
Protecting Web Services from DoS Attacks by SOAP
Message Validation

Nils Gruschka and Norbert Luttenberger

Department for Computer Science
Christian-Albrechts-University of Kiel, Germany
{ngr/nl)@informatik.uni-kiel.de

Abstract. Though Web Services become more and more popular, not only in-
side closed intranets but also for inter-enterprise communications, few efforts
have been made so far to secure a Web Service's availability. Existing security
standards like e.g. WS-Security only address message integrity and confidential-
ity, and user authentication and authorization. In this article we present a system
for protecting Web Services from Denial-of-Service (DoS) attacks. DoS attacks
often rely on misformed andior overly long messages that engage a server in
resource-consuming computations. Therefore, a suitable means to prevent such
kinds of attacks is the full grammatical validation of messages by an application
level gateway before forwarding them to the server. We discuss specific kinds
of DoS attacks against Web Services, show how message grammars can auto-
matically be derived from formal Web Service descriptions (written in the Web
Service Description Language), and present an application level gateway solution
called "Checkway" that uses these grammars to filter Web service messages. The
paper closes by giving some performance figures for full grammatical validation.

1 Introduction

As Web Services become more and more popular, not only inside closed intranets but
also for inter-enterprise communications, security is becoming crucial for operating
Web Services. While the basic Web Service specifications ([4], [I 01) themselves do not
address any security topics, a large number of additional specifications (WS-Security
[3], WS-SecurityPolicy [6], WS-Trust [12], WS-SecureConversation [l 11 etc.) for Web
Services security exists. However all these standards focus on the aspects of message
integrity and confidentiality and user authentication and authorization.

Few efforts have been made so far to secure the Web Service server itself and ensure
a Web Service's availability. Of course traditional perimeter protection systems like
packet filters, application level gateways, and intrusion detection systems contribute to
this, but we will show that these are unable to secure a Web Service server's availability
in an adequate manner.

In this article we present an application level gateway system for protecting Web
Services from Denial-of-Service (DoS) attacks. DoS attacks often rely on misformed
andior overly long messages that engage a server in resource-consuming computations.
For Web Services a suitable means to prevent such kinds of attacks is the full grarnrnat-
ical validation of messages by an application level gateway before forwarding them to

Please use the following format when citing this chapter:
Author(s) [insert Last name, First-name initial(s)], 2006, in IFIP International Federation for Information
Processing, Volume 201, Security and Privacy in Dynamic Environments, eds. Fischer-Hubner, S., Rannenberg,
K., Yngstrom, L., Lindskog, S., (Boston: Springer), pp. [insert page numbers].

172 Nils Gruschka and Norbert Luttenberger

the server. Web Service messages are XML documents and these are usually defined
by an XML Schema, written in the XML Schema definition language-a grammar lan-
guage for XML. Our system generates an XML Schema from a Web Service description
and validates all Web Service messages against this schema.

This article is organized as follows: The next chapter introduces Denial of Service
attacks in general and in the context of Web Services. Chapter 3 discusses the protec-
tion of Web Services from DoS attacks and introduces our solution. In chapter 4 the
processing of a Web Service description for our Web Service firewall and in chapter 5
the firewall itself are presented. The article closes with an outlook.

2 Attacks on Services

Denial of Service (DoS) attacks aim at reducing or completely eliminating a systems's
or service's availability. One can distinguish two kinds of DoS attacks: Protocol De-
viation Attacks and Resource Exhaustion [17]. Protocol Deviation Attacks exploit vul-
nerabilities in implementations of protocol processing entities. In some cases a single
packet that diverges from the intended protocol flow can make the attacked system
crash. A well-known example is Ping of Death.

Resource Exhaustion attacks consume the resources necessary to provide the ser-
vice (network bandwidth, memory and computation resources). The simplest attack
produces an extremly high network traffic load to the system providing the service
(Dump Flooding). Using such an attack makes it difficult to completely interrupt a
service's availability, even if executed as a Distributed Denial of Service (DDoS) at-
tack. More elaborated DoS attacks do not try to occupy all available network capac-
ity by brute force, but send messages that-though comparably small in number-are
suited to quickly exhaust the server's memory and cpu resources. A popular example
is the TCP/SWJlooding, where the server is flooded with (small) TCPISYN packets.
The server must create a complete TCP connection context for each packet and finally
crashes due to memory consumption.

With XML and Web Services new kind of attacks arise. The most common message
protocol for Web Services is SOAP, an XML based message format. Such a SOAP
message is usually transported using the HTTP protocol. Figure 1 shows a simple SOAP
message with the most relevant HTTP header lines. The message contains a request for
the operation add with 3 parameters named x.

Two of the most important DoS attacks on XML based services like Web Services
are Coercive Parsing and Oversize Payload (see e.g. [I 81 and [13]). The first one uses
a deeply nested XML document, the second one an extremly large XML document to
exhaust the service's memory. This is easier than for non-XML protocols due to the
nature of XML document processing. An incoming SOAP message is parsed, validated
to the Web Service interface specification and bound to programming language objects
[14]. The most common and flexible model for XML processing is DOM [2]. When
using DOM a DoS attack would indeed be very simple. A DOM based parser reads the
complete SOAP message and builds an in-memory representation (called DOM tree),
that is much larger than the message itself. The parser can therefore be attacked by an

Protecting Web Services from DoS Attacks by SOAP Message Validation 173

POST /WebServices/MathService.asmx HTTP/1.1
SOAPAction: "http://example.com/add"
Content-Type: text/xml

Fig. 1. Sample SOAP message.

arbitrary SOAP message, e.g. a message with a large total size or with a deeply nested
XML structure.

Even if the the parser component of the Web Service uses an event-based process-
ing model (e.g. SAX [15]) and the succeeding components (for validating and language
binding) check the correctness of the SOAP message, there are still possibilities for
attacks. A simple, yet effective attack can be performed if the Web Service message
contains a list of elements (like in the sample shown in figure 1). This is defined in
the Web Service interface description (see section 4.1) by an XML Schema element
[7] containing an attribute maxOccurs= "number-of - e l ementsfl. If this element
has a cardinality > 1, the number of elements is nearly always set to I1unbounded" to
simplify the Web Service processing. If the description is generated by a Web Service
framework from an existing implementation (which is a very common proceeding), this
value is automatically set for all data arrays. Such a declaration allows documents to
contain an unlimited number of elements. It is obvious that such a document can ex-
haust the server's memory. In practical tests we easily produced deadlocks and crashes,
sending a SOAP message with a large number of elements to a .NET and an AXIS Web
Service.

Thoughnot a DoS attack, a further important attack on Web Services covered by our
solution is WSDL Scanning. All operations for a service are described and advertised
inside a Web Service description using the Web Service Description Language (see
section 4.1). If only some of a service's operations are intended to be called from the
internet, an attacker is able to call all the service's operations anyway. Packet Filters
and HTTP ALG are unable to differentiate operations belonging to the same service,
because they all have the same service endpoint (IP address, TCP port and HTTP URL).

174 Nils Gmschka and Norbert Luttenberger

The operation is only defined inside the SOAP message' (e.g. the operation add in the
SOAP message in figure I).

3 Protecting Web Services

3.1 Web Services and Firewalls

Today it is common practice that hosts and services inside a private network (whether
enterprise or home) are protected by a firewall system2. The firewall has two tasks: 1.
to protect the services from attacks and 2. to prevent access to services, which shall not
be reachable from the internet.

The most widespread firewall concept is packet filtering. Packet filters operate on
layer 3 and 4 of the ISOIOSI Basic Reference Model and analyse IP and TCP headers.
Such firewalls are suitable for protecting against DoS attacks exploiting the TCP or IP
protocol, like Ping of Death or the TCPISYN Flood. It is also capable to filter accesses
to services using the target IP adress and the target TCP port.

Application level gateways (ALG) are defined to analyse application level proto-
cols above ISOIOSI layer 4. Actual ALGs understand simple application protocols like
HTTP. Such a HTTP ALG protects a service from attacks using malformed HTTP re-
quests and attacks like Cookie Poisoning. It can limit access to services using the HTTP
request URL.

But how can Web Services be protected? Packet filters and HTTP ALGs only check
the TCP, IP and HTTP protocol header, but not the SOAP message.

A Web Service defines the valid SOAP messages using a Web Service interface
description (see section 4.1). Processing of SOAP messages is time and memory con-
suming for the Web Service server, so every non-valid message should be rejected by a
Web Service firewall. This can be done by validating the SOAP message in an external
application level gateway.

A very simple countermeasure against large valid messages is limiting the SOAP
message's total size. This can even be done by a simple firewall without checking the
SOAP messages itself. On the other hand, this is not very sensible. The amount of
memory needed while processing an XML document is usually much larger than the
document itself. In order to avoid attacks, the size limit should be low. Unfortunately,
this could exclude many valid documents.

A much more sophisticated solution is to restrict the length of single XML ele-
ments and also the number of elements inside the SOAP message. These restriction
can be enforced by validating the SOAP message against a specially modified XML
Schema derived from the Web Service interface description. For details on the kinds of
modification see section 4.2.

I The HTTP header field SOAPAction also includes the operation, but this is only a hint to the
actual Web Service operation inside the SOAP message and should not be taken into account
(see also [9] , 4.3.4)

* The tem,firewall is often used for packet filtering systems, that analyse only 1P addresses and
TCP ports. In this article we usefirewall generalised for all security systems, which analyse
and filter data traffic

Protecting Web Services from DoS Attacks by SOAP Message Validation 175

In the same way, validating the SOAP message to an XML Schema containing only
the allowed operations solves the WSDL Scanning problem.

3.2 Design for a Web Sewice Firewall

Fig. 2. Integration of the CheckWay Web Service Firewall.

Web Service
Server

Web S e ~ c e
Client

b

4

The considerations above regarding SOAP message validation lead to our Web Ser-
vice firewall, called CheckWq. Figure 2 shows the Integration of a Web Service firewall
between Web Service client and server. The CheckWay WSDL Compiler gets the Web
Service server's Web Service description, generates the corresponding XML message
Schema, "hardens" the description, and advertises the modified description (marked
with *) to a Web Service client. The CheckWay Gateway validates all SOAP messages
against the Schema, forwards the message if it is valid, and rejects the message if it is
not3.

-

The next step is now to consider: 1. how to obtain an XML Schema for the message
validation and 2. which problems regarding the firewalls perfonnance emerge from the
validation process. In order to answer the first question a closer look at Web Service
clientiserver interaction and the Web Service interface description are required.

4

I
I

Gateway

Commercial products like Forum XWall or Datapower XS40 also claim to increase security by
XML Schema validation, but with these products it is totally unknown: How do they gain the
required XML Schemas? Were any improvements on the Schemas conducted? And which kind
of XML validation software is used (which has a large impact on the gateway's performance
and robustness; see section 5)?

b

4

I I
I I

WSDL
Corrpiler

4
XML Schem I

I

176 Nils Gruschka and Norbert Luttenberger

4 Web Service Interface Description

4.1 WSDL Structure

The Web Service interface description is composed using the Web Service Desc7,iption
Language (WSDL) [5].

message I;onTyp

T t
pan aperaiioc

r 7
o lwt fault

Fig. 3. WSDL structure.

Figure 3 shows the WSDL document structure. It contains two sections:

- an abstract interface, describing the Web Service's operation signatures. It includes
the o p e r a t ion-organizedin portTypes-defining the input, output, and fault
messages composed of p a r t s , which refer to a datatype, defined in the t y p e s
section.

- a concrete implementation. It includes a b i n d i n g section-assigning the oper-
ations to a wire format and a transport protocol-and the ports-defining the
service's network endpoint address.

The WSDL specification [5] either allows a variety of concrete implementations or does
not make any regulations at all. This applies for example to the grammar language used
for data types (XML Schema, DTD, etc.), the encoding rules (literal, SOAP encoded,
etc.) or the transport binding (SOAP, HTTP POST, HTTP GET). This creates a problem
in implementing compatible systems. Thus, the W S - I ~ Basic Profile [9] recommends a
number of constraints for Web Service descriptions and SOAP messages. Some impor-
tant restrictions are:

- Only XML Schema is permitted for defining data types.
- The only wire format is "literal" ("SOAP encoded is not allowed, see also [I]).

This means, the data types defined in the abstract section therefore become concrete
types.

- Only SOAPIHTTP binding is allowed.

The Web Services Interoperabilzfy Organisation was founded by leading Web Service enter-
prises to create interoperability guides. In these guides the Web Service specifications are
restricted and rendered more precisely to ease the creation of interoperable implementations.

Protecting Web Services from DoS Attacks by SOAP Message Validation 177

Additionally there exist two different Web Services styles: RPC and document. In many
cases both styles result in similar wire messages, but their definitions inside a Web
Service description varies in many ways. This must be taken into consideration when
analysing a Web Service description. Due to space limitations, we do not discuss this
problem any further.

The next sections shows how a WSDL document is analysed and compiled to an
XML Schema representing exactly the messages defined by this document.

4.2 Compiling a Web Service Description

The SOAP message's structure belonging to a Web Service description is defined by in-
formations spread all over the description document. The description must be traversed
and the informations necessary for a specific service or operation must be merged into
a message definition. The arrow in figure 4 shows how a Web Service description is
traversed to determine the SOAP message's structure and to generate the appropriate
XML Schema.

Fig. 4. Traversing a Web Service description while analysing.

Figure 6 shows a simple Web Service description5 for a sample Web Service be-
longing to the SOAP message in figure 1. This example illustrates the traversing steps
through a Web Service description (printed in italics).

The following WSDL elements are passed in this order:

1. The Web Service contains one or more ports.
The Web Service A d d S e r v i ce contains the port A d d S e r v i c e P o r t .

2. A port references a binding by the binding-attribute.
Theport is bound to the binding A d d S e r v i c e B i n d i n g .

The Web Service description was simplified for the sake of readability: all namespace prefixes
and namespace declarations were removed; further on the declaration for the outgoing message
was also omitted.

178 Nils Gruschka and Norbert Luttenberger

3. A binding decribes the wire fonnat and the network protocol for the Web Ser-
vice operations. All non-SOAP bindings and non-literal encodings (which do not
conform to the WS-I Basic Profile) are ignored. This is also the place, where the
service's style (RPC or document) is defined. Finally the binding references to a
port type using the type attribute.
The binding A d d S e r v i c e B i n d i n g defines a SOAP binding using HTTP trans-
port and literal encoding and furtlzernzore an operation add with an input message
using literal encoding and it links to the port Oye A d d S e r v i c e T y p e .

4. For each operation defined in the binding section the referenced port type contains
an operation with the same name and the same input, output and fault messages,
which reference a message element.
The port Qpe A d d S e r v i c e T y p e contains also an operation add, which refer-
ences the message addSoapIn .

5. The message contains one or more message parts, which reference an XML Schema
type or an XML Schema element (depending on the service's style) inside the types
section.
The message a d d S o a p I n contains one part that l ink to the XML Schema element
add.

6 . The types section defines XML data types and elements for the SOAP messages.
The element add is defined as compla Qpe containing a list of elements x oftype
integer

After passing a Web Service description in the way stated above the CheckWay com-
piler generates the appropriate XML Schemas. Figure 6 also shows the XML Schemas
for the sample Web Service. The first schema defines a common SOAP message skele-
ton with envelope, header and body. The child of the body element in our simple exam-
ple is just the element referenced by the message, the add element (as also can be seen
in figure 1). Thus, the add element is referenced in the first schema and defined in the
second schema. The definition is split into two schemas, one for each target namespace.

For RPC style the SOAP message (and so also the XML Schema for the SOAP
message) is more complex and goes beyond this article's scope. For further details on
creating XML Schemas from a Web Service description see [19].

To fight DoS attacks effectively-as shown in section 3.1-messages that are to be
forwarded to a Web Service server must not only be valid with respect to the XML
Schema that can be derived from the Web Service description, but moreover to a "hard-
ened" XML Schema, constructed from the initial XML Schema as follows:

- Replacing maxOccurs= "unboundedt1 in complex data types with an adequate
number, e.g. maxOccurs= 10 0 0 ". For most practical cases it is easy to deter-
mine an upper bound for the number of elements. With this limitation it is no longer
possible to "flood" a Web Service with a endless series of elements.

- Replacing simple types without length restriction (e.g. xsd : s t r i n g) with a cor-
responding data type containing a length restriction. This can be implemented by
adding an XML Schema facette [8] to the simple type definition inside the types
section of the Web Service description. Restricting simple types is easier and more
natural than limiting the message's total length (done e.g. when defining input
forms or database fields).

Protecting Web Services from DoS Attacks by SOAP Message Validation 179

- Removing all operations, which are not intended to be called from the internet.

The first two points retrict implicitly the total document length and thereby prevent the
Oversize Puyload attack. It has to be noted that these n~odifications have to be performed
with respect to the concrete Web Service application. There are no universally valid
values for the number of elements or the length of simple types.

Now that we have shown, how an effective XML Schema is derived from a Web
Service description, we regard how XML Schema validation is implemented in our
Web Service firewall.

5 The Web Service Firewall Implementation

The core of the CheckWay Gateway (see figure 2) is an XML validation engine, which
validates the SOAP message to the appropriate schemas. If the validation is successful,
the SOAP message is forwarded. SOAP messages containing an "unlimited number
of elements do not match the (hardened) schema and are rejected. Additionally "ultra
long" simple type elements do not match the (restricted) simple type definition and are
also refused.

The validator's implementation is crucial for the gateway's efficiency. First of all, if
the gateway is vulnerable to the attacks that it is actually supposed to protect against, it
is useless. Furthermore, the processing speed is-like for every network intermediary-
extremely important. The gateway should not increase the total response time signifi-
cantly. We developed a special XML validation engine which was designed using the
following principals [16]:

- Consistent event-based XML processing
- Support for large cardinalities
- Support for all XML Schema simple types including facets

As stated before, XML parsing and validating can be very memory consuming using an
improper implementation. A DOM based parser e.g. builds the complete XML docu-
ment in memory. This makes it vulnerable for attacks using documents with "unlimited"
length. The gateway memory would be exhausted before the validator could even start
the validating process. Thus, our validator works entirely event-based, using a SAX [l5]
interface. The XML document is parsed and sent event per event to the validator. The
validator operates directly on these events to validate the document. There is no need,
neither for the parser nor the validator, to reconstruct the whole document in memory.
In fact the validator has constant memory consumption (only depending on the schema
size) and linear runtime.

The gateway can therefore easily process very large docunlents. If the validator finds
a schema violation inside a SOAP message, the gateway has read the document only up
to that particular element. The remaining document is in this case never read and can
therefore not impact the gateway's function.

Theoretically, the CheckWay gateway can operate completely on theJy. It can for-
ward the XML document parts that have already passed the validator. In this case, the
gateway's memory usage would be completely independent from the SOAP messages'

180 Nils Gruschka and Norbert Luttenberger

size. However a security gateway should not forward any document parts before it has
stated that the whole document does not contain any malicious parts. Thus, the Check-
Way stores the document until the validating process has been successfully completed.
This way, only the valid document parts are stored and a Coercive Parsing attack can
still not hann the gateway.

Fig. 5. Validation time.

As stated earlier, the CheckWay compiler replaces maxOccurs= "unbounded"
cardinalities with a large integer. Thus the validator must be able to cope with such
a schema construct, which is not self-evident. We validated documents against a sim-
ple schema with increasing maxoccurs value and compared our validator to Xerces 6 .

Figure 5 shows the validatation time for both engines. While the CheckWay validator's
runtime has linear dependency on the maxoccurs value, the Xerces validator's run-
time increases exponentially. The Xerces' time consumption, even for small values, is
unacceptable for a network gateway 7 . For values greater than approx. 7500, the Xerces
validator aborted throwing an out-of-memory exception.

Together with the checking of length restricted data types created by the CheckWay
compiler, the validator is able to detect the attacks pictured above.

6 Summary and Outlook

In this paper we have shown how Web Services open up new possibilities for Denial
of Service attacks. We presented a solution that uses XML Schema validation to detect
malicious SOAP messages. Our Web Service firewall combines a WSDL compiler to
generate the necessary Schema and an efficient XML validator to filter the potential
dangerous SOAP messages.

A further kind of DoS attacks not discussed in this articles forces a server into ex-
pensive cryptographic computations. With WS-Security and WS-SecurityPolicy such

Xerces2 Java 2.7.1
2 seconds on a 2 GHz machine for rnax0cc~rs=~lOOO~

Protecting Web Services from DoS Attacks by SOAP Message Validation 181

attacks can also harm Web Services. We are already working on an extented Web Ser-
vice firewall with security and policy support to fend off such attacks just as well.

References

1. Frank Cohen. Discover SOAP encoding's impact on Web service performance. IBMda~el-
oper Works, 2003.

2. Arnaud Le Hors et al. Document Object Model (DOM) Level 3 Core Specification. UJ3C
Recomnzendation, 2004.

3. Bob Atkinson et al. Web Services Security (WS-Security). 2002.
4. David Booth et al. Web Services Architecture. W3C Recommendation, 2004.
5. Erik Christensen et al. Web Services Description Language (WSDL). W3C Note, 2001.
6. Giovanni Della-Libera et al. Web Services Security Policy Language (WS-SecurityPolicy).

2005.
7. H.S. Thomson et al. XML Schema Part I : Structures Second Edition. W3C Recommendation,

2004.
8. H.S. Thomson et al. XML Schema Part2: Datatypes Second Edition. W3CRecommendation,

2004.
9. Keith Ballinger et al. Basic Profile Version 1.1. WS-I Organisation, 2004.

10. Martin Gudgin et al. SOAP Version I .2 Part 1: Messaging Framework. W3C Recommenda-
tion, 2003.

11. Steve Anderson et al. Web Services Secure Conversation Language (WS-
SecureConversation). 2005.

12. Steve Anderson et al. Web Services Trust Language (WS-Trust). 2005.
13. Pete Lindstrom. Attacking and Defending Web Service. A Spire Research Report, 2004.
14. Brett McLaughlin. Java and XML Data Binding. 0 Reilly, 2002.
15. The SAX Project. Simple API for XML - SAX 2.0.1. 2002.
16. Florian Reuter. Forthcoming dissertation.
17. Giinter Schafer. Sabotageangriffe auf Kommunikationsstrukturen: Angriffstechniken und

Abwehrmahahmen. PIK 28, pages 130-139,2005.
18. Andre Yee. Protecting Your Web Services Deployment.
19. Jesper Zedlitz. Spezifikation und Implementierung eines Application Level Gateways f i r

Web Service. Diplorna thesis, 2004.

182 Nils Gruschka and Norbert Luttenberger

Sample TVeb Sewice Descr@iorz:

<definitions targetNamespace="http://example.com/AddService">
<types>
cschema targetNamespace="http://example.com/AddServiceyz
<element name="addV>
ccomplexType>
<sequence>
<element minOccurs="l" maxOccurs='~unboundedl~ name="x" type="intU / s

</sequence>
</complexType>

</element>
</schema>

</types>
message name="addSoapInl'>
cpart name="parametersV element="addU / >

</message>
4portType name="AddServiceType">
coperation name="addv>
<input message="addSoapIn" / >

</operation>
</portType>
<binding name="AddServiceBindingN type="AddServiceType">
csoap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document" / >
coperation name="addv >

<soap:operation soap~ction="http://example.com/AddService/add" style="document" / >
c input >
<soap:body use="literal" / >

</input>
</operation>

</binding>
<service name="AddServicen>
cport name="AddServicePort" binding="AddServiceBindingU>
<soap:address location="http://ws-server.local/AddService/Servicel.asm" / >

</port>
</service>

</definitions>

Resulting XMZ Schemas:

cschema targetNamespace="http://schemas.xmlsoap.org/soap/envelope/'~~
<element name="Envelope" type="tn:EnvelopeTypeu / >
ccomplexType name="EnvelopeType">
<sequence>
celement name="BodyM type="tn:BodyTypel' / >

</sequence>
<anyAttribute namespace="##otherN / >

</complexType>
ccomplexType name="BodyType"s
<choice>
<element ref="addV / >

</choice>
cs:anyAttribute namespace="##otherl' /

</complexType>
</schema>

Fig. 6. Sample Web Service and genemted XML Schemas.

