Xa9,

[*] (Xl,Xz):X1+X2, [la] =2,

@] (X1, X2) = X1.X2, [®] (X1,X2) = X1. X2+ X2+ 2,
[®] (X1,X2) = X1+ X2 +2, [lact] = 2,

[0] (Xl,Xz):X1.X2, [O] (X17X2)=X1.X2.

Figure 1. Polynomial interpretations corresponding to ¥-operations.

Ppl(Xl,Xz,Xg) = X12 + X1. X2+ X1.X3
sz(Xth,Xs) = X].X3.(X2 — 1) + X22X3

Pﬂs ()(1,X2,X3) =2, Pp4(X1) =X1. X3+ X2.X3+4
Pog (X) =2, P (X) =2, Ppy (X) = X 42

Figure 2. Polynomials corresponding to the rewriting system po.

THEOREM 5 Let ¥ = (S,Q,II) be a RA signature and p be a RA rewriting
system on 3. If the sub-system composed of the type Il rules of p verifies the
condition of theorem 3, then p terminates.

Particularly, the rewriting system pg terminates.

This theorem is a direct consequence of Theorem 3 since type I and type 11
rewriting rules terminate trivially (see [Goguen and Malcolm, 2000; Loeckx et
al.] for more details). Concerning the system pg, we use a set of polynomial
interpretations which is different from the one mentioned in the above theo-
rem. This allows a better illustration of the use of polynomial interpretations
as a tool for proving termination of rewriting systems. Figure 1 associates an
interpretation to each function of X.

The polynomials corresponding to the rules of our rewriting system are
given in Figure 2. They have been computed using the induction principle
discussed above. It is clear that all of these polynomials are positive if the
variables are greater than 2 (i.e., ¢ = 2). For the sake of simplicity, the compu-
tational steps to reach (P,), {1,.,7) are not given. We leave it to the reader to

check them.

4. TOWARDS RISK ANALYSIS ALGEBRAS
4.1 From specification to algebra

A many-sorted algebra assigns a concrete aspect to a many-sorted signature
by associating a set of data to each sort and a function to each operation. In
other terms, if ¥ = (S, IT) is a many-sorted signature, a ¥.-algebra « as-
signs: (1) a set |« to each sort s € S, called the carrier set of the sort s (as
defined in [Loeckx et al.]), (2) a function | f|, : ||y, X...X]a|s, — |4 toeach

10

operation (f : 51 X ... X s — s) € (1, (3) a predicate |p|,, : |a,, X ... x |af,,
to each predicate symbol (p : s1 X ... X sg) € II. In our case, we can state that
if ¥ is a RA signature then o simply represent a RA project consisting of a real
analyzed system and of a knowledge database characterizing the risk analyst.

In this section, we show how a RA rewriting system can be used to perform
deductions that translate the representation of the studied information system
from a complex equation to a normal form. To this purpose, we propose a
general reduction methodology composed of the following steps:

1 Model the state of the system through the use of functions having the
form lfla : Ialsl X .. X ’Oz,sk — |3yseny|s.

2 Apply rewriting rules that combine terms of sort sysenv and generate
the related terms of sort action.

3 Apply rewriting rules that combine terms of sort sysenv and terms of
sort action to generate terms of sort action.

4 Apply rewriting rules that combine terms of sort action and generate
terms of the same sort. These latter terms should be normal forms with
respect to the used rewriting system.

This methodology allows the automated risk analyst to perform a progressive
reasoning leading to a term representing the actions of interest (i.e., destructive
and preventive actions). A key feature of this term is that it consists of two
different parts. A static part corresponds to destructive actions. It is called
static because the risk analyst can not act on them, he can only introduce other
actions that reduce their effect. On the other hand, a variable part represents
preventive actions. The RA decision maker should select some of these actions
(i.e., a sub-part of the variable part) to provide the best security level for the

analyzed networked system.

For instance, in the case of the rewriting system presented in the previous
section, the normal form generated by our methodlogy is expressed by the
following equation:

((191a) 12m s2m, (@5 ©50) (181a) ((181)cp jem, (dr0as)) . ()

This term will be used in Section 5 in order to search for the optimal counter-
measures combination. For the seek of clarity, the subscript o will be removed
from sorts and operations when no confusion can be made about the many-
sorted RA algebra.

4.2 Illustrative example

The goal of this subsection is to illuminate the key concepts presented above
at a sufficient level to ensure a fundamental understanding of their usage in

An Abstract Reduction Model for Computer Security Risk 11

practice. The first step is to build a many-sorted algebra « that conforms with
the specification (¥, po). This means that a set |c|, is associated to every sort
s in the signature Y.

We suppose that the analyzed system is composed of two assets, say as;
and as; (i.e. |l ..., = {as1,as2}), that verify the hypotheses below:

(H1) as; and asy are placed behind a packet filtering gateway that prevent
connection establishment from the external network.

(H2) The company has no security awareness program .

(H3) The user working on as; introduced a strong root password.

(H4) The user working on ass did put his name as root password for this
machine.

(Hs) The FTP (File Transfer Protocol) port (21) is closed in both as; and
asy.

Furthermore, it is assumed that the basic knowledge of the RA system con-
sists of the following attacks and vulnerabilities ((a;) denote attacks and (v;)
stand for vulnerabilities):

(a1) Execute remotely on the victim machine Netcat, a Unix utility which
reads and writes data across network connections.

(a2) Perform a SYN (synchronization) scan. This consists in sending a SYN
packet to every port on the victim machine and waiting for responses. If the
victim acknowledges the packet, then the port is open.

(a3) Perform an ACK (acknowledgment) scan. This technique is more so-
phisticated as it permits to know if a port is open even it is protected through a
packet filter.

(a4) Get password files from the victim machine. For instance, in a Unix
environment, the attacker gets the /etc/passwd and /etc/shadow.

(as) Perform a dictionary attack on the root password. This attack can be
performed by testing all the combinations generated from a wordlist.

(ag) Perform a buffer overflow on FTP server application to get remote root
access to the victim machine.

(v1) The user executes programs coming from non-trusted sources.

(v2) The host responds to SYN scan. This vulnerability can be removed
using a packet filtering firewall that blocks incoming connections.

(vs) The host responds to ACK scan. Packet filtering firewalls are not effi-
cient to overcome this weakness. Stateful inspection firewall, which monitor
the state of TCP connections, can be used to cover this limit.

(v4) Weak root password. This means that the password can be easily
cracked (e.g., brute force, dictionary).

(vs) FTP port is open. Many FTP server implementations contain security
breaches, especially buffer overflow vulnerabilities.

12

In addition, two attacks scenarios, denoted a7 and ag are considered. They
are expressed by the following equation:

a7 = Q] XA X A4 % A5, A8 = A] %X A3 % Q4 % Q5. (3)

These scenarios correspond to two alternatives of the same main attack (pass-
-word cracking), the first one relies on SYN scan while the second one is based
on ACK scan. In other terms, oy, = {@1,0a2, a3, a4, a5, as, ar, ag}.

In addition to these sets, we use i)mary relations to represent operations and
predicates of the signature) in the algebra a. For instance, the following
matrix models the relation which states whether a vulnerability is exploited by
a given attack.

lexploits|, =

| cocoo o o =
| coocom~o
| coo~o o
| o~ o0 0o
—_—-o 00 0CO

If the value of (|exploits| a)ij equals 1 (respectively 0), this means that the
attack a; exploits (respectively does not exploit) the vulnerability v;. The rows
corresponding to a7 and ag can not be filled because those attacks are compos-
ite scenarios.

In the following, we show how the oriented equations of pg can model effi-
ciently two fundamental RA steps: vulnerability analysis and threat analysis.

Vulnerability identification
The conduction of the vulnerability identification process through the use of
automated scanners and questionnaires, results in the following matrix (with

regard to the hypotheses (Hi)ie{l,..,S})'

[ispresent|, =

OO~ O M
QO = D

Threat identification

As it has been mentioned above, this step aims at identifying the attacks that
are possible to carry out on the analyzed system. In fact, a direct application
of the rewriting rule (p;) states that this operator can be modeled by a binary
relation which is the composition of |ispresent|, and |exploits|,. Thus, ®
appears in « as a binary relation denoting the composition between relations.
More formally, we have:

o], = |exploits ® ispresent|, = |exploits|, o |ispresent|, .

An Abstract Reduction Model for Computer Security Risk 13

Consequently, the matrix corresponding |o|,, is the product of |ispresent|,
and |exploits|,. Nonetheless, it is worth noting that the two bottom rows can
not be computed through the use of this product as attack scenarios are not
considered in the rewriting rule (p;). Hence, the rule (p4) has been applied to

compute (|°|a)(i,j)e{7,8}x{1,2}-

10 0
(Iola)(i,j)e{ZS}X{LQ}_ 0 1’

Candidate countermeasure selection

We suppose that the following actions are available to reduce the effect of
potential attacks.

(d1) Acquire a stateful inspection firewall.

(dg) Configure the packet filtering firewall to close FTP connections.

(d3) Elaborate a security training program for the employees.

(d4) Change root password to guarantee more robustness.

It is obvious that only (d;), (d2) and (d3) mitigate the attack scenario as
they thwart respectively (at3), (at;) and (ats). Therefore, according to the
rewriting rule (p2), these decisions constitute the set of candidate countermea-
sures for the resource asy. Concerning asy, it is not taken into account during
this step because it was found that no attack scenario is possible to carry out
against it. The normal form can then be represented by the following formula:

atg [0|, as2 ® di |o|, asy ® d3 |o|, asa ® d4 |0, asa. ‘)

5. SOLVING THE RISK ANALYSIS
EQUATION

Having applied the rewriting rules according to the aforementioned order,
we obtain an irreducible formula (see Equation 2). This formula expresses the
potential destructive and preventive actions that correspond to the current state
of the system. Since the aim of the security analyst is to thwart the attacks
threatening the computer network, the countermeasure selection process can
be thought of as the resolution of the equation:

® (at; o as;) ® ® (dj o as;) = lact, (&)

i<n,j<n; i<n,j<m;
meaning that the chosen security solutions totally annihilate the effect of the
possible threats. However, since perfect security is an utopia, a realistic objec-
tive would be to select the decisions that make the effect of the above formula

closest to the one of 1,;.
The resolution of this problem can be viewed as the selection of an optimal

subset of the set A = U {(dj o as;)} of candidate decisions. Elements
i<n,j<m;

14

(d; o as;) of A will be denoted by d. Obviously, the set A* (set of partitions of
A) has a lattice structure with respect to the inclusion binary relation C. The
universal lower bound of this lattice is §) (the empty set) while the universal
greater bound is A itself. The optimization process can be thought of as a
traverse of the lattice (A*, C) from 0 towards the direction of A. We propose
the following algorithm to select the optimal set of decisions:

Algorithm decision_select

Begin

0 = lact;

APt = ;

While | &) (at;0as) @ Q) ()| aet | Q) (atioas) @ & (9)

i, seAopt i senoptu(s*}
APt = AP 5%
Find §* € Parent(A°P!) such that for every 6o € Parent(A°P)

® (atjoasi) @ ® 0) | <act ® (atj 0 as;) @ ® (6)

i,j deAopPty{é*} i,j s€A°PU{&}

EndWhile

End
where Parent(X) represents the set {Y|Y € A*, X C Yand|Y| = |X|+ 1}
for every X € A*.

An informal reading of this algorithm shows that the optimal set of counter-
measures (A°' C A*) is reached through an iterative process which consists
basically in adding, at each iteration, a security decision and evaluating its ef-
fect. At the beginning, the set A°P! is empty. Then, at each step, a solution §*
is selected from Parent(A°P!) such that its combination with the elements of
A°Pt and the set of possible attacks be as close as possible to 14.; (with respect
to <qct)- The algorithm stops when the addition of any element § € A \ A%
worsens the situation defined by A°P,

THEOREM 6 If the operation & is compatible with <, then the algorithm
decision_select is <,.;-optimal (i.e., every iteration gives a solution which is
better than the solutions found at the previous iterations).

Proof. We proceed to an ab absurdo proof. Supposing that the decisions d;
and &9 have been selected after the two first iterations of decision_select and
that there exists d;,9; € A\ {01, d2} such that their combination is better than

01 ® 09:
0; ® 05 <qct 01 ® 0o. (6)

As <ge¢ is compatible with ® and §; <4 9;, we can write:

01 ® 0 <qget 0; ® 6. @)

An Abstract Reduction Model for Computer Security Risk 15

Moreover, as J is the optimal decision at the second step:

51 ®62 <act 61 ® 4, <act 51 ®6ja

which conflicts with the main assumption expressed by Equation 6. (]

Furthermore, the algorithm terminates because the search space at a given
iteration is strictly included in the search space of the previous iteration. This
means that the search space, which is finite, becomes more restricted across
iterations.

A comprehensive example is given in the following to illustrate this algo-
rithm. It is based on the concrete case studied in Section 4. The normal
form reached at the end of that section (Equation 4) gives that the set of se-
curity decisions is equal to A = {d; 0 asg,d3 0 asz,dg 0 ase} = {61, 09,03} .
We propose to assess the cost and the benefit (in monetary terms) associ-
ated to each element § € A and to state that § <, ¢ if, and only if,
(benefit — cost)s > (benefit — cost)s. We assume that the cost of d1, o
and 43 are respectively equal to 1000, 400 and 30. On the other hand, the three
candidate decisions have the same benefit, equal to 500, because they mitigate
the same attack scenario.

Consequently, a direct application of the aforementioned algorithm gives
that 43 is selected at the first step of decision_select because (bene fit—cost)s,
= —500, (benefit — cost)s, = 100 and (benefit — cost)s, = 470. At
the second step, we evaluate the countermeasure combinations that belong to
Parent({é3}) (i.e., {01,603} and {J2, d3}). It is easy to check that (benefit —
cost)s @5, = —530 and (benefit — cost)s,zs, = 70. Therefore, no combi-
nation is selected at this level since both candidate decisions worsen the state
reached at the previous iteration. Therefore, the final selected set of security
decisions is {d3} according to the algorithm decision_select. In fact, the cost
of 43 is acceptable while the stateful inspection firewall and the training are too
expensive with respect to the attack that it prevents.

6. CONCLUSION

In this paper, we developed an algebraic decision making approach under
security risks in a networked environment. Our method consists of two basic
steps: a rewriting system that allows to identify the candidate countermeasures
and a selection algorithm. We proved the termination of both of these steps
meaning that the approach does not diverge.

Our work can be improved in the future by enriching the rewriting system
(involving a study of its confluence) through the addition of a business-oriented
reasoning.

16

References

Alberts, C.J. Dorofee, A.J. (2002).Managing Information Security Risks: the OCTAVE Ap-
proach, Addison Wesley Professional, ISBN: 0321118863.

Ben Cherifa, A. Lescanne, P. (1987). Termination of Rewriting Systems by Polynomial Inter-
pretations and its Implementation, Science of Computer Programming, 9(2):137-160.

ClaBen, I. Ehrig, H. Wolz, D. Algebraic Specification Techniques and Tools for Software De-
velopment: the ACT Approach, AMAST Series in Computing (1), ISBN: 981-02-1227-5.

Goguen, J.A. Malcolm, G. (2000). Software Engineering with OBJ: Algebraix Specification in
Action, Kluwer Academic Publishers, Boston, ISBN: 0-7923-7757-5.

Hamdi, M. Boudriga, N. (2003). Algebraic Specification of Network Security Risk Manage-
ment, First ACM Workshop on Formal Methods in Security Engineering, Washington D.C.

Loeckx, J. Ehrich, H-D. Wolf, M. "Specification of Abstract Data Types," Wiley and Teubner,
ISBN: 0-471-95067-X.

Stonebumer, G. Grogen, A. Fering, A. (2002). Risk Management Guide for Information Tech-
nology Systems, National Institute for Standards and Technology, Special Publication 800-
30.

A Guide to Risk Management and Safeguard Selection for IT Systems, Government of Canada,
Communications Security Establishment, January 1996.

Information Security Risk Assessment: Practices of Leading Organizations, United States Gen-
eral Accounting Office, GAO/AIMD-00-33, November 1999.

