Skip to main content

Advertisement

Log in

The Brain's Response to an Essential Amino Acid-Deficient Diet and the Circuitous Route to a Better Meal

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The essential (indispensable) amino acids (IAA) are neither synthesized nor stored in metazoans, yet they are the building blocks of protein. Survival depends on availability of these protein precursors, which must be obtained in the diet; it follows that food selection is critical for IAA homeostasis. If even one of the IAA is depleted, its tRNA becomes quickly deacylated and the levels of charged tRNA fall, leading to disruption of global protein synthesis. As they have priority in the diet, second only to energy, the missing IAA must be restored promptly or protein catabolism ensues. Animals detect and reject an IAA-deficient meal in 20 min, but how? Here, we review the molecular basis for sensing IAA depletion and repletion in the brain's IAA chemosensor, the anterior piriform cortex (APC). As animals stop eating an IAA-deficient meal, they display foraging and altered choice behaviors, to improve their chances of encountering a better food. Within 2 h, sensory cues are associated with IAA depletion or repletion, leading to learned aversions and preferences that support better food selection. We show neural projections from the APC to appetitive and consummatory motor control centers, and to hedonic, motivational brain areas that reinforce these adaptive behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AGm:

Medial agranular (supplementary motor) cortex

AMYG:

Amygdala

AP:

Area postrema

APC:

Anterior piriform cortex

ATF:

Activating transcription factor

BG:

Basal ganglia

BL:

Basolateral

CaSR:

Calcium sensing receptor

CaMKII:

Calcium calmodulin kinase II

Ce:

Central

CTA:

Conditioned taste aversion

CVO:

Circumventricular organ

Cx:

Cortex

DA:

Dopamine

D1or 2:

Dopamine receptor categories 1or 2

DLLH:

Dorsolateral perifornical lateral hypothalamus

DMH:

Dorsomedial hypothalamus

eIF2:

Eukaryotic initiation factor 2

ERK:

Extracellular signal-related kinase

GCN2:

General amino acid control non-derepressing kinase 2

GP:

Globus pallidus

GluR1:

Glutamate receptor 1

HIP:

Hippocampus

HRP:

Horseradish peroxidase

IAA:

Indispensable (essential in the diet) amino acid

IC:

Insular (taste) cortex

icv:

Intracerebroventricular

LH:

Lateral hypothalamic area

MAPK:

Mitogen-activated protein kinase

MeAIB:

2-Methylamino isobutyric acid

mTOR:

Mammalian target of rapamycin

NAcc:

Nucleus accumbens

NE:

Norepinephrine

NTS:

Nucleus of the tractus solitarius

OFC:

Orbitofrontal cortex

PBN:

Parabrachial nucleus

PVN:

Paraventricular nucleus of the hypothalamus

PI3kinase:

Phosphatidylinositol 3 kinase

PFC:

Prefrontal cortex

RT:

Reticular thalamus

SCAA:

Sulfur-containing amino acid

SNAT:

Sodium-coupled neutral amino acid transporter

STR:

Striatum (caudate + putamen)

tRNA:

Transfer ribonucleic acid

vent TEG:

Ventral tegmentum

VMH:

Ventromedial hypothalamus

VP:

Ventral pallidum

ZI:

Zona incerta

References

  1. Geiger E (1947) Experiments with delayed supplementation of incomplete amino acid mixtures. J Nutr 34(1):97–111

    PubMed  CAS  Google Scholar 

  2. Peters JC, Harper AE (1984) Influence of dietary protein level on protein self-selection and plasma and brain amino acid concentrations. Physiol Behav 33(5):783–790

    Article  PubMed  CAS  Google Scholar 

  3. Sorensen A, Mayntz D, Raubenheimer D, Simpson SJ (2008) Protein-leverage in mice: the geometry of macronutrient balancing and consequences for fat deposition. Obesity (Silver Spring) 16(3):566–571. doi:10.1038/oby.2007.58

    Article  CAS  Google Scholar 

  4. Tome D (2004) Protein, amino acids and the control of food intake. Br J Nutr 92(Suppl 1):S27–S30

    Article  PubMed  CAS  Google Scholar 

  5. Harper AE, Benevenga NJ, Wohlhueter RM (1970) Effects of ingestion of disproportionate amounts of amino acids. Physiol Rev 50(3):428–558

    PubMed  CAS  Google Scholar 

  6. White BD, He B, Dean RG, Martin RJ (1994) Low protein diets increase neuropeptide Y gene expression in the basomedial hypothalamus of rats. J Nutr 124(8):1152–1160

    PubMed  CAS  Google Scholar 

  7. Riggs AJ, White BD, Gropper SS (2007) Changes in energy expenditure associated with ingestion of high protein, high fat versus high protein, low fat meals among underweight, normal weight, and overweight females. Nutr J 6:40. doi:10.1186/1475-2891-6-40

    Article  PubMed  CAS  Google Scholar 

  8. Du F, Higginbotham DA, White BD (2000) Food intake, energy balance and serum leptin concentrations in rats fed low-protein diets. J Nutr 130(3):514–521

    PubMed  CAS  Google Scholar 

  9. Galef BG (2000) Is there a specific appetite for protein? In: Berthoud HR, Seeley RJ (eds) Neural and metabolic control of macronutrient intake. CRC Press, Boca Raton, pp 19–28

    Google Scholar 

  10. Morrison CD, Reed SD, Henagan TM (2012) Homeostatic regulation of protein intake: in search of a mechanism. Am J Physiol Regul Integr Comp Physiol 302(8):R917–R928. doi:10.1152/ajpregu.00609.2011

    Google Scholar 

  11. DiBattista D, Mercier S (1999) Role of learning in the selection of dietary protein in the golden hamster (Mesocricetus auratus). Behav Neurosci 113(3):574–586

    Article  PubMed  CAS  Google Scholar 

  12. Gibson EL, Wainwright CJ, Booth DA (1995) Disguised protein in lunch after low-protein breakfast conditions food-flavor preferences dependent on recent lack of protein intake. Physiol Behav 58(2):363–371

    Article  PubMed  CAS  Google Scholar 

  13. Gibson EL, Booth DA (1986) Acquired protein appetite in rats: dependence on a protein-specific need state. Experientia 42(9):1003–1004

    Article  PubMed  CAS  Google Scholar 

  14. Hansen BS, Vaughan MH, Wang L (1972) Reversible inhibition by histidinol of protein synthesis in human cells at the activation of histidine. J Biol Chem 247(12):3854–3857

    PubMed  CAS  Google Scholar 

  15. Hao S, Sharp JW, Ross-Inta CM, McDaniel BJ, Anthony TG, Wek RC, Cavener DR, McGrath BC, Rudell JB, Koehnle TJ, Gietzen DW (2005) Uncharged tRNA and sensing of amino acid deficiency in mammalian piriform cortex. Science 307(5716):1776–1778. doi:10.1126/science.1104882

    Article  PubMed  CAS  Google Scholar 

  16. Leung PM, Rogers QR, Harper AE (1968) Effect of amino acid imbalance in rats fed ad libitum, interval-fed or force-fed. J Nutr 95(3):474–482

    PubMed  CAS  Google Scholar 

  17. Hrupka BJ, Lin YM, Gietzen DW, Rogers QR (1997) Small changes in essential amino acid concentrations alter diet selection in amino acid-deficient rats. J Nutr 127(5):777–784

    PubMed  CAS  Google Scholar 

  18. Hinnebusch AG, Natarajan K (2002) Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryot Cell 1(1):22–32

    Article  PubMed  CAS  Google Scholar 

  19. Wek RC, Jiang HY, Anthony TG (2006) Coping with stress: EIF2 kinases and translational control. Biochem Soc Trans 34(Pt 1):7–11. doi:10.1042/BST20060007

    PubMed  CAS  Google Scholar 

  20. Kilberg MS, Shan J, Su N (2009) ATF4-dependent transcription mediates signaling of amino acid limitation. Trends Endocrinol Metab 20(9):436–443. doi:10.1016/j.tem.2009.05.008

    Article  PubMed  CAS  Google Scholar 

  21. Kilberg MS, Balasubramanian M, Fu L, Shan J (2012) The transcription factor network associated with the amino acid response in mammalian cells. Adv Nutr 3(3):295–306. doi:10.3945/an.112.001891

    PubMed  CAS  Google Scholar 

  22. Koehnle TJ, Russell MC, Morin AS, Erecius LF, Gietzen DW (2004) Diets deficient in indispensable amino acids rapidly decrease the concentration of the limiting amino acid in the anterior piriform cortex of rats. J Nutr 134(9):2365–2371

    PubMed  CAS  Google Scholar 

  23. Leung PM, Rogers QR (1971) Importance of prepyriform cortex in food-intake response of rats to amino acids. Am J Physiol 221(3):929–935

    PubMed  CAS  Google Scholar 

  24. Rogers QR, Leung PM (1973) The influence of amino acids on the neuroregulation of food intake. Fed Proc 32(6):1709–1719

    PubMed  CAS  Google Scholar 

  25. Gietzen DW (1993) Neural mechanisms in the responses to amino acid deficiency. J Nutr 123(4):610–625

    PubMed  CAS  Google Scholar 

  26. Noda K, Chikamori K (1976) Effect of ammonia via prepyriform cortex on regulation of food intake in the rat. Am J Physiol 231(4):1263–1266

    PubMed  CAS  Google Scholar 

  27. Firman JD, Kuenzel WJ (1988) Neuroanatomical regions of the chick brain involved in monitoring amino acid deficient diets. Brain Res Bull 21(4):637–642

    Article  PubMed  CAS  Google Scholar 

  28. Beverly JL, Gietzen DW, Rogers QR (1990) Effect of dietary limiting amino acid in prepyriform cortex on meal patterns. Am J Physiol 259(4 Pt 2):R716–R723

    PubMed  CAS  Google Scholar 

  29. Beverly JL, Gietzen DW, Rogers QR (1990) Effect of dietary limiting amino acid in prepyriform cortex on food intake. Am J Physiol 259(4 Pt 2):R709–R715

    PubMed  CAS  Google Scholar 

  30. Monda M, Sullo A, De Luca V, Pellicano MP, Viggiano A (1997) L-threonine injection into PPC modifies food intake, lateral hypothalamic activity, and sympathetic discharge. Am J Physiol 273(2 Pt 2):R554–R559

    PubMed  CAS  Google Scholar 

  31. Hasan Z, Woolley DE, Gietzen DW (1998) Responses to indispensable amino acid deficiency and replenishment recorded in the anerior piriform cortex of the behaving rat. Nutr Neurosci 1:373–381

    CAS  Google Scholar 

  32. Rudell JB, Rechs AJ, Kelman TJ, Ross-Inta CM, Hao S, Gietzen DW (2011) The anterior piriform cortex is sufficient for detecting depletion of an indispensable amino acid, showing independent cortical sensory function. J Neurosci 31(5):1583–1590. doi:10.1523/JNEUROSCI.4934-10.2011

    Article  PubMed  CAS  Google Scholar 

  33. Gietzen DW (2000) Amino acid recognition in the central nervous system. In: Berthoud HR, Seeley RJ (eds) Neural and metabolic control of macronutrient intake. CRC Press, Boca Raton, pp 339–357

    Google Scholar 

  34. Gietzen DW, Hao S, Anthony TG (2007) Mechanisms of food intake repression in indispensable amino acid deficiency. Annu Rev Nutr 27:63–78. doi:10.1146/annurev.nutr.27.061406.093726

    Article  PubMed  CAS  Google Scholar 

  35. Gietzen DW, Rogers QR (2006) Nutritional homeostasis and indispensable amino acid sensing: a new solution to an old puzzle. Trends Neurosci 29(2):91–99. doi:10.1016/j.tins.2005.12.007

    Article  PubMed  CAS  Google Scholar 

  36. Rowe TB, Macrini TE, Luo ZX (2011) Fossil evidence on origin of the mammalian brain. Science 332(6032):955–957. doi:10.1126/science.1203117

    Article  PubMed  CAS  Google Scholar 

  37. Shepherd G (1979) Olfactory cortex. In: The synaptic organization of the brain, 2nd edn. Oxford University Press, New York, pp 289–307

    Google Scholar 

  38. Kanter ED, Haberly LB (1990) NMDA-dependent induction of long-term potentiation in afferent and association fiber systems of piriform cortex in vitro. Brain Res 525(1):175–179

    Article  PubMed  CAS  Google Scholar 

  39. Suzuki N, Bekkers JM (2010) Inhibitory neurons in the anterior piriform cortex of the mouse: classification using molecular markers. J Comp Neurol 518(10):1670–1687. doi:10.1002/cne.22295

    Article  PubMed  CAS  Google Scholar 

  40. Cummings SL, Truong BG, Gietzen DW (1998) Neuropeptide Y and somatostatin in the anterior piriform cortex alter intake of amino acid-deficient diets. Peptides 19(3):527–535

    Article  PubMed  CAS  Google Scholar 

  41. Jung MW, Larson J, Lynch G (1990) Role of NMDA and non-NMDA receptors in synaptic transmission in rat piriform cortex. Exp Brain Res 82(2):451–455

    Article  PubMed  CAS  Google Scholar 

  42. Sharp JW, Ross-Inta CM, Hao S, Rudell JB, Gietzen DW (2006) Co-localization of phosphorylated extracellular signal-regulated protein kinases 1/2 (ERK1/2) and phosphorylated eukaryotic initiation factor 2alpha (eIF2alpha) in response to a threonine-devoid diet. J Comp Neurol 494(3):485–494. doi:10.1002/cne.20817

    Article  PubMed  CAS  Google Scholar 

  43. Gale K, Zhong P, Miller LP, Murray TF (1992) Amino acid neurotransmitter interactions in 'area tempestas': an epileptogenic trigger zone in the deep prepiriform cortex. Epilepsy Res Suppl 8:229–234

    PubMed  CAS  Google Scholar 

  44. Ekstrand JJ, Domroese ME, Johnson DM, Feig SL, Knodel SM, Behan M, Haberly LB (2001) A new subdivision of anterior piriform cortex and associated deep nucleus with novel features of interest for olfaction and epilepsy. J Comp Neurol 434(3):289–307

    Article  PubMed  CAS  Google Scholar 

  45. Koehnle TJ, Russell MC, Gietzen DW (2003) Rats rapidly reject diets deficient in essential amino acids. J Nutr 133(7):2331–2335

    PubMed  CAS  Google Scholar 

  46. Gietzen DW, Ross CM, Hao S, Sharp JW (2004) Phosphorylation of eIF2alpha is involved in the signaling of indispensable amino acid deficiency in the anterior piriform cortex of the brain in rats. J Nutr 134(4):717–723

    PubMed  CAS  Google Scholar 

  47. Maurin AC, Jousse C, Averous J, Parry L, Bruhat A, Cherasse Y, Zeng H, Zhang Y, Harding HP, Ron D, Fafournoux P (2005) The GCN2 kinase biases feeding behavior to maintain amino acid homeostasis in omnivores. Cell Metab 1(4):273–277. doi:10.1016/j.cmet.2005.03.004

    Article  PubMed  CAS  Google Scholar 

  48. Mitsuda T, Hayakawa Y, Itoh M, Ohta K, Nakagawa T (2007) ATF4 regulates gamma-secretase activity during amino acid imbalance. Biochem Biophys Res Commun 352(3):722–727. doi:10.1016/j.bbrc.2006.11.075

    Article  PubMed  CAS  Google Scholar 

  49. Truong BG, Magrum LJ, Gietzen DW (2002) GABA(A) and GABA(B) receptors in the anterior piriform cortex modulate feeding in rats. Brain Res 924(1):1–9

    Article  PubMed  CAS  Google Scholar 

  50. Leung PM, Larson DM, Rogers QR (1972) Food intake and preference of olfactory bulbectomized rats fed amino acid imbalanced or deficient diets. Physiol Behav 9(4):553–557

    Article  PubMed  CAS  Google Scholar 

  51. Choi GB, Stettler DD, Kallman BR, Bhaskar ST, Fleischmann A, Axel R (2011) Driving opposing behaviors with ensembles of piriform neurons. Cell 146(6):1004–1015. doi:10.1016/j.cell.2011.07.041

    Article  PubMed  CAS  Google Scholar 

  52. Rogers QR, Leung PMB (1977) The control of food intake: when and how are amino acids involved? In: Kare MR, Maller O (eds) The chemical senses and nutrition. Academic Press. Inc., New York, pp 213–249

    Google Scholar 

  53. Feurte S, Tome D, Gietzen DW, Even PC, Nicolaidis S, Fromentin G (2002) Feeding patterns and meal microstructure during development of a taste aversion to a threonine devoid diet. Nutr Neurosci 5(4):269–278

    Article  PubMed  CAS  Google Scholar 

  54. Koehnle TJ, Gietzen DW (2005) Modulation of feeding behavior by amino acid-deficient diets: present findings and future directions. In: Lieberman HR, Kanarek RB, Prasad C (eds) Nutritional neuroscience. Taylor and Francis Group/CRC Press, Boca Raton, pp 147–161

    Google Scholar 

  55. Gietzen DW, Leung PM, Rogers QR (1989) Dietary amino acid imbalance and neurochemical changes in three hypothalamic areas. Physiol Behav 46(3):503–511

    Article  PubMed  CAS  Google Scholar 

  56. Price JL, Slotnick BM, Revial MF (1991) Olfactory projections to the hypothalamus. J Comp Neurol 306(3):447–461. doi:10.1002/cne.903060309

    Article  PubMed  CAS  Google Scholar 

  57. Avruch J, Long X, Ortiz-Vega S, Rapley J, Papageorgiou A, Dai N (2009) Amino acid regulation of TOR complex 1. Am J Physiol Endocrinol Metab 296(4):E592–E602. doi:10.1152/ajpendo.90645.2008

    Article  PubMed  CAS  Google Scholar 

  58. Hao S, Ross-Inta CM, Gietzen DW (2010) The sensing of essential amino acid deficiency in the anterior piriform cortex, that requires the uncharged tRNA/GCN2 pathway, is sensitive to wortmannin but not rapamycin. Pharmacol Biochem Behav 94(3):333–340. doi:10.1016/j.pbb.2009.09.014

    Article  PubMed  CAS  Google Scholar 

  59. Lynch CJ (2001) Role of leucine in the regulation of mTOR by amino acids: revelations from structure-activity studies. J Nutr 131(3):861S–865S

    PubMed  CAS  Google Scholar 

  60. Goto S, Nagao K, Bannai M, Takahashi M, Nakahara K, Kangawa K, Murakami N (2010) Anorexia in rats caused by a valine-deficient diet is not ameliorated by systemic ghrelin treatment. Neuroscience 166(1):333–340. doi:10.1016/j.neuroscience.2009.12.013

    Article  PubMed  CAS  Google Scholar 

  61. Palacin M, Estevez R, Bertran J, Zorzano A (1998) Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev 78(4):969–1054

    PubMed  CAS  Google Scholar 

  62. Blais A, Huneau JF, Magrum LJ, Koehnle TJ, Sharp JW, Tome D, Gietzen DW (2003) Threonine deprivation rapidly activates the system A amino acid transporter in primary cultures of rat neurons from the essential amino acid sensor in the anterior piriform cortex. J Nutr 133(7):2156–2164

    PubMed  CAS  Google Scholar 

  63. Mackenzie B, Erickson JD (2004) Sodium-coupled neutral amino acid (system N/A) transporters of the SLC38 gene family. Pflugers Arch 447(5):784–795. doi:10.1007/s00424-003-1117-9

    Article  PubMed  CAS  Google Scholar 

  64. Gietzen DW, Magrum LJ (2001) Molecular mechanisms in the brain involved in the anorexia of branched-chain amino acid deficiency. J Nutr 131(3):851S–855S

    PubMed  CAS  Google Scholar 

  65. Sharp JW, Magrum LJ, Gietzen DW (2002) Role of MAP kinase in signaling indispensable amino acid deficiency in the brain. Brain Res Mol Brain Res 105(1–2):11–18

    Article  PubMed  CAS  Google Scholar 

  66. Sharp JW, Ross CM, Koehnle TJ, Gietzen DW (2004) Phosphorylation of Ca2+/calmodulin-dependent protein kinase type II and the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor in response to a threonine-devoid diet. Neuroscience 126(4):1053–1062. doi:10.1016/j.neuroscience.2004.03.066

    Article  PubMed  CAS  Google Scholar 

  67. Koehnle TJ, Stephens AL, Gietzen DW (2004) Threonine-imbalanced diet alters first-meal microstructure in rats. Physiol Behav 81(1):15–21. doi:10.1016/j.physbeh.2003.11.009

    Article  PubMed  CAS  Google Scholar 

  68. Haberly LB, Price JL (1978) Association and commissural fiber systems of the olfactory cortex of the rat. J Comp Neurol 178(4):711–740. doi:10.1002/cne.901780408

    Article  PubMed  CAS  Google Scholar 

  69. Aja SM (1999) Neurotransmitters and neural circuitry supporting aminoprivic feeding. Dissertation, University of California, Davis

  70. Price JL, Carmichael T, Haberly LB (1991) Olfactory input to the prefrontal cortex. In: Davis JL, Eichenbaum H (eds) Olfaction a model system for computational neuroscience. MIT Press, London, pp 101–120

    Google Scholar 

  71. Neafsey EJ, Bold EL, Haas G, Hurley-Gius KM, Quirk G, Sievert CF, Terreberry RR (1986) The organization of the rat motor cortex: a microstimulation mapping study. Brain Res 396(1):77–96

    Article  PubMed  CAS  Google Scholar 

  72. Sul JH, Jo S, Lee D, Jung MW (2011) Role of rodent secondary motor cortex in value-based action selection. Nat Neurosci 14(9):1202–1208. doi:10.1038/nn.2881

    Article  PubMed  CAS  Google Scholar 

  73. Rolls ET (1993) The neural control of feeding in primates. In: Booth DA (ed) Neurophysiology of ingestion. Pergamon Press, Oxford, pp 137–169

    Google Scholar 

  74. Rolls ET (2011) Chemosensory learning in the cortex. Front Syst Neurosci 5:78. doi:10.3389/fnsys.2011.00078

    Article  PubMed  Google Scholar 

  75. Krettek JE, Price JL (1977) Projections from the amygdaloid complex to the cerebral cortex and thalamus in the rat and cat. J Comp Neurol 172(4):687–722. doi:10.1002/cne.901720408

    Article  PubMed  CAS  Google Scholar 

  76. Karnani MM, Apergis-Schoute J, Adamantidis A, Jensen LT, de Lecea L, Fugger L, Burdakov D (2011) Activation of central orexin/hypocretin neurons by dietary amino acids. Neuron 72(4):616–629. doi:10.1016/j.neuron.2011.08.027

    Article  PubMed  CAS  Google Scholar 

  77. Blevins JE, Dixon KD, Hernandez EJ, Barrett JA, Gietzen DW (2000) Effects of threonine injections in the lateral hypothalamus on intake of amino acid imbalanced diets in rats. Brain Res 879(1–2):65–72

    Article  PubMed  CAS  Google Scholar 

  78. Russell MC, Koehnle TJ, Barrett JA, Blevins JE, Gietzen DW (2003) The rapid anorectic response to a threonine imbalanced diet is decreased by injection of threonine into the anterior piriform cortex of rats. Nutr Neurosci 6(4):247–251

    Article  PubMed  CAS  Google Scholar 

  79. Tabuchi E, Ono T, Nishijo H, Torii K (1991) Amino acid and NaCl appetite, and LHA neuron responses of lysine-deficient rat. Physiol Behav 49(5):951–964

    Article  PubMed  CAS  Google Scholar 

  80. Sinnamon HM (1993) Preoptic and hypothalamic neurons and the initiation of locomotion in the anesthetized rat. Prog Neurobiol 41(3):323–344

    Article  PubMed  CAS  Google Scholar 

  81. Jordan LM (1998) Initiation of locomotion in mammals. Ann N Y Acad Sci 860:83–93

    Article  PubMed  CAS  Google Scholar 

  82. Wang Y, Cummings SL, Gietzen DW (1996) Temporal-spatial pattern of c-Fos expression in the rat brain in response to indispensable amino acid deficiency. II. The learned taste aversion. Brain Res Mol Brain Res 40(1):35–41

    Article  PubMed  CAS  Google Scholar 

  83. Wang Y, Cummings SL, Gietzen DW (1996) Temporal-spatial pattern of c-Fos expression in the rat brain in response to indispensable amino acid deficiency. I. The initial recognition phase. Brain Res Mol Brain Res 40(1):27–34

    Article  PubMed  CAS  Google Scholar 

  84. Bellinger LL, Evans JF, Gietzen DW (1998) Dorsomedial hypothalamic lesions alter intake of an imbalanced amino acid diet in rats. J Nutr 128(7):1213–1217

    PubMed  CAS  Google Scholar 

  85. Bellinger LL, Evans JF, Tillberg CM, Gietzen DW (1999) Effects of dorsomedial hypothalamic nuclei lesions on intake of an imbalanced amino acid diet. Am J Physiol 277(1 Pt 2):R250–R262

    PubMed  CAS  Google Scholar 

  86. Hernandez L, Hoebel BG (1988) Feeding and hypothalamic stimulation increase dopamine turnover in the accumbens. Physiol Behav 44(4–5):599–606

    Article  PubMed  CAS  Google Scholar 

  87. Mark GP, Blander DS, Hoebel BG (1991) A conditioned stimulus decreases extracellular dopamine in the nucleus accumbens after the development of a learned taste aversion. Brain Res 551(1–2):308–310

    Article  PubMed  CAS  Google Scholar 

  88. Yamamoto T, Ueji K (2011) Brain mechanisms of flavor learning. Front Syst Neurosci 5:76. doi:10.3389/fnsys.2011.00076

    Article  PubMed  Google Scholar 

  89. Aja SM, Chan P, Barrett JA, Gietzen DW (1999) DA1 receptor activity opposes anorectic responses to amino acid-imbalanced diets. Pharmacol Biochem Behav 62(3):493–498

    Article  PubMed  CAS  Google Scholar 

  90. Wang CX, Erecius LF, Beverly JL 3rd, Gietzen DW (1999) Essential amino acids affect interstitial dopamine metabolites in the anterior piriform cortex of rats. J Nutr 129(9):1742–1745

    PubMed  CAS  Google Scholar 

  91. Hoebel BG (1975) Brain reward and aversion systems in the control of feeding and sexual behavior. Nebr Symp Motiv 22:49–112

    PubMed  CAS  Google Scholar 

  92. Derjean D, Moussaddy A, Atallah E, St-Pierre M, Auclair F, Chang S, Ren X, Zielinski B, Dubuc R (2010) A novel neural substrate for the transformation of olfactory inputs into motor output. PLoS Biol 8(12):e1000567. doi:10.1371/journal.pbio.1000567

    Article  PubMed  CAS  Google Scholar 

  93. Scott TR (2011) Learning through the taste system. Front Syst Neurosci 5:87. doi:10.3389/fnsys.2011.00087

    Article  PubMed  Google Scholar 

  94. Stellar E (1954) The physiology of motivation. Psychol Rev 61(1):5–22

    Article  PubMed  CAS  Google Scholar 

  95. Blevins JE, Truong BG, Gietzen DW (2004) NMDA receptor function within the anterior piriform cortex and lateral hypothalamus in rats on the control of intake of amino acid-deficient diets. Brain Res 1019(1–2):124–133. doi:10.1016/j.brainres.2004.05.089

    Article  PubMed  CAS  Google Scholar 

  96. Barone FC, Cheng JT, Wayner MJ (1994) GABA inhibition of lateral hypothalamic neurons: role of reticular thalamic afferents. Brain Res Bull 33(6):699–708

    Article  PubMed  CAS  Google Scholar 

  97. Rozin P (1967) Specific aversions as a component of specific hungers. J Comp Physiol Psychol 64(2):237–242

    Article  PubMed  CAS  Google Scholar 

  98. Sodersten P, Nergardh R, Bergh C, Zandian M, Scheurink A (2008) Behavioral neuroendocrinology and treatment of anorexia nervosa. Front Neuroendocrinol 29(4):445–462. doi:10.1016/j.yfrne.2008.06.001

    Article  PubMed  CAS  Google Scholar 

  99. Magrum LJ, Teh PS, Kreiter MR, Hickman MA, Gietzen DW (2002) Transfer ribonucleic acid charging in rat brain after consumption of amino acid-imbalanced diets. Nutr Neurosci 5(2):125–130

    Article  PubMed  CAS  Google Scholar 

  100. Kadowaki M, Kanazawa T (2003) Amino acids as regulators of proteolysis. J Nutr 133(6 Suppl 1):2052S–2056S

    PubMed  CAS  Google Scholar 

  101. Simson PC, Booth DA (1973) Olfactory conditioning by association with histidine-free or balanced amino acid loads in rats. Q J Exp Psychol 25(3):354–359. doi:10.1080/14640747308400356

    Article  PubMed  CAS  Google Scholar 

  102. Fromentin G, Feurte S, Nicolaidis S (1998) Spatial cues are relevant for learned preference/aversion shifts due to amino-acid deficiencies. Appetite 30(2):223–234. doi:10.1006/appe.1997.0132

    Article  PubMed  CAS  Google Scholar 

  103. Booth DA, Simson PC (1971) Food preferences acquired by association with variations in amino acid nutrition. Q J Exp Psychol 23(1):135–145. doi:10.1080/00335557143000149

    Article  PubMed  CAS  Google Scholar 

  104. Fromentin G, Gietzen DW, Nicolaidis S (1997) Aversion-preference patterns in amino acid- or protein-deficient rats: a comparison with previously reported responses to thiamin-deficient diets. Br J Nutr 77(2):299–314

    Article  PubMed  CAS  Google Scholar 

  105. Gietzen DW, McArthur LH, Theisen JC, Rogers QR (1992) Learned preference for the limiting amino acid in rats fed a threonine-deficient diet. Physiol Behav 51(5):909–914

    Article  PubMed  CAS  Google Scholar 

  106. Garcia J, Kimeldorf DJ, Koelling RA (1955) Conditioned aversion to saccharin resulting from exposure to gamma radiation. Science 122(3160):157–158

    PubMed  CAS  Google Scholar 

  107. Simson PC, Booth DA (1973) Effect of CS-US interval on the conditioning of odour preferences by amino acid loads. Physiol Behav 11(6):801–808

    Article  PubMed  CAS  Google Scholar 

  108. Rogers QR, Wigle AR, Laufer A, Castellanos VH, Morris JG (2004) Cats select for adequate methionine but not threonine. J Nutr 134(8 Suppl):2046S–2049S

    PubMed  CAS  Google Scholar 

  109. Meliza LL, Leung PM, Rogers QR (1981) Effect of anterior prepyriform and medial amygdaloid lesions on acquisition of taste-avoidance and response to dietary amino acid imbalance. Physiol Behav 26(6):1031–1035

    Article  PubMed  CAS  Google Scholar 

  110. Gietzen DW, Erecius LF, Rogers QR (1998) Neurochemical changes after imbalanced diets suggest a brain circuit mediating anorectic responses to amino acid deficiency in rats. J Nutr 128(4):771–781

    PubMed  CAS  Google Scholar 

  111. Dardou D, Datiche F, Cattarelli M (2006) Fos and Egr1 expression in the rat brain in response to olfactory cue after taste-potentiated odor aversion retrieval. Learn Mem 13(2):150–160. doi:10.1101/lm.148706

    Article  PubMed  CAS  Google Scholar 

  112. Inui-Yamamoto C, Yoshioka Y, Inui T, Sasaki KS, Ooi Y, Ueda K, Seiyama A, Ohzawa I (2010) The brain mapping of the retrieval of conditioned taste aversion memory using manganese-enhanced magnetic resonance imaging in rats. Neuroscience 167(2):199–204. doi:10.1016/j.neuroscience.2010.02.027

    Article  PubMed  CAS  Google Scholar 

  113. Riley AL, Tuck DL (1985) Conditioned food aversions: a bibliography. Ann N Y Acad Sci 443:381–437

    Article  PubMed  CAS  Google Scholar 

  114. Aja S, Sisouvong S, Barrett JA, Gietzen DW (2000) Basolateral and central amygdaloid lesions leave aversion to dietary amino acid imbalance intact. Physiol Behav 71(5):533–541

    Article  PubMed  CAS  Google Scholar 

  115. Fromentin G, Feurte S, Nicolaidis S, Norgren R (2000) Parabrachial lesions disrupt responses of rats to amino acid devoid diets, to protein-free diets, but not to high-protein diets. Physiol Behav 70(3–4):381–389

    Article  PubMed  CAS  Google Scholar 

  116. Overmann SR, Woolley DE, Bornschein RL (1980) Hippocampal potentials evoked by stimulation of olfactory basal forebrain and lateral septum in the rat. Brain Res Bull 5(4):437–449

    Article  PubMed  CAS  Google Scholar 

  117. Leung PM, Rogers QR (1979) Effects of hippocampal lesions on adaptive intake of diets with disproportionate amounts of amino acids. Physiol Behav 23(1):129–136

    Article  PubMed  CAS  Google Scholar 

  118. Beverly JL 3rd, Gietzen DW, Rogers QR (1991) Protein synthesis in the prepyriform cortex: effects on intake of an amino acid-imbalanced diet by sprague-dawley rats. J Nutr 121(5):754–761

    PubMed  CAS  Google Scholar 

  119. Torii K, Kondoh T, Mori M, Ono T (1998) Hypothalamic control of amino acid appetite. Ann N Y Acad Sci 855:417–425

    Article  PubMed  CAS  Google Scholar 

  120. Markison S, Gietzen DW, Spector AC (1999) Essential amino acid deficiency enhances long-term intake but not short-term licking of the required nutrient. J Nutr 129(8):1604–1612

    PubMed  CAS  Google Scholar 

  121. Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJ, Zuker CS (2002) An amino-acid taste receptor. Nature 416(6877):199–202. doi:10.1038/nature726

    Article  PubMed  CAS  Google Scholar 

  122. Yasumatsu K, Ogiwara Y, Takai S, Yoshida R, Iwatsuki K, Torii K, Margolskee RF, Ninomiya Y (2011) Umami taste in mice uses multiple receptors and transduction pathways. J Physiol 590(Pt 5):1155–1170. doi:10.1113/jphysiol.2011.211920

    Google Scholar 

  123. Contreras RJ, Beckstead RM, Norgren R (1982) The central projections of the trigeminal, facial, glossopharyngeal and vagus nerves: an autoradiographic study in the rat. J Auton Nerv Syst 6(3):303–322

    Article  PubMed  CAS  Google Scholar 

  124. Norgren R, Leonard CM (1973) Ascending central gustatory pathways. J Comp Neurol 150(2):217–237. doi:10.1002/cne.901500208

    Article  PubMed  CAS  Google Scholar 

  125. Iwatsuki K, Uneyama H (2012) Sense of taste in the gastrointestinal tract. J Pharmacol Sci 118(2):123–128

    Article  PubMed  CAS  Google Scholar 

  126. Negri R, Morini G, Greco L (2011) From the tongue to the gut. J Pediatr Gastroenterol Nutr 53(6):601–605. doi:10.1097/MPG.0b013e3182309641

    PubMed  CAS  Google Scholar 

  127. Roper SD (2007) Signal transduction and information processing in mammalian taste buds. Pflugers Arch 454(5):759–776. doi:10.1007/s00424-007-0247-x

    Article  PubMed  CAS  Google Scholar 

  128. Chaudhari N, Roper SD (2010) The cell biology of taste. J Cell Biol 190(3):285–296. doi:10.1083/jcb.201003144

    Article  PubMed  CAS  Google Scholar 

  129. Cota D, Proulx K, Smith KA, Kozma SC, Thomas G, Woods SC, Seeley RJ (2006) Hypothalamic mTOR signaling regulates food intake. Science 312(5775):927–930. doi:10.1126/science.1124147

    Article  PubMed  CAS  Google Scholar 

  130. Inoki K, Kim J, Guan KL (2012) AMPK and mTOR in cellular energy homeostasis and drug targets. Annu Rev Pharmacol Toxicol 52:381–400. doi:10.1146/annurev-pharmtox-010611-134537

    Article  PubMed  CAS  Google Scholar 

  131. Hundal HS, Taylor PM (2009) Amino acid transceptors: gate keepers of nutrient exchange and regulators of nutrient signaling. Am J Physiol Endocrinol Metab 296(4):E603–E613. doi:10.1152/ajpendo.91002.2008

    Article  PubMed  CAS  Google Scholar 

  132. Hyde R, Taylor PM, Hundal HS (2003) Amino acid transporters: roles in amino acid sensing and signalling in animal cells. Biochem J 373(Pt 1):1–18

    Article  PubMed  CAS  Google Scholar 

  133. Ljungdahl PO (2009) Amino-acid-induced signalling via the SPS-sensing pathway in yeast. Biochem Soc Trans 37(Pt 1):242–247. doi:10.1042/BST0370242

    Article  PubMed  CAS  Google Scholar 

  134. Palii SS, Thiaville MM, Pan YX, Zhong C, Kilberg MS (2006) Characterization of the amino acid response element within the human sodium-coupled neutral amino acid transporter 2 (SNAT2) system A transporter gene. Biochem J 395(3):517–527. doi:10.1042/BJ20051867

    Article  PubMed  CAS  Google Scholar 

  135. Conigrave AD, Hampson DR (2010) Broad-spectrum amino acid-sensing class C G-protein coupled receptors: molecular mechanisms, physiological significance and options for drug development. Pharmacol Ther 127(3):252–260. doi:10.1016/j.pharmthera.2010.04.007

    Article  PubMed  CAS  Google Scholar 

  136. Liou AP, Sei Y, Zhao X, Feng J, Lu X, Thomas C, Pechhold S, Raybould HE, Wank SA (2011) The extracellular calcium-sensing receptor is required for cholecystokinin secretion in response to L-phenylalanine in acutely isolated intestinal I cells. Am J Physiol Gastrointest Liver Physiol 300(4):G538–G546. doi:10.1152/ajpgi.00342.2010

    Article  PubMed  CAS  Google Scholar 

  137. Conigrave AD, Mun HC, Lok HC (2007) Aromatic l-amino acids activate the calcium-sensing receptor. J Nutr 137(6 Suppl 1):1524S–1527S, discussion 1548S

    PubMed  CAS  Google Scholar 

  138. Albers A, Broer A, Wagner CA, Setiawan I, Lang PA, Kranz EU, Lang F, Broer S (2001) Na+ transport by the neural glutamine transporter ATA1. Pflugers Arch 443(1):92–101. doi:10.1007/s004240100663

    Article  PubMed  CAS  Google Scholar 

  139. Armano S, Coco S, Bacci A, Pravettoni E, Schenk U, Verderio C, Varoqui H, Erickson JD, Matteoli M (2002) Localization and functional relevance of system A neutral amino acid transporters in cultured hippocampal neurons. J Biol Chem 277(12):10467–10473. doi:10.1074/jbc.M110942200

    Article  PubMed  CAS  Google Scholar 

  140. Gietzen DW, Jhanwar-Uniyal M (1996) Alpha 2 noradrenoceptors in the anterior piriform cortex decline with acute amino acid deficiency. Brain Res Mol Brain Res 35(1–2):41–46

    Article  PubMed  CAS  Google Scholar 

  141. Sanahuja JC, Harper AE (1962) Effect of amino acid imbalance on food intake and preference. Am J Physiol 202:165–170

    PubMed  CAS  Google Scholar 

  142. Naito-Hoopes M, McArthur LH, Gietzen DW, Rogers QR (1993) Learned preference and aversion for complete and isoleucine-devoid diets in rats. Physiol Behav 53(3):485–494

    Article  PubMed  CAS  Google Scholar 

  143. Elizalde G, Sclafani A (1990) Flavor preferences conditioned by intragastric polycose infusions: a detailed analysis using an electronic esophagus preparation. Physiol Behav 47(1):63–77

    Article  PubMed  CAS  Google Scholar 

  144. Hrupka BJ, Lin Y, Gietzen DW, Rogers QR (1999) Lysine deficiency alters diet selection without depressing food intake in rats. J Nutr 129(2):424–430

    PubMed  CAS  Google Scholar 

  145. Murphy ME, Pearcy SD (1993) Dietary amino acid complementation as a foraging strategy for wild birds. Physiol Behav 53(4):689–698

    Article  PubMed  CAS  Google Scholar 

  146. Roth FX, Meindl C, Ettle T (2006) Evidence of a dietary selection for methionine by the piglet. J Anim Sci 84(2):379–386

    PubMed  CAS  Google Scholar 

  147. Fortes-Silva R, Rosa PV, Zamora S, Sanchez-Vazquez FJ (2012) Dietary self-selection of protein-unbalanced diets supplemented with three essential amino acids in Nile tilapia. Physiol Behav 105(3):639–644. doi:10.1016/j.physbeh.2011.09.023

    Article  PubMed  CAS  Google Scholar 

  148. Wilson DA, Kadohisa M, Fletcher ML (2006) Cortical contributions to olfaction: plasticity and perception. Semin Cell Dev Biol 17(4):462–470. doi:10.1016/j.semcdb.2006.04.008

    Article  PubMed  Google Scholar 

  149. Gloaguen M, Le Floc'h N, Corrent E, Primot Y, van Milgen J (2012) Providing a diet deficient in valine but with excess leucine results in a rapid decrease in feed intake and modifies the postprandial plasma amino acid and alpha-keto acid concentrations in pigs. J Anim Sci. doi:10.2527/jas.2011-4956

  150. Bellinger LL, Williams FE, Rogers QR, Gietzen DW (1996) Liver denervation attenuates the hypophagia produced by an imbalanced amino acid diet. Physiol Behav 59(4–5):925–929

    Article  PubMed  CAS  Google Scholar 

  151. Harper AE (1965) Effect of variations in protein intake on enzymes of amino acid metabolism. Can J Biochem 43(9):1589–1603

    Article  PubMed  CAS  Google Scholar 

  152. Sikalidis AK, Stipanuk MH (2010) Growing rats respond to a sulfur amino acid-deficient diet by phosphorylation of the alpha subunit of eukaryotic initiation factor 2 heterotrimeric complex and induction of adaptive components of the integrated stress response. J Nutr 140(6):1080–1085. doi:10.3945/jn.109.120428

    Article  PubMed  CAS  Google Scholar 

  153. Hasek BE, Stewart LK, Henagan TM, Boudreau A, Lenard NR, Black C, Shin J, Huypens P, Malloy VL, Plaisance EP, Krajcik RA, Orentreich N, Gettys TW (2010) Dietary methionine restriction enhances metabolic flexibility and increases uncoupled respiration in both fed and fasted states. Am J Physiol Regul Integr Comp Physiol 299(3):R728–R739. doi:10.1152/ajpregu.00837.2009

    Article  PubMed  CAS  Google Scholar 

  154. Nagao K, Bannai M, Seki S, Kawai N, Mori M, Takahashi M (2010) Voluntary wheel running is beneficial to the amino acid profile of lysine-deficient rats. Am J Physiol Endocrinol Metab 298(6):E1170–E1178. doi:10.1152/ajpendo.00763.2009

    Article  PubMed  CAS  Google Scholar 

  155. Baumeister A, Hawkins WF, Cromwell RL (1964) Need states and activity level. Psychol Bull 61:438–453

    Article  PubMed  CAS  Google Scholar 

  156. Elshorbagy AK, Valdivia-Garcia M, Mattocks DA, Plummer JD, Smith AD, Drevon CA, Refsum H, Perrone CE (2011) Cysteine supplementation reverses methionine restriction effects on rat adiposity: significance of stearoyl-coenzyme A desaturase. J Lipid Res 52(1):104–112. doi:10.1194/jlr.M010215

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The tract-tracing work of Dr. Aja was supported by National Institutes of Health (NIH) grant DK 09271. DWG had support from NIH grants DK42274, NS 043210, and NS 33347, and from Ajinomoto Co., Inc., Tokyo. We extend particular thanks to Dr. Kunio Torii for his kind advice and collaboration. The authors are grateful to the many students and postdoctoral fellows and technicians in the Food Intake Laboratory at the University of California, Davis, who provided assistance with the animal and biochemical studies (to all those who weighed spill papers, special thanks). The authors extend our profound apologies to those whose volumes of work could not be included due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothy W. Gietzen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gietzen, D.W., Aja, S.M. The Brain's Response to an Essential Amino Acid-Deficient Diet and the Circuitous Route to a Better Meal. Mol Neurobiol 46, 332–348 (2012). https://doi.org/10.1007/s12035-012-8283-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-012-8283-8

Keywords

Navigation