Skip to main content
Log in

Thermal Conductivity of Indium–Graphene and Indium-Gallium–Graphene Composites

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Samples of graphene composites with a matrix of indium or indium-gallium alloy were prepared in the form of foils using exfoliated graphene dispersions. The thermal conductivity of the composite samples with different thicknesses was determined using the three-omega method. Indium–graphene composite samples with a thickness of 430 μm exhibited a twofold increase in thermal conductivity, whereas indium-gallium–graphene composite samples with a thickness of 330 μm exhibited a threefold improvement in thermal conductivity over that of the matrix at 300 K. The effective medium approximation (EMA) was used to model the thermal conductivity of the composite samples. The graphene platelet size distribution was used to determine the average thermal conductivity of graphene in the composite samples. The interfacial thermal conductance between graphene and indium or indium-gallium alloy determined from EMA was not the limiting factor in the improvement of the thermal conductivity of the composite samples, although the increase in thermal conductivity was found to be slightly lower than predicted theoretically using acoustic and diffuse mismatch models. The smaller size of the graphene platelets obtained by exfoliation prior to dispersion in the matrix appears to be the limiting factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweidebrhan, F. Miao, and C.N. Lau, Nano Lett. 8, 92 (2008).

    Article  Google Scholar 

  2. R. Prasher, Proc. IEEE 94, 1571 (2006).

    Article  CAS  Google Scholar 

  3. T. Tao, A. Majumdar, Z. Yang, A. Kashani, L. Delzeit, and M. Meyyappan, Proceedings of the 10th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems (IEEE Cat. No. 06CH37733C) (2006), p. 6.

  4. J. Xu and T.S. Fisher, The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, IEEE Cat. No. 04 CH37543, Vol. 2, Piscataway, NJ (2004), p. 549.

  5. E.M. Garmire and M.T. Tavis, IEEE J. Quantum Electron. QE-20, 1277 (1984).

    Google Scholar 

  6. P.G. Klemens, Int. J. Thermophys. 22, 265 (2001).

    Article  CAS  Google Scholar 

  7. M. Morooka, T. Yamamoto, and K. Warnabe, Phys. Rev. B 77, 033412 (2008).

    Article  Google Scholar 

  8. K. Saito, J. Nakamura, and A. Natori, Phys. Rev. B 76, 115409 (2007).

    Article  Google Scholar 

  9. M. Trushin and J. Schliemann, Phys. Rev. Lett. 99, 216602 (2007).

    Article  Google Scholar 

  10. M.T. Lusk and L.D. Carr, Phys. Rev. Lett. 100, 175503 (2008).

    Article  Google Scholar 

  11. A. Naga Sruti and K. Jagannadham, J. Electron. Mater. 39, 1268 (2010).

    Article  Google Scholar 

  12. D.G. Cahill, Rev. Sci. Instrum. 61, 802 (1990).

    Article  CAS  Google Scholar 

  13. J.H. Kim, A. Feldman, and D. Novotny, J. Appl. Phys. 86, 3959 (1999).

    Article  CAS  Google Scholar 

  14. J. Yang, Thermal Conductivity: Theory, Properties, Applications, ed. T.M. Tritt (New York: Kluwer/Plenum, 2004), p. 1.

    Google Scholar 

  15. S. Ghosh, D.L. Nika, E.P. Pokatilov, and A.A. Balandin, New J. Phys. 11, 095012 (2009).

    Article  Google Scholar 

  16. D.G. deGroot, A.B.M. Hoff, and J.H.P. van Weeren, J. Phys. F Met. Phys. 5, 1559 (1975).

    Article  CAS  Google Scholar 

  17. N.W. Ashcroft and N.D. Mermin, Solid State Physics (Saunders, 1976).

  18. Data obtained from Indium Corporation of America. http://www.indium.com/products/indiummetal/physicalconstants.php

  19. A. Matthiessen, Philos. Trans. R. Soc. (Lond.) 148, 383 (1858).

    Article  Google Scholar 

  20. A. Yu, P. Ramesh, M.E. Itkis, E. Bekyarova, and R.C. Haddon, J. Phys. Chem. C 111, 7565 (2007).

    Article  CAS  Google Scholar 

  21. A.K. Pal and S. Chaudhuri, J. Mater. Sci. 11, 872 (1976).

    Article  CAS  Google Scholar 

  22. C.W. Nan, R. Birringer, D.R. Clarke, and H. Gleiter, J. Appl. Phys. 81, 6692 (1997).

    Article  CAS  Google Scholar 

  23. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Nano Lett. 8, 902 (2008).

    Article  CAS  Google Scholar 

  24. S. Ghosh, I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika, A.A. Balandin, W. Bao, F. Miao, and C.N. Lau, Appl. Phys. Lett. 92, 151911 (2008).

    Article  Google Scholar 

  25. D.L. Nika, E.P. Pokatilov, A.S. Askerov, and A.A. Balandin, Phys. Rev. B 79, 155413 (2009).

    Article  Google Scholar 

  26. D.L. Nika, S. Ghosh, E.P. Pokatilov, and A.A. Balandin, Appl. Phys. Lett. 94, 203103 (2009).

    Article  Google Scholar 

  27. Z. Ghuo, D. Zhang, and X.G. Gong, Appl. Phys. Lett. 95, 163103 (2009).

    Article  Google Scholar 

  28. P.G. Klemens and D.F. Pedraza, Carbon 32, 735 (1994).

    Article  CAS  Google Scholar 

  29. D.P.H. Hasselman and L.F. Johnson, J. Compos. Mater. 21, 508 (1987).

    Article  Google Scholar 

  30. A.J. Schmidt, X. Chen, and G. Chen, Rev. Sci. Instrum. 79, 114902 (2008).

    Article  Google Scholar 

  31. J.C. Duda, J.L. Smoyer, P.M. Norris, and P.E. Hopkins, Appl. Phys. Lett. 95, 031912 (2009).

    Article  Google Scholar 

  32. A. Majumdar and P. Reddy, Appl. Phys. Lett. 84, 4768 (2004).

    Article  CAS  Google Scholar 

  33. M.W. White and D.C. McCollum, Phys. Rev. B 1, 552 (1970).

    Article  Google Scholar 

  34. E.T. Swartz and R.O. Pohl, Rev. Mod. Phys. 61, 605 (1989).

    Article  Google Scholar 

  35. A. Minnich and G. Chen, Appl. Phys. Lett. 91, 073105 (2007).

    Article  Google Scholar 

  36. B.C. Gundrum, D.G. Cahill, and R.S. Averback, Phys. Rev. B 72, 245426 (2005).

    Article  Google Scholar 

  37. R. Viana, H. Godfrin, E. Lerner, and R. Rapp, Phys. Rev. B 50, 4875 (1994).

    Article  CAS  Google Scholar 

  38. R.S. Deacon, K.C. Chuang, R.J. Nicholas, K.S. Novoselov, and A.K. Gein, Phys. Rev. B 76, 08140 (2007).

    Google Scholar 

  39. C. Schmidt and E. Umlauf, J. Low Temp. Phys. 22, 597 (1976).

    Article  CAS  Google Scholar 

  40. Y.S. Touloukian and E.H. Buyco, Thermophysical Properties of Matter, The TPRC Data Series, Specific Heat of metallic Elements and Alloys, Vol. 4, and Specific Heat of Nonmetallic Solids, Vol. 5 (New York: IFI/Plenum, 1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Jagannadham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jagannadham, K. Thermal Conductivity of Indium–Graphene and Indium-Gallium–Graphene Composites. J. Electron. Mater. 40, 25–34 (2011). https://doi.org/10.1007/s11664-010-1391-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1391-1

Keywords

Navigation