Skip to main content
Log in

Facile synthesis of isoindoline-1,3-diones by palladium-catalyzed carbonylative cyclization of o-bromobenzoic acid and primary amines

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

A facile method for the carbonylative cyclization of o-bromobenzoic acid with primary amine using Pd(OAC)2 as a metal precursor and 1,1′-bis(diphenylphosphino) ferrocene (dppf) as a ligand has been developed. The effect of various reaction parameters such as ligand, solvent, base, time and temperature on this cyclization was studied. The optimized protocol was used for a wide variety of substituted aryl amines with different steric and electronic properties, affording the corresponding isoindoline-1,3-diones in good to excellent yields under atmospheric pressure of carbon monoxide at 100°C within 10 h using 1,4-diazabicyclo[2.2.2]octane (DABCO) as a base. The reaction system finds attractive alternative to the conventional multistep synthetic process and thus represents an effective utilization of carbonylative protocol for synthesis of valuable chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashcroft A T, Cheetham A K, Green M L H, Vernon P D F. Partial oxidation of methane to synthesis gas using carbon dioxide. Nature, 1991, 352(6332): 225–226

    Article  CAS  Google Scholar 

  2. Trost B M. The atom economy-a search for synthetic efficiency. Science, 1991, 254(5037): 1471–1477

    Article  CAS  Google Scholar 

  3. Abramovitch R A, Shinkai I, Mavunkel B J, More K M, O’Connor S, Ooi G H, Pennington WT, Srinivasan P C, Stowers J R. New ring systems from 1,2-benzisothiazole-1,1-dioxides and related compounds. Tetrahedron, 1996, 52(9): 3339–3354

    Article  CAS  Google Scholar 

  4. Wood J L, Stoltz B M, Goodman S N. Total Synthesis of (+)-RK-286c, (+)-MLR-52, (+)-staurosporine, and (+)-K252a. Journal of the American Chemical Society, 1996, 118(43): 10656–10657

    Article  CAS  Google Scholar 

  5. Hall I H, Chapman J M Jr, Wong O T. The cytotoxic activity of cyclic imido alkyl ethers, thioethers, sulfoxides, sulfones and related derivatives. Anti-Cancer Drugs, 1994, 5(1): 75–82

    Article  CAS  Google Scholar 

  6. Makonkawkeyoon S, Limson-Pobre R N R, Moreira A L, Schauf V, Kaplan G. Thalidomide inhibits the replication of human immunodeficiency virus type 1. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(13): 5974–5978

    Article  CAS  Google Scholar 

  7. Figg W D, Raje S, Bauer K S, Tompkins A, Venzon D, Bergan R, Chen A, Hamilton M, Pluda J, Reed E. Pharmacokinetics of thalidomide in an elderly prostate cancer population. Journal of Pharmaceutical Sciences, 1999, 88(1): 121–125

    Article  CAS  Google Scholar 

  8. Atra E, Sato E I. Treatment of the cutaneous lesions of systemic lupus erythematosus with thalidomide. Clinical and Experimental Rheumatology, 1993, 11(5): 487–493

    CAS  Google Scholar 

  9. Ochonisky S, Verroust J, Bastuji-Garin S, Gherardi R, Revuz J. Thalidomide neuropathy incidence and clinico-electrophysiologic findings in 42 patients. Archives of Dermatology, 1994, 130(1): 66–69

    Article  CAS  Google Scholar 

  10. Miyachi H, Azuma A, Ogasawara A, Uchimura E, Watanabe N, Kobayashi Y, Kato F, Kato M, Hashimoto Y. Novel biological response modifiers: phthalimides with tumor necrosis factor-alpha production-regulating activity. Journal of Medicinal Chemistry, 1997, 40(18): 2858–2865

    Article  CAS  Google Scholar 

  11. Li X, Zhan J, Li Y. Facile syntheses and characterization of hyperbranched poly(ester-amide)s from commercially available aliphatic carboxylic anhydride and multihydroxyl primary amine. Macromolecules, 2004, 37(20): 7584–7594

    Article  CAS  Google Scholar 

  12. Hellwinkel D, Lenz R, Lämmerzahl F. Heterocyclic syntheses via carbanionically induced rearrangement reactions. Tetrahedron, 1983, 39(12): 2073–2084

    Article  CAS  Google Scholar 

  13. Mori M, Chiba K, Ohta N, Ban Y. A novel synthesis of cyclic imides and quinolone by use of paliadium catalyzed carbonylation. Heterocycles, 1979, 13(1): 329–332

    Article  CAS  Google Scholar 

  14. Perry R J, Turner S R. Preparation of N-substituted phthalimides by the palladium-catalyzed carbonylation and coupling of o-dihalo aromatics and primary amines. Journal of Organic Chemistry, 1991, 56(23): 6573–6579

    Article  CAS  Google Scholar 

  15. Taká A, Acscs P, Kollar L. Facile synthesis of 1,8-naphthalimides in palladium-catalysed aminocarbonylation of 1,8-diiodo-naphthalene. Tetrahedron, 2008, 64(6): 983–987

    Article  Google Scholar 

  16. Worlikar S A, Larock R C. Palladium-catalyzed one-step synthesis of isoindole-1,3-diones by carbonylative cyclization of o-halobenzoates and primary amines. Journal of Organic Chemistry, 2008, 73(18): 7175–7180

    Article  CAS  Google Scholar 

  17. Khedkar M V, Khan S R, Sawant D N, Bagal D B, Bhanage B M. Palladium on carbon: an efficient, heterogeneous and reusable catalytic system for carbonylative synthesis of N-substituted phthalimides. Advanced Synthesis & Catalysis, 2011, 353(18): 3415–3422

    Article  CAS  Google Scholar 

  18. Khedkar M V, Khan S R, Dhake K P, Bhanage B M. Carbonylative cyclization of o-halobenzoic acids for synthesis of N-substituted phthalimides using polymer supported palladium N-heterocyclic carbene as an efficient, heterogeneous and reusable catalyst. Synthesis, 2012, 44(16): 2623–2629

    Article  CAS  Google Scholar 

  19. Cao H, Alper H. Palladium-catalyzed double carbonylation reactions of o-dihaloarenes with amines in phosphonium salt ionic liquids. Organic Letters, 2010, 12(18): 4126–4129

    Article  CAS  Google Scholar 

  20. Khedkar M V, Tambade P J, Qureshi Z S, Bhanage B M. Pd/C: an efficient, heterogeneous and reusable catalyst for phosphane-free carbonylative suzuki coupling reactions of aryl and heteroaryl iodides. European Journal of Organic Chemistry, 2010, 2010(36): 6981–6986

    Article  Google Scholar 

  21. Gadge S T, Khedkar M V, Lanke S R, Bhanage B M. Oxidative aminocarbonylation of terminal alkynes for the synthesis of alk-2-ynamides by using palladium-on-carbon as efficient, heterogeneous, phosphine-free, and reusable catalyst. Advanced Synthesis & Catalysis, 2012, 354(10): 2049–2056

    Article  CAS  Google Scholar 

  22. Khedkar M V, Sasaki T, Bhanage B M. Immobilized palladium metal containing ionic liquid catalyzed alkoxycarbonylation, phenoxycarbonylation and aminocarbonylation reactions. ACS Catalysis, 2013: 287–293

    Google Scholar 

  23. Qureshi Z S, Revankar S A, Khedkar M V, Bhanage B M. Aminocarbonylation of aryl iodides with primary and secondary amines in aqueous medium using polymer supported palladium-Nheterocyclic carbene complex as an efficient and heterogeneous recyclable catalyst. Catalysis Today, 2012, 198(1): 148–153

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhalchandra M. Bhanage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khedkar, M.V., Bhanage, B.M. Facile synthesis of isoindoline-1,3-diones by palladium-catalyzed carbonylative cyclization of o-bromobenzoic acid and primary amines. Front. Chem. Sci. Eng. 7, 226–232 (2013). https://doi.org/10.1007/s11705-013-1321-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-013-1321-x

Keywords

Navigation