
CAS++: An Open Source Single Sign-On Solution for
Secure e-Services

Claudio Agostino Ardagna, Emesto Damiani,
Sabrina De Capitani di Vimercati, Fulvio Frati, and Pierangela Samarati

Dipartimento di Tecnologie dell'Informazione
Universiti degli Studi di Milano
Via Bramante 65 - Crema - Italy

{arda@a,damiani,decapita,frati,samarati)@dti.unimi.it

Abstract. Business and recreational activities on the global communication in-
frastructure are increasingly based on the use of remote resources and services,
and on the interaction between different, remotely located parties. On corporate
networks as well as on the open Web, the huge number of resources and ser-
vices often requires to multiple log-ons leading to credential proliferation and,
potentially, to security leaks. An increasingly widespread approach to simplify
and secure the log-on process is Single Sign-On (SSO) that allows automatic
access to secondary domains through a single log-on operation to a primary do-
main. In this paper, we describe the basic concepts of SSO architecture focusing
on the central role of open source implementations. We outline three major SSO
trust models and the different requirements to be addressed. We then illustrate
CAS*, our open source implementation of a Single Sign-On service. Finally,
we illustrate the application of CAW+ to a real case study concerning the devel-
opment of a multi-service network management system. The motivation for ow
work has been raised in response to the requirements of such case study within
the Pitagora project.

1 Introduction

Applications running on the Global Information Infrastructure are increasingly de-
signed by composing individual e-sewices such as e-Government services, remote
banking, and airline reservation systems [12], providing various kind of functionali-
ties such as paying fines, renting a car, releasing authorizations, and so on. From the
architectural point of view, service-oriented distributed applications follow a layered
software structure composed of three layers [16]: i) e-Seiewice components, software
components implementing e-services; ii) Application sewer, a middleware layer over
which the components will be deployed and that provides some additional functional-
ities such as management of security and persistence; iii) Operating System platform,
over which the application will be distributed. While there is an increasing need for
authenticating clients of these applications before granting them access to services and
resources, individual e-services are rarely designed in such a way to handle the authen-
tication process. The reason e-services do not include functionalities for checking the
client's credentials is that they assume a unified directory system to be present, making

Please use the following format when citing this chapter:
Author(s) [insert Last name, First-name initial(s)], 2006, in IFIP International Federation for Information
Processing, Volume 201, Security and Privacy in Dynamic Environments, eds. Fischer-Hubner, S., Rannenberg,
K., Yngstrom, L., Lindskog, S., (Boston: Springer), pp. [insert page numbers].

CAS*: An Open Source Single Sign-On Solution for Secure e-Services 209

suitable authentication interfaces available to client components of network applica-
tions. On some corporate networks, all users have a single identity across all services
and all applications are directory enabled. As a result, users only log in once to the
network, and all applications across the network are able to check their unified identi-
ties and credentials when granting access to their services. However, on most Intranet
and on the open network users have multiple identities, and a solution is needed to
give them the illusion of having a single identity and a single set of credentials. Single
Sign-On (SSO) systems are aimed at providing this hnctionality, managing the multi-
ple identities of each user and presenting their credentials to network applications for
authentication. In this paper, we describe a fully functional open souxe Single Sign-
On [7] solution, that allows users to enter a single username and password to access
systems and resources, to be used in the framework of an open source e-service sce-
nario. Indeed, open specifications for inter-organizational SSO do exist; for example,
the Liberty Alliance (LA) project, started in 2001 and involving more than 130 orga-
nizations, is aimed at providing a framework for protecting business transaction, and
its scope clearly includes open standards for federated network identioj. However, here
we shall focus on specific open source implementations of SSO systems, which may
or may not fully comply to open specifications like LA. As a matter of fact, in many
application fields open source products are increasingly being adopted as an alternative
to proprietary solutions. In particular, our work has been driven by the requirements for
an open source Single Sign-On solution raised within the Pitagora project, where we
are collaborating with Siemens Mobile for the development of a multi-service network
management system.

2 Single Sign-On: Basic Concepts

The huge amount of services available on the Net is causing a proliferation of user
accounts. Users typically have to log-on to multiple systems, each of which may re-
quire different usernames and authentication information. All these accounts may be
managed independently by local administrators within each individual system 1201.

In a multiservice domain, each system acts as an independent domain. The user first
interacts with a primary domain to establish a session with that domain. This transac-
tion requires the user to provide a set of credentials applicable to the primary domain.
The primary domain session is usually represented by an operating system shell exe-
cuted on the user's workstation. From this primary domain session shell, the user can
require services from other secondary domains. For each of such requests the user has
to provide another set of credentials applicable to the interested secondary domain.

From the account management point of view, this approach requires independent
management of accounts in each domain and use of different authentication mecha-
nisms. In the course of time, several usability and security concerns have been raised
leading to a rethinking of the log-on process aimed at co-ordinating and, where possible,
integrating user log-on mechanisms of the different domains.

A servicelarchitecture that provides such a co-ordination and integration is called
Single Sign-On [13]. In the SSO approach the primary domain is responsible for collect-
ing and managing all user credentials and infonnation used during the authentication

2 10 Claudio Agostino Ardagna et al.

process, both to the primary domain and to each of the secondary domains that the user
may potentially require to interact with. This information is then used by Single Sign-
On services within the primary domain to support the transparent authentication by each
of the secondary domains with which the user requests to interact. The advantages of
the SSO approach include [l 1,201:

- reduction of i) the time spent by the users during log-on operations to individual
domains, ii) failed log-on transactions, iii) the time used to log-on to secondary
domains, iv) costs and time used for users profiles administration;

- improvement to users security since the number of usemame/password each user
has to manage is reduced;

- secure and silnpliJied admii~isti-ation because with a centralized administration
point, system administrators reduce the time spent to add and remove users or mod-
ify their rights;

- improved system security through the enhanced ability of system administrators to
maintain the integrity of user account configuration including the ability to change
an individual user's access to all system resources in a co-ordinated and consistent
manner;

- improvement to services usability because the user has to interact with the same
login interface.

SSO provides a uniform interface to user accounts management thus enabling a
coordinated and synchronized management of the component domains.

3 Trust Models and Requirements of Single Sign-On Solutions

The definition of different trust models is important for the evaluation of different SSO
solutions, which could slightly differ in their purposes depending on the business and
trust scenario in which they act. For the goal of our analysis, we define three trust
models over which the requirements, defined in Section 3.2, will be categorized.

3.1 Trust Models

A trust model describes a system through the definition of the underlying environment
and of its behaviors, components, and rules. In particular, the model defines the entities
involved in the system, the rules that regulate the interactions between the entities and
the peculiarities of the overall system. Trust models are the basis for interoperability.
For our goals, we focus on the definition of trust models in SSO environments based on
the services that these environments support. We have identified three models.

Authentication and Authorization Model (AAM). This model represents one of the
traditional security/trust models describing all the frameworks that provide authen-
tication and authorization features [lo]. It represents the basic mechanism in which

' It is important to note that, while improving security since the user has less accounts to manage,
SSO solutions imply also a greater exposure from attacks; an attacker getting hold of a single
credential can in principle compromise the whole system.

CAS-H: An Open Source Single Sign-On Solution for Secure e-Services 21 1

a user requires an access to a service that checks the users' credentials to decide
whether access should be granted or denied. This model identifies two major enti-
ties: users, which request accesses to resources, and services, potentially composed
by a set of intra-domain services, which share these resources. This model is based
on the classic client-server architecture and provides a generic protocol for authen-
tication and authorization processes.

Federated Model (FM). This model represents one of the emergent securityltrust
models in which several homogeneous entities interact to provide security services,
such as identity privacy and authentication. This model identifies two major enti-
ties: users, which request accesses to resources, and services, which share these re-
sources. The major difference with the previous model resides in the service d e h i -
tion and composition: in federated systems the services are distributed on different
domains and they are built on the same level allowing mutual trust and providing
functionalities as cross-authentication [I 71.

Full Identity Management Model (FIMM). This model represents one of the most
challenging security and privacyltrust models that, potentially, could merge the pre-
vious two models. In addition, it provides mechanisms for identity and account
management and privacy protection [3,18], This model identifies three major en-
tities: users, which request accesses to resources, services, which share these re-
sources, and identify manage< which gives functionalities to manage users identi-
ties. The major difference with the previous models is that FIMM tries also to fulfill
the needs of privacy that arise in emerging scenarios.

3.2 Requirements

The requirements that a Single Sign-On solution should satisfy are more or less well
known within the security community, and several SSO projects published partial lists. '
However, to the best of our knowledge no complete discussion of high-level functional
requirements for SSO has been published yet. A first step before implementing an
open source innovative SSO system consists in spelling out these requirements, tak-
ing lessons learned from previous projects into account. Our analysis brought us to
formulating the following requirements (for each requirement we report the trust model
(AMM, FM, FIMM) to which it refer^).^

Authentication (AAM,FM,FIMM). The main feature of a SSO system is to provide
an authentication mechanism. Usually the authentication is performed through the
classic usernamelpassword log-in, whereby a user can be unambiguously identi-
fied. Authentication mechanisms should usually be coupled with a logging and au-
diting process to prevent and, eventually, find out malicious attacks and unexpected
behaviors. From a software engineering point of view, authentication is the only
"necessary and sufficient" functional requisite for a SSO architecture.

For an early attempt at a SSO requirements list, see middleware. interneta.
edu/webiso/docs/draft-internet2-webiso-requirements-07.html
Note that, different models fulfill a different set of requirements (see Table 3.2). SSO solution
should be evaluated therefore by taking into consideration only the requirements supported by
the corresponding trust model.

212 Claudio Agostino Ardagna et al.

Table 1. Requirements categorization basing on the specific trust model.

Requirement 1 . 4 ~ ~ Model lFM Model IFIMM ~ o d e l]
/Authentication

Strong Authentication (AAM,FM,FIMM). For high security environments, the tra-
ditional usemame/password authentication mechanism is not enough. Malicious
users can steal a password and act in place of the user. New approaches are there-
fore required to better protect services against unauthorized accesses. A good solu-
tion to this problem could integrate usemame/password with strong authentication
mechanism based on two-factor authentication such as a smartcard and biometric
properties of the user (fingerprints, retina scan, and so on).

Authorization (AAM,FIMM). After the authentication process, the system can deter-
mine the level of informationiservices the requestor can seeluse. While application
based on domain specific authorizations can be defined and managed locally at each
system, the SSO system can provide support for managing authorizations (e.g. role
or profile acquisitions) that apply to multiple domains.

Provisioning (AAM,FIMM). Provisions are those conditions that need to be satisfied
or actions that must be performed before a decision is taken [6] . A provision is as
a pre-condition; it is responsibility of the user to ensure that a request is sent in an
environment satisfying all the pre-conditions. The non-satisfaction of a provision
implies a request to the user to perform some actions.

Federation (FM,FIMM). The concept offederation is strictly related to the concept of
trust. A user should be able to select the services that she wants to federate and de-
federate to protect her privacy and to select the services to which she will disclose
her own authorization assertions.

C.I.M. (Centralized Identity Management) (AAM,FIMM). The centralization of
authentication and authorization mechanisms and, more generally, the centraliza-
tion of identity management implies a simplification of the user profile management
task. User profiles should be maintained within the SSO server thus removing such
a burden from local administrators. This allows a reduction of user-profile admin-
istration cost and time and improves administrators' control on user profiles and
authorization policies.

X 1 x 1 X
1

Strong Authentication
Authorization
Provisioning
Federation
C.I.M. (Centralized Identity Management)
Client Status Info
Sinnle Point of Control u

Standard Compliance
Cross-Language availability
Password Proliferation Prevention
Scalabilitv

X

X

X

X
X
X

X
X
X

X
X
X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

CAS*: An Open Source Single Sign-On Solution for Secure e-Services 213

Client Status Info (AAM,FM,FIMM). The SSO system architecture implies the ex-
change of user information between SSO server and services to fulfill authentica-
tion and authorization processes. In particular, when the two entities communicate,
they have to be synchronized on what concern the user identity; privacy and se-
curity issues need to be addressed. Different solutions of this problem could be
adopted involving either the transport (e g communication can be encrypted) or
the application layer.

Single Point of Control (MI). The main objectives of a SSO implementation are to
provide a unique access control point for users who want to request a service, and,
for applications, to delegate some features from business components to an authen-
tication server. This point of control should be unique to clearly separate the au-
thentication point from business implementations, avoiding the replication and the
ad-hoc implementation of authentication mechanisms for each domain. Note that
every service provider will eventually develop its own authentication mechanism.

Standard Compliance (AAM,FM,FIMM). It is important for a wide range of appli-
cations to support well-known and reliable protocols to make possible communi-
cation and integration between different environments. In a SSO scenario, there
are protocols for exchanging messages between authentication servers and service
providers, and between technologies, within the same system, that can be different.
Hence, every entity can use standard technologies (e.g. X.509, SAML for express-
ing and exchanging authentication information and SOAP for data transmission) to
interoperate with different environments.

Cross-Language availability (AAM,FM,FIMM). The widespread adoption of the
global Internet as an infrastructure for accessing services has consequently influ-
enced the definition of different languagesitechnologies used to develop these ap-
plications. In this scenario, a requisite of paramount importance is the development
of SSO solutions that permit the integration of service implementations based on
different languages, without substantial changes to service code. The first step in
this direction is the adoption of standard communication protocols based on XML.

Password Proliferation Prevention (AAM,FM,FIMM). A well-known motivation
for the adoption of SSO systems is the prevention of password proliferation so to
improve security and simplify user log-on actions and system profile management.

Scalability (AAM,FM,FIMM). An important requirement for SSO systems is to sup-
port and correctly manage a continuous growth of users and subdomains that rely
on them, without substantial changes to system architecture.

4 Our Solution: CAS++

We have developed our open source SSO system with the goal of addressing the AAM
requirements identified in the previous section by properly extending an existing open
source SSO implementation, named Central Authentication Sewice (CAS) [5,8]. In
this section, we briefly describe CAS and then illustrate our solution, called CAS++,
developed as an extension to CAS. Note that, CAS++ is not the only implementation
available on the Net. In particular, Soul~eID [21], an Open Source implementation of
the SSO Liberty Alliance, Java Open Single Sign-On (JOSSO) [IS], and Shibboleth
[19] stand out as the most complete available SSO solutions.

214 Claudio Agostino Ardagna et al.

4.1 Central Authentication Service (CAS)

Central Authentication Service (CAS) [5,8] is an open source framework developed by
Yale University and implements a SSO mechanism to provide a Centralized Authenti-
catioii to a single server and HTTP redirectioizs. CAS authentication model is loosely
based on classic Kerberos-style authentication. When an unauthenticated user sends
a service request, this request is redirected from the application to the authentication
server (CAS Server), and then back to the application after the user has been authenti-
cated. The CAS Server is therefore the only entity that manages passwords to authen-
ticate users and transmits and certifies their identities. The information is forwarded by
the authentication server to the application during redirections by using session cookies
(see data flow in Figure 2).

CAS is composed of pure-Java servlets running over any servlet engine and provides
a very basic web-based authentication service. In particular, its major security features
are:

1. passwords travel from browsers to the authentication server via an encrypted chan-
nel;

2. re-authentications are transparent to users if they accept a single cookie, called
Ticket Granting Cookie (TGC). This cookie is opaque (i.e., TGC contains no per-
sonal information), protected (it uses SSL) and private (it is only presented to the
CAS server);

3. applications know the user's identity through an opaque one-time Service Ticket
(ST) created and authenticated by the CAS Server, which contains the result of a
hash function applied to a randomly generated value.

Also, CAS credentials are pi-oxiable. At start-up, distributed applications get a Proxy-
Granting Ecket (PGT) from CAS When the application needs access to a resource, it
uses the PGT to get a proxy ticket (PT). Then, the application sends the PT to a back-
end application. The back-end application confirms the PT with CAS, and also gains
information about who proxied the authentication. This mechanism allows "proxy" au-
thentication for Web portals, letting users to authenticate securely to untrusted sites
(e.g., student-run sites and third-party vendors) without supplying a password. CAS
works seamlessly with existing Kerberos authentication infrastructures and can be used
by nearly any Web-application development environment (JSP, Servlets, ASP, Perl,
mod-perl, PHP, Python, PLISQL, and so forth) or as a server-wide Apache module.
Also, it is freely available from Yale University (with source code).

We developed an open source SSO system, called CAS++, based on the use of identity
certificates and fully integrated with the JBoss security layer. Our solution integrates
the CAS system with the authentication mechanism implemented by a Public Key In-
frastructure (PKI). CAS++ implements a fully multi-domain stand-alone server that
provides a simple, efficient, and reliable SSO mechanism through HTTP redirections,
focused on user privacy (opaque cookies) and security protection. CAS++ permits a

CASH: An Open Source Single Sign-On Solution for Secure e-Services 21 5

Fig. 1. CAS++ certificate-based authentication flow.

centralized management of user profiles granting access to all services in the system
with a unique pair usernamelpassword. The profiles repository is stored inside the SSO
server application and is the only point where users credentials/profiles are accessed,
thus reducing information scattering. In our implementation, services do not need an
authentication layer because this feature is managed by C A S H itself.

C A S H relies on standard protocols such as SSL, for secure conlmunications be-
tween the parties, and X.509 digital certificates for credentials exchange. Besides being
a "pure-Java" module like its predecessor, C A S U is a fully J2EE compliant applica-
tion integrable with services coded with every web-based implementation language. It
enriches the traditional CAS authentication process through the integration of biometnc
identification (by fingerprints readers) and smart card technologies in addition to tradi-
tional username/password mechanism, enabling two authentication levels. Our strong
authentication process flow is composed of the following steps (see Figure 1):

I . the user requests an identity certificate to the CA (Certification Authority);
2. the user receives from the CA a smart card that contains a X.509 identity certifi-

cate, signed with the private key of the CA, that certifies the user identity. The cor-
responding user private key is encrypted with a symmetric algorithm (e.g., 3DES)
and the key contained inside the smart card can be decrypted only with a key rep-
resented by user fingerprint (KFingerprintUser)[l4];

3. to access a service the public key certificate, along with the pair user-
namelpassword, is encrypted with the CAS++ public key (KPuCAS++) and sent
to C A S H ;

4. CAS++ decrypts the certificate with its private key, verifies the signature on the
certificate with the CA public key, and verifies the validity of this certificate by
interacting with the CA;

5. CAS* retrieves from the CA information about the validity of the user certificate
encrypted with KPuCAS++;

Note that, the first two actions are performed only once when the user requests the smart card
along with an identity certificate.

216 Claudio Agostino Ardagna et al.

i "TP cia"'" P'* Y n l ,-------JsJ--*
4 $"."'c 7 i ~ i ~ t 5 Q0715~ ,I * C "dii?-i^r LC - - - - - - - . - -

i <d nn

Fig. 2. CAS++ information flow for service request evaluation.

6. if the certificate is valid, CAS* extracts the information related to the user, creates
the ticket (TGC, Ticket Granting Cookie) and returns it to the user encrypted with
the public key of the user (KPuUser). At this point, to decrypts the TGC, the user
must retrieve the private key stored inside the smart card by mean of her finger-
print. As soon as the card is unlocked, the private key is extracted and the TGC
decrypted. This ticket will be used for every further access, in the same session, to
any application managed by the CAS* Single Sign-On server.

At this point, for every further access in the session, the user can be authenticated
by the service providing only the received TGC without any additional authentication
a ~ t i o n . ~

The service access flow, that takes place over secure channels and is similar to the
one in CAS, is composed of the following steps (see Figure 2):

I . the user, via a web browser, requests access to the service provider;
2. the service provider requests authentication information through a HTTP redirec-

tion to the C A S H Server;
3. the CAS* Server retrieves the user TGC and the service requested URL. If the

user has been previously authenticated by CAS* and has the privilege to access
the service a Service Ticket is created;

4. the C A S H Server redirects the user browser to the requested service along with
the ST;

5. service receives the ST and check its validity sending it to the CAS++ Server;
6. if the ST is valid the CAS* Server sends to the Service an XML file with User's

credentials;
7. the user gains the access.

' Note that the TGC lifetime should be relatively short to avoid conflicts with the CA's certificate
revocation process, which could cause unauthorized accesses.

CAS*: An Open Source Single Sign-On Solution for Secure e-Services 217

Table 2. Evaluation of C A S t t with respect to the requirements of the AAM model.

Requirement C A S i i

Strong Authentication

4.3 Evaluating C A S U Against the AAM Requirements

I~uthentication ves

Yes

Provisioning
C.I.M. (Centralized Identity Management)
Client Status Info
Single Point of Control
Standard Compliance
Cross-Language Availability
Password Proliferation Prevention
Scalability

CAS++ is based on the Authentication and Authorization Model. Table 4.3 reports the
results of the evaluation of CAS++. As it is visible from this table, CASH hlfills most
of AAM requirements; it provides a central point of control to manage authentication,
authorization, and user profile^.^ Furthermore, CAS++ enriches the traditional CAS
authentication process with the integration of biometric identification (via fingerprints
readers) and smart card technologies and it is planned to include provisioning features
in future releases. Note that, the lower level of C A S H system is language independent
and relies on traditional established standards, such as HTTP, SSL and X.509, without
adopting emerging ones, such as SOAP and SAML. Finally, focusing on client status
info, all communications between user browser, services providers and authentication
server in CAS* scenario are managed by the exchange of opaque cookies and by the
use of encrypted channels.

planned

Yes
yes (opaque)

Yes
partial (HTTP, SSL, X.509)

Yes
Yes

planned

5 A Case Study: the Pitagora Project

Authorization

The increasing usage of GSM mobile phones and the upcoming of a new generation
of mobile system (called third-generation or 3G) have lead to the development of ap-
plications that manage the mobile network and provide new services to users. In this
scenario, every network technician that has to use multiple parallel services must man-
age several pairs usernamelpassword, raising all the problems discussed in the previous
sections of this paper. In particular, the adoption of SSO, with strong authentication
mechanisms through smart card and fingerprint readers, allows also the restriction of
simultaneous multi-accesses for security reasons; in our scenario, in fact, we manage
very sensitive data and, in some cases, we want to avoid any kind of data correlation.

yes

The centralization of users profiles affects system scalability. A solution that provides a balance
between centralization and scalability needs is under study.

21 8 Claudio Agostino Ardagna et al.

Focusing on this scenario, we show a case study example that involved our SSO im-
plementation integrated with the research and development project "Pitagora", carried
out by our group in cooperation with Siemens Mobile. Currently, the Pitagora Project
is composed of the following applications:

Web-based MultiProtocol User Interface (IMW): is the application tool that pro-
vides and controls the access to OMC (Operation and Maintenance Center) system
requested by users1 technicians. In particular, users are able to manage, configure,
and check OMC mobile network using different technologies and devices, such as
traditional PCsilaptops, PDAs, mobile phones. Hence, IMW manages all the com-
munication process between users and OMC system, through different technologies
as web browser and HTTPkITTPS protocol, WAP browser, SMS. IMW keeps net-
work technicians up-to-date on the network state, notifying alarms and warnings,
at which the users are previously registered, happened on the supervised network.

Geo-location Applications (i-Geo): is the application involved in the geo-location of
the customers mobile [2]. In particular, our solution locates mobile phones taking
into account real and estimated path-loss with all information that can be extracted
from a GIs map of the interested area rather than compute the mobile position only
through real and estimated path-loss as in classical approaches.

Geographical Electromagnetic Field Information System (GEMFIS): is an open
source application used to monitor the network usage focusing on maximizing per-
formance and checking electric pollution levels, in accordance with the current
legislation. GEMFIS includes functionalities for storing, displaying and managing
environmental data.

In the scenario depicted above, without a SSO solution, the technicians that wished
to access Pitagora's tools had to manage several usemamelpassword pairs and log-on
separately to each service. The adoption of C A S H solution has brought several advan-
tages. In current Pitagora's architecture, individual services are not stand-alone mod-
ules, each with its own access control layer; rather, they are fully integrated in a single
security domain. Technicians needing to use multiple applications can perform a single
log-on operation and all profile information requested by the application is transpar-
ently provided by CAS++. The adoption of CAS++ also improved user profile manage-
ment, since our profiles repository and administration point are fully integrated within
CAS++. Another important requirement fulfilled by CAS++ is strong authentication,
a fundamental aspect in our scenario. Finally, CAS++ allowed Siemens developers to
freely choose the programming language used to implement individual services.

6 Conclusions

We described some trust models representing different systems behaviors and goals
for Single Sign-On services, and identified the requirements that an open source Single
Sign-On solution should satisfy. We then illustrated our open source SSO system, called
CAS++ and its application to a real case study. Issues to be investigated include an
extension of CAS++ to fully support the requirements of a full identity management
model.

CASH: An Open Source Single Sign-On Solution for Secure e-Services 219

Acknowledgments

We thank the anonynlous reviewers and Tuomas Aura for comments and suggestions
which considerably improved the paper. This work was supported in part by the Eu-
ropean Union within the PRIME Project in the FP6AST Programme under contract
IST-2002-507591 and by the Italian MIUR within the KIWI and MAPS projects.

References

1. M. Anisetti, V. Bellandi, E. Damiani, M. Montel, and S. Reale. Open Source Electromag-
netic Field Monitoring as e-Government Service. Proc. ofthe International Sjmzposium on
Telecommunications, Shiraz, Iran, September 2005.

2. M. Anisetti, V. Bellandi, E. Damiani, and S. Reale. Localize and tracking of mobile an-
tenna in urban environment. Proc. ofthe International Symposium on Teleconzmunications,
Shiraz, Iran, September 2005.

3. C.A. Ardagna, E. Damiani, S. De Capitani di Vimercati, and P. Samarati. Towards Privacy-
Enhanced Authorization Policies and Languages. Proc. ofthe 19th IFIP WGll.3 Working
Conference on Data and Application Security, Nathan Hale Inn, University of Connecticut,
Storrs, USA, August 2005.

4. C.A. Ardagna, E. Damiani, F. Frati, and M. Montel. Using Open Source Middleware for
Securing e-Gov Applications. Proc. ofthe First International Conference on Open Source
Sjutems (OSS 2005), Genova, Italy.

5. P. Aubry, V. Mathieu, and J. Marchal. ESUP-Portal: open source Single Sign-On with CAS
(Central Authentication Service). Proc. of EUNISO4 - IT Innovation in a Changing World,
Bled (Slovenia), July 2004

6. C. Bettini, S. Jajodia, X. Sean Wang, and D. Wijesekera. Provisions and obligations in
Policy Management and Security Applications. Proc. ofthe 28th VLDB Coiference, Honk
Kong, China, 2002.

7. D.A. Buell, and R. Sandhu. Identity Management. IEEE Internet Computing, November-
December 2003.

8. Central Authentication Service, http://jasigch.princeton.edu:9000/
display/CAS

9. A. Corallo, M. Cremonini, E. Damiani, S. De Capitani di Vimercati, G. Elia, and P. Sama-
rati. Security, Privacy, and Trust in Mobile Systems. Mobile and Wireless *terns Beyond
3G: Managing New Business Opportunities, Idea Group Inc., (2005).

10. S. De Capitani di Vimercati, and P. Samarati. Access control: Policies, models, andmecha-
nisms, Foundations of Security Analysis and Design, 2001.

I I . J. De Clercq. Single sign-on architectures. International Conference on Infastructure
Security (InfiaSec 2002), Bristol, UK, October 2002.

12. S. Feldrnan. The Changing Face of e-Commerce. IEEE Internet Computing, 4(3):82-84,
MaylJune (2000).

13. B. Galbraith et al. Professional Web Services Security. Wrox Press, 2002.
14. F. Hao, R. Anderson, and J. Daugman. Combining cryptography with biometrics effec-

tively. Technical report, Cambridge University - Computer Laboratory Technical Report
UCAM-CL-TR-640.

15. Java Open Single Sign-On (JOSSO), http: //www. j osso. org/.
16. R. Khosla, E. Damiani, and W. Grosky. Human-Centered E-Business. Kluwer Academic

Publishers, Massachusetts, USA, 3 15 pages, April 2003.
17. Liberty Alliance Project, http: //www.projectliberty .org/

220 Claudio Agostino Ardagna et al.

18. PRIME (Privacy and Identity Management for Europe), http://www.
prime-project .eu.org.

19. Shibboleth Project, http: //shibboleth. internet2 .edu/.
20. Single Sign-On, The Open Group, http : //www . opengroup. org/security/

SSO/.
21. SourceID Open Source Federated Identity Management, http : //www . sourceid.

org/index.html

