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Abstract
The goal of this work is to reconstruct 3D dogs from monocular images. We take a model-based approach, where we estimate
the shape and pose parameters of a 3D articulated shape model for dogs. We consider dogs as they constitute a challenging
problem, given they are highly articulated and come in a variety of shapes and appearances. Recent work has considered
a similar task using the multi-animal SMAL model, with additional limb scale parameters, obtaining reconstructions that
are limited in terms of realism. Like previous work, we observe that the original SMAL model is not expressive enough
to represent dogs of many different breeds. Moreover, we make the hypothesis that the supervision signal used to train the
network, that is 2D keypoints and silhouettes, is not sufficient to learn a regressor that can distinguish between the large
variety of dog breeds. We therefore go beyond previous work in two important ways. First, we modify the SMAL shape space
to be more appropriate for representing dog shape. Second, we formulate novel losses that exploit information about dog
breeds. In particular, we exploit the fact that dogs of the same breed have similar body shapes. We formulate a novel breed
similarity loss, consisting of two parts: One term is a triplet loss, that encourages the shape of dogs from the same breed to
be more similar than dogs of different breeds. The second one is a breed classification loss. With our approach we obtain
3D dogs that, compared to previous work, are quantitatively better in terms of 2D reconstruction, and significantly better
according to subjective and quantitative 3D evaluations. Our work shows that a-priori side information about similarity of
shape and appearance, as provided by breed labels, can help to compensate for the lack of 3D training data. This concept may
be applicable to other animal species or groups of species. We call our method BARC (Breed-Augmented Regression using
Classification). Our code is publicly available for research purposes at https://barc.is.tue.mpg.de/.
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1 Introduction

The 3D reconstruction of articulated, deformable objects
frommonocular images is very challenging. Due to the ambi-
guities in the projection from3D to 2D, a-priori 3Dmodels of
the objects are needed. In the case of humans, recent methods
exploit parametric 3D shape models of the human body, like
the popular SMPL (Loper et al., 2015), to represent shape.
Large collections of 3D body poses, obtained from marker-
based motion capture, provide a-priori knowledge about the
range of 3D poses (Mahmood et al., 2019). Human body
models have been learned from thousands of high-resolution
3D scans, in varied poses, such that pose-dependent defor-
mations can also be encoded. A similar approach cannot be
replicated for animals, as scanning them is controlled poses is
hard, and inmany cases even impossible.Moreover, itmay be
very difficult to get access to a large number of individuals for
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Fig. 1 Monocular 3D shape and pose regression of 3D dogs from 2D images. Since 3D training data is limited, BARC uses breed information at
training time via triplet and classification losses to learn how to regress realistic 3D shapes at test time

a specific species of interest. Previous work has learned ani-
mal shape using small sets of 3D scans of toy figurines (Zuffi
et al., 2017). Even if one learns a parametric shape model of
an animal species from a few 3D scans, the limited amount
of data will likely restrict the expressive power of that model
and it may not be able to capture the shape variability of
real individuals. Paired training data of animals, consisting
of images and associated, known 3D body shapes, is even
rarer. We argue that, to make progress, one must leverage
side information that can be obtained more easily, yet con-
strains 3D shape and pose estimation from single images
(Fig. 1).

The 3D reconstruction of animal shape and pose has sev-
eral applications, ranging from biology and bio-mechanics
to entertainment, robotics and conservation. Specifically, the
non-invasive capture of 3D body shape supports morphology
and health-from-shape analysis,whichmaybe important par-
ticularly for endangered species. Markerless motion capture
allows 3D motion analysis for animals that are impossible to
capture in a lab setting. Animal motion data can be used to
drive virtual agents in entertainment, but also to create robots
that mimic the often particularly efficient ways in which ani-
malsmove through their environment. Herewe focus on dogs
as a rich, challenging test case. Dogs, due to breeding, exhibit
an unusuallywide range of shapes, and have highly non-rigid,
complex articulation. Consequently, they are representative
of the variability, and the associated difficulties, of many
other animal species.

Our goal is to learn to estimate a dog’s 3D shape and
pose from a monocular, uncontrolled image. We consider a
supervised, model-based approach, where we train a regres-
sor to predict the parameters of a 3D articulated dog shape
model. Given the lack of 3D training data, we train a regres-
sion network with 2D supervision, in the form of keypoints
and silhouettes. With only such 2D information, the problem
is, however, heavily under-constrained: many 3D shapes can

explain the 2D image evidence equallywell.Moreover, in the
absence of 3D ground-truth, unnatural 3D poses can match
the 2D keypoints, resulting in bad reconstructions that are
not plausible when observed from a different viewpoint. To
make the task well-posed, we need additional, prior informa-
tion. To better estimate 3D pose, we define a 3D pose prior
based on Normalizing Flows (Kingma et al., 2016; Rezende
and Mohamed, 2015). We learn the prior from dog motion
capture data, provided in the RGBD-Dog dataset (Kearney
et al., 2020). To better estimate dog shape, we explore a novel
source of a-priori knowledge: a dog’s shape is determined,
in part, by its breed. Even a trained amateur can recognize
the breed by looking at a dog’s shape (and appearance).

Dogs are well-suited to explore the role of breed because
of their large variety. Dogs have been domesticated and bred
for a long time, for diverse purposes such as companionship,
hunting, herding, but also racing, pulling sleds, finding truf-
fles, etc. Consequently, breeders have selected for a range
of traits including body shape (as well as temperament,
appearance, etc.) which has led to a large number of distinct
breeds with very different characteristics. A recent analysis
of the dog genome illustrates the relationship between dif-
ferent breeds that exist today (Perker et al., 2017). Breeds
are grouped into clades, often with high shape similarity
within a clade. Figure2 shows a cladogram of 161 domes-
tic dog breeds (Perker et al., 2017). Clades are indicated
with colors. Breeds that belong to the same clade are geneti-
cally related and therefore share many characteristics, often
including shape. A typical example is the European Mastiff
clade with the Boxer and the Bulldog. These differ in body
size, but have similar build and facial features.

Here, we explore the use of genetic side information, in
the form of breed labels, to train a regressor that infers 3D
dog shape from 2D images.

Specifically, we train a neural network called BARC,
for “Breed-Augmented Regression using Classification.”We
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Fig. 2 Cladogram of domestic dog breeds. The diagram represents
clustering according to genetic similarity. Reproduced fromPerker et al.
(2017)

follow the approach of regressing a parametric 3D shape
model directly from image pixels, as often done for human
pose and shape estimation. Here, we use the SMAL animal
model (Zuffi et al., 2017) to define the kinematic chain and
mesh template. We extend SMAL in several ways to be a
better foundation for learning about dog shape: we add limb
scale factors and extend the SMAL shape space with addi-
tional 3D examples.

To solve the problem of fitting the 3D model to images,
we make several contributions. (1) We propose a novel neu-
ral network architecture to regress 3D dog shape and 3D
pose from images. (2) To make training feasible from 2D sil-
houettes and keypoints, we exploit the fact that images of the
samebreed should produce similar 3D shapes,while different
breeds (mostly) have different shapes. With this assumption,
we impose classification and triplet losses on the training
images that depend on their breed labels. (3) As a result,
we learn a breed-aware latent shape space, in which we can
identify breed clusters and relationships. An inspection of
that shape space, with the help of t-sne plots, indicates good
agreement with the cladogram in Fig. 2. (4) Optionally, we
show how to exploit 3Dmodels, if they are available for some
of the breeds.

Although we use one of the largest dog datasets in the
literature, the large number of dog breeds (in our case 120)
means there are only few images per breed. One can interpret
ourmethod as learning a common shapemanifold for all dogs
(as not enough examples are available per breed), while using
the breed labels to locally regularize it. To our knowledge,

our method is the first attempt to exploit breed information
in order to reconstruct 3D animal shape from images.

We train thenetworkon theStanfordExtra (StanExt) (Biggs
et al., 2020a; Khosla et al., 2011) training set, which has 120
different breeds. We extend the annotations with eye, with-
ers and throat keypoints. Evaluation is done on the StanExt
test set. We find that in the latent shape space that our model
learns, closely related dogs are indeed located near each other
(Fig. 3). Through ablation studies, we evaluate the impact of
different types of breed information and find that each loss
term brings a significant improvement in shape accuracy.

To measure accuracy we employ standard 2D measures
like PCK and IOU, but these do not fully reflect 3D accuracy.
Consequently, we create an additional dataset of 3D dogs,
so as to compare the shapes of corresponding breeds. In this
way,we are able to carry out a 3D evaluation, inwhichBARC
significantly outperforms the prior art (WLDO (Biggs et al.,
2020a)). Finally, to assess shape estimates for in-the-wild
images, we carry out a perceptual study, in which we let
human subjects compare the 3D dog models visually. We
find that BARC reconstructions look more realistic than both
those from ablated versions of our model and those from
WLDO.

This paper extends an earlier conference publication
(Rueegg et al., 2022). Additional content includes details
about the body shape model; the 2-dimensional BPS encod-
ing; the body pose prior; and the use of 3D computer graphics
models to further constrain body shape. Furthermore, we
more comprehensively describe the perceptual evaluation of
the reconstructed dog shapes and the evaluation with breed
prototypes. We also add an analysis of failure cases, and
visual results for ablation experiments where we vary the
influence of different loss terms of our model. Finally, we
show additional qualitative results, including challenging
cases such as puppies and previously unseen breeds.

2 RelatedWork

While many approaches focus on 3D reconstruction of
humans from images, there is comparably little work on ani-
mal 3D pose and shape estimation. Animal reconstruction
from images has been approached in two main ways: model-
free and model-based.

2.1 Model-Free 3D Reconstruction

These methods do not exploit an existing 3D shape model.
Ntouskos et al. (2015) create 3Danimal shapes by assembling
3D primitives obtained by fitting manually segmented parts
in multiple images of different animals from the same class.
Vicente2013 deform a template extracted from a reference
image to fit a new image using keypoints and the silhouette,
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Fig. 3 Learned latent space. t-SNE (Van der Maaten and Hinton, 2008)
visualization of the 64-dimensional latent shape variable for dogs in the
test set. Large markers indicate average values within each of the clades
in Fig. 2. Left. Latent space of the network trained without breed simi-

larity loss. Note that the clade means are all near the population mean,
indicating poor clustering.Center and right: With breed similarity loss.
For each clade, different saturation levels of the colors denote breeds
within the clade (Color figure online)

without addressing articulation. Kanazawa et al. (2018) learn
to regress 3D bird shape, given keypoints and silhouettes;
birds exhibit rather limited articulation.Recentwork obviates
the need for 2D keypoints (Goel et al., 2020; Tulsiani et al.,
2020; Wu et al., 2021).

2.2 Model-Based 3D Reconstruction

In one of the first 3D animal reconstruction methods from
images, Cashman and Fitzgibbon (2013) deform a 3D
dolphin template, learning a low-dimensional deformation
model from hand-clicked keypoints and a manual segmen-
tation. They also apply their method to a pigeon and a polar
bear. A limitation of this approach is that articulation is
not explicitly modeled. In contrast, Zuffi et al. (2017) intro-
duce SMAL, a deformable 3D articulated quadruped animal
model. Similar to the widely adopted human body model,
SMPL (Loper et al., 2015), SMAL represents 3D articulated
shapes with a low-dimensional linear shape space. Due to
the lack of real 3D animal scans, SMAL is learned from
scanned toy figurines of different quadruped species. Since
dogs are not well represented by SMAL, Biggs et al. (2020a)
extend the SMALmodel by adding scale parameters for limb
lengths. In Wang et al. (2021), an articulated 3D model of
birds is defined in terms of limb scale variations and used to
learn shape from images; it is unclear whether this method
easily extends to more complex animals.

Early work using SMAL employs an optimization-based
approach tofit themodel to image evidence (Zuffi et al., 2017)
and to refine the animal shapes (Zuffi et al., 2018). In other
methods,Biggs et al. (2018) showhow to extract accurate ani-
mal shape and pose from videos, while Kearney et al. (2020)
estimate dog shape and pose fromRGBD-images.More rele-
vant toBARCare learning-basedmethods that regress animal
pose and shape directly. Biggs et al. (2020a) estimate dog
pose and shape from single images by regressing pose and

shape parameters of their model to training images of the
StanExt dataset. Their initial shape prior is improved using
expectation maximization with respect to fits of their model
to the images. Zuffi et al. (2019) regress a zebra SMALmodel
from images by exploiting a texture map and learn a shape
space for the Grevy’s zebra. They train on synthetic data.
In contrast to these methods, Sanakoyeu et al. (2020) neither
predict 3D directly from the image nor rely on sparsely anno-
tated keypoints. Rather they show how to transfer DensePose
from humans to a non-human primate. This approach does
not recover 3D shape or pose.

2.3 SupervisionWithout 3D Ground Truth

All 3D approaches rely on certain 2D features such as key-
points, segmentation masks or DensePose annotations as a
supervision signal. Sometimes those 2D signals are used as
an intermediate representation before the model is lifted to
3D. Mu et al. (2020) exploit synthetic 3D data to predict 2D
keypoints and a coarse body part segmentation map. They
introduce a new dataset for animal 2D keypoint prediction
and show how to transfer knowledge between domains, par-
ticularly from seen quadruped species to unseen ones. Still
other work (Goel et al., 2020; Kanazawa et al., 2018; Tulsiani
et al., 2020) encourages similarity between objects of similar
shape, with small intra-class variability. They neither exploit
breed information nor use contrastive learning to construct a
structured latent space.

3 Approach

The present work explores how known breed information
at training time can be leveraged to learn to regress a
high-quality 3D model of dogs. To that end, we combine
a parametric dog model with a neural network that maps
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Fig. 4 BARC Architecture. The model consists of a stacked hourglass network followed by two separate branches for shape and pose prediction.
Pink boxes illustrate where losses are applied. Black frames indicate the new breed losses

images to model instances. In the following, we describe the
model we use, the network architecture in which it is embed-
ded, and the loss functions used to train the architecture,
including the novel breed losses.

3.1 DogModel

For the parametric representation of a dog’s shape and pose,
we employ a variant of SMAL.We start from 41 scanned ani-
mal toy figurines of several different species (already used as
part of the original SMALmodel) as well as 3DUnity canine
models in the animal equivalent of the canonical T-pose; i.e.,
standing with straight legs and tail pointing backward. We
purchased the same pack of Unity models1 as was exploited
by Biggs et al. (2020a) to initialize their mixture of Gaus-
sian shape prior and use them to relearn the SMAL shape
space for our task. To that end, we fit a mesh with the same
topology as SMAL (and WLDO) to the new dogs, add these
to the original SMAL training set and recompute the mean
shape and the PCA shape space. The resulting model differs
from the original SMAL in three respects: (1) different input
data; (2) reweighting of the inputs such that 50% of the total
weight is assigned to dogs; and (3) rescaling of the meshes
such that the torso always has length 1. We further adapt an
idea fromWLDO and extend the model with scaling param-
eters κ (where the actual scale is exp (κ)) for the limbs, plus
an additional scale for the head length. The scaling is applied
to the bone lengths, and propagated to the surface mesh via
their corresponding linear blend skinning (LBS) weights.

1 https://assetstore.unity.com/packages/3d/characters/dog-big-pack-
105660.

Strictly speaking, the shape of a specific dog is calculated
by following several steps:

1. Calculating shape deformations caused by βpca Generic
shape directions (PCA directions) are multiplied by
instance specific shape coefficients βpca . The result is a
vertex wise shape displacement vector.

2. Addingdisplacements to shape template:Those shapedis-
placements are added to a generic shape template (mean
shape of PCA). The result is still a mesh of a dog in t-pose.

3. Posing model and adding shape deformations caused by
κ Linear blend skinning weights (LBS) are used to decide
how much influence each limb scaling parameter (expo-
nential) has on each vertex For example if the exponential
of the leg length scaling factor κleg−length is 2, we take
each bone of the legs and make it twice as long. Cor-
responding vertex shifts are calculated based on LBS
weights. In practice we do the limb scaling step at the
same time as posing the model.

For compactness, we collect the PCA shape coefficients βpca

and limb scales κ into a shape vector β.

3.2 Architecture

Similar to Pavlakos et al. (2018) and Zhang et al. (2020),
we use separate shape and pose branches. Figure4 shows the
overall architecture of BARC, consisting of a joint stacked
hourglass encoder, a shape branch, a pose branch, and a 3D
prediction and reprojection module.
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Fig. 5 Silhouette BPS encoding. Crosses indicate basis points and
corresponding dots the approximately closest points on the silhouette
circumference

3.2.1 Stacked Hourglass

First, the input image is encoded and 2D keypoint heatmaps,
as well as a segmentation map, are predicted with a pre-
trained stacked hourglass network. 2D keypoint locations
are extracted from the heatmaps with “numerical coordinate
regression” (NCR, Nibali et al., 2018). The segmentation
map is encoded with a scheme similar to “basis point sets”
(BPS, Prokudin et al., 2019) for 3D point cloud encoding. To
our knowledge, we are the first to apply BPS in 2D.

Figure5 illustrates 64 points that form our basis point set
(crosses) and the corresponding closest points on the silhou-
ette (dots). The basis points are predefined, by overlaying a
regular 8× 8 grid on the image and adding a small random
perturbation independently to each grid point. We concate-
nate the x- and y-coordinates of all silhouette points to obtain
a 128-dimensional encoding. Compared to the full segmen-
tation map, this encoding is lightweight, easy to compute
for silhouettes, and has a similar format as the NCR key-
points. We find that, despite the reduction to a small number
of sample points, the silhouette encoding improves the 3D
prediction over 2D keypoints alone. Notably, this encoding
is efficient in terms of model size and does not require any
training, in contrast to alternatives such as convolutional sil-
houette features.

3.2.2 Shape-Branch

The input image and the predicted segmentationmap are con-
catenated and fed to aResNet34 (He et al., 2016) that predicts
a latent encoding z of the dog’s shape. z is decoded into both a
breed (class) score and a vector of body shape coefficients β.
We have experimented with different sub-networks between
z andβ and find that the breed similarity loss ismost effective
when the connection is as direct as possible, with only sin-
gle, fully-connected layers between z and each of the shape
vectors κ and βpca. These shape coefficients are applied to
the 3D dog template to obtain a shape, whose bone lengths
are passed on to the pose branch.

3.2.3 Pose-Branch

The predicted 2D keypoints, the BPS encoding of the sil-
houette and the bone lengths from the shape network form
the input to estimate the dog’s 3D pose, its translation with
respect to the camera coordinate system and the camera’s
focal length. The pose is represented as a 6D rotation (Zhou
et al., 2019) for each joint, including a root rotation. Instead
of predicting all rotations directly, we predict root rotation
and a latent pose representation y. Following recent work
on human pose estimation (Xu et al., 2020; Biggs et al.,
2020b; Zanfir et al., 2020), we implement an invertible neu-
ral network (INN) that maps each latent variable y to a
pose. This INN is used in the context of a normalizing flow
pose prior trained on the RGBD-Dog dataset (Kearney et al.,
2020). Similar to Zanfir et al. (2020), this network consists
of Real-NVP blocks, but because of the smaller size of the
RGBD-Dog dataset [compared to AMASS (Mahmood et al.,
2019)] our pose network is much smaller than those pre-
viously used for human pose estimation. For architectural
details, please refer to the code, available online. The aim
of the INN is to map the distribution of 3D dog poses to a
simple and tractable density function, i.e. a spherical mul-
tivariate Gaussian distribution. To train the pose prior, we
exploit the RGBD-Dog dataset (Kearney et al., 2020), which
contains walking, trotting and jumping sequences, but no sit-
ting or lying poses. Note that the INN is pretrained to serve
as a pose prior and kept fixed during final network training.

3.2.4 3D Prediction and Reprojection Module

As a last step, BARC poses the model according to the
predicted shape, pose and translation, and reprojects the
keypoints and silhouette to image space, using the pre-
dicted focal length. To minimize the silhouette and keypoint
reprojection errors, we employ the PyTorch3D differentiable
renderer (Ravi et al., 2020).

3.3 Training Procedure

The complexity of articulated, deformable 3D model fitting
requires a number of different loss functions, as well as care-
ful pretraining.

3.3.1 Stacked Hourglass Pretraining

The stacked hourglass is pretrained to predict keypoints and
the segmentation map. The StanExt dog dataset (Biggs et al.,
2020a) provides labels for both. The keypoint loss consists of
two parts, amean squared error (MSE) between the predicted
and true heatmaps, and an L2-distance between the predicted
and true keypoint coordinates. For the silhouette, we use the
cross-entropy between ground truth and predicted masks. As
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usual for stacked hourglasses, we calculate the losses after
every stage.

3.3.2 Pose-Branch Pretraining

Weuse the same dataset (RGBD-Dog) that is used to train the
pose prior to also pretrain the pose branch. We sample poses
and random shapes and project them to a 256×256 image
with a random translation and focal length. The projected
keypoints and silhouette serve as input to the network. MSE
losses are used to penalize deviations between the predicted
values and the ground truth. In addition, we use an MSE
error between the predicted pose latent representation y and
its ground truth.

3.3.3 Main Training

The stacked hourglass is kept fixed, while all other network
parameters are jointly optimized. We point out that, based on
2D keypoints, the true shape and pose are ambiguous; while
we do not have access to 3D ground truth for the images. To
regularize the solution, we therefore combine reprojection
losses with suitable priors. These loss terms are described
below.

3.4 Standard Losses

3.4.1 Keypoint Reprojection Loss

Lkp is the weighted mean squared error between predicted
kpredn and ground truth 2D keypoint locations kgtn :

Lkp =
⎛
⎝

Nkp∑
n=1

wnd(kpredn , kgtn )2

⎞
⎠

/ ⎛
⎝

Nkp∑
n=1

wn

⎞
⎠ , (1)

where d(kpredn , kgtn ) is the 2D Euclidean distance between the
predicted and ground truth location of the n-th keypoint.

The weightswn are listed in Table 1 and balance the influ-
ence of keypoints.

3.4.2 Silhouette Reprojection Loss

Lsil is the squared pixel error between the rendered spred and
ground truth silhouette sgt:

Lsil =
⎧⎨
⎩

∑256
x=1

∑256
y=1

(
spredxy − sgtxy

)2
Lkp,m < T

0 otherwise.
(2)

This is used only for images where the mean keypoint repro-
jection error Lkp,m is below a threshold T .

Table 1 Keypoint weights

Keypoint w Keypoint w

Left front leg, paw 3 Right rear leg, top 2

Left front leg, middle 2 Tail start 3

Left front leg, top 2 Tail end 3

Left rear leg, paw 3 Base left ear 2

Left rear leg, middle 2 Base right ear 2

Left rear leg, top 2 Nose 3

Right front leg, paw 3 Chin 1

Right front leg, middle 2 Left ear tip 2

Right front leg, top 2 Right ear tip 2

Right rear leg, paw 3 Left eye 1

Right rear leg, middle 2 Right eye 1

Weights that are used within the weighted keypoint loss

3.4.3 Shape Prior

This is a weighted sum of two parts, Lsh = wβLsh
β +wκ Lsh

κ .
The first penalises deviations from a multivariate Gaussian
with mean μpca and covariance �pca:

Lsh
β = (

βpca − μpca
)�

�−1
pca

(
βpca − μpca

)
. (3)

Additionally, we penalise deviations from scale 1 with an
element-wise squared loss on the scale factors κ ,

Lsh
κ =

7∑
i=1

κ2
i . (4)

The shape prior loss is assigned a lowweight and serves only
to stabilise the shape against missing evidence.

3.4.4 Pose Prior

Lp penalises 3Dposes that have low likelihood.Again, it con-
sists of two terms, a normalizing flow pose prior as well as a
regularization regarding lateral leg movements. The normal-
izing flow pose prior penalizes the negative log-likelihood of
a given pose sample.

We calculate this directly from our latent representation y
under a multivariate normal distribution with mean vector μ

and covariance matrix �. We can write the multivariate nor-
mal probability density function f (y) evaluated at a vector y
of dimension d using the Mahalanobis distance between this
vector and μ, MD(y;μ,�) = (y − μ)T�−1(y − μ) as:

f (y) = 1√
(2π)d‖�‖ exp

(
−1

2
MD(y;μ,�)

)
, (5)
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and thus the log likelihood, log( f (y))

= −1

2
(d log(2π) + log(‖�‖) + MD(y;μ,�)2). (6)

Since our normalizing flow prior is trained under the assump-
tion of zero mean and unit variance this can be simplified to
obtain:

log( f (y)) = −1

2

(
d log(2π) + yT y

)
. (7)

Finally, the normalizing flow pose loss is given by:

Lp
nf = 1

2
(d log(2π) + yT y). (8)

The normalizing flow prior is trained on the RGBD-Dog
dataset which has a limited set of poses compared to the
natural poses in the StanExt dataset. Consequently, with only
this prior, the network can infer 3Dposeswhere the legsmove
unnaturally sideways. Thus, we add a second term Lp

side that
penalizes sideways poses of the joints in each leg. The idea
behind this term is that leg joints in the SMAL model are
socket joints, but in reality they are hinge joints. Therefore,
by penalizing rotations to the side, we penalize rotations that
would be anatomically incorrect. The final pose prior is:

Lp = wnfL
p
nf + wsideL

p
side , (9)

with weights wnf and wside, the latter set to a low value.

3.4.5 Camera Prior

Lcam: Since focal length f pred is heavily correlated with
depth (object-to-camera distance), we find it useful to
penalise the squared deviation from a reasonably predefined
target focal length f target:

Lcam = ( f pred − f target)2. (10)

3.5 Novel Breed Losses

The losses described so far do not depend on the breed. To
exploit breed labels for the training images, we introduce an
additional breed triplet loss, as well as an auxiliary breed
classification loss. We summarize those two losses as breed
similarity loss. Given the dog meshes used during 3D model
learning (Sec. 3.1) we moreover define a specific shape prior
for those particular breeds.

3.5.1 Breed Triplet Loss

LB
triplet: Dogs of the same breed usually are somewhat similar

in shape. However, this does not imply that there is no intra-

class variation, nor that different breeds necessarily have
dissimilar shape.Hence,we implement thiswith a triplet loss.
We have experimented with different metric learning losses,
but found that they all exhibit similar behaviour. Triplet losses
are commonly used in person re-identification (ReID) meth-
ods, where the goal is to learn features that are discriminative
for person identity (Schroff et al., 2015;Taigman et al., 2014).
RingNet used a similar idea to learn 3D head shape from
images without 3D supervision (Sanyal et al., 2019).

Applying the loss directly to the shape β does not work
well. Shape changes along different principal directions may
have different scales, moreover shape changes due to limb
scaling are not orthogonal to the PCA coefficients βpca. We
find it better to apply the triplet loss to the latent encodings z.
Given a batch with an anchor sample za , a positive sample z p
of the same breed and a negative sample zn from a different
breed, we calculate the triplet loss, LB

triplet =

Ntriplets∑
i=1

max(d(za,i , z p,i ) − d(zn,i , za,i ) + m, 0) , (11)

where m is the margin and d denotes the distance between
the two samples.

3.5.2 Breed Classification Loss

LB
cs: We further bias the estimation towards recognisable,

breed-specific shapes with an auxiliary breed classification
task, supervised with a standard cross-entropy loss on the
breed labels:

LB
cs = −

Nclasses∑
c=1

yo,c log(po,c) , (12)

where po,c is the predicted probability that observation o is
of class c and y is a binary indicator if label c is the correct
class for observation o. The full similarity loss reads:

LB
sim = wtripletL

B
triplet + wcsL

B
cs , (13)

where wtriplet and wcs are weights.

3.5.3 3DModel Loss

LB
3D: We have access to a small number of 3D dogs (Unity

models) and to a few 3D scans of toy figurines, namely the
canine examples of the SMAL training set, which we also
used to construct the dog model, see Sec. 3.1. These models
encompass 11 of the 120 breeds in StanExt. For these breeds,
we optionally enforce similarity between the prediction and
the available 3D ground truth shape, via a component-wise
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loss on the shape coefficients β:

LB
3D = (β

pred
pca − βbreed

pca )2 + (κpred − κbreed)2. (14)

Table 2 shows a list of 3D CG models and corresponding
breeds which BARC uses in its 3D model loss.

4 Experiments

We evaluate our approach on the Stanford Extra Dog dataset
(StanExt) (Biggs et al., 2020a). StanExt provides labels for
20 keypoints, silhouette annotations and dog breed labels.
We extend the 20 keypoints in the training set with withers,
throat and eyes. Those keypoints are obtained by training a
separate stacked hourglass on the Animal Pose dataset (Cao
et al., 2019) and using its predictions as pseudo ground truth
in the StanExt training set.

4.1 EvaluationMethods

4.1.1 2D Reprojection Error

In the absence of 3D ground truth, it is common to evalu-
ate 3D shape and pose predictions in terms of reprojection
errors in image space. We provide results for intersection
over union (IoU) on the silhouette, as well as percentage of
correct keypoints (PCK).

4.1.2 Perceptual Shape Evaluation

Many implausible 3D shapes have low 2D reprojection
errors, but for in-the-wild images we do not have access to
ground-truth 3D shapes that would allow a more meaning-
ful comparison. Instead, we run a study to evaluate relative
perceptual correctness, where humans visually assess the 3D
shapes regressed from in-the-wild images.

Controlled perceptual tasks are designed to evaluate our
method relative to (1) the SOTA or (2) to an ablated model.
Workers on Amazon Mechanical Turk (AMT) judge which
of two rendered 3Dbody shapes better fits a query dog image.
Figure6 shows the framework that we provide to the AMT
workers. We show each worker an image that contains a dog,
our predicted 3D model in T-pose and the model in T-pose
from SOTA or ablated method. We do not present the pre-
dicted 3D posed models in order to focus workers on shape.
The left-right ordering of the renderedmeshes is random.We
let each worker first process 8 samples to get used to the task,
and then use the next 30 hits. The task is split in 4 batches
with 30 samples each. We have 10 workers for each batch.
This gives us a total of 1200 hits. In order to verify the work-
ers understand the task and perform it diligently, we include
two catch trials in each batch. These are extreme cases where

Fig. 6 AMT Framework. The picture shows an example screenshot
from the perceptual studies that we ran on Amazon Mechanical Turk

Fig. 7 Breed Prototypes. From top left: Beagle, Great Dane, Chow-
Chow, Labrador Retriever, Rhodesian Ridgeback, French Bulldog,
Doberman Pinscher, Rottweiler, Greyhound, Boxer, Collie, American
Staffordshire Terrier

one 3D shape is so far off that only one answer is plausible.
For all quantitative results reported, votes from workers who
failed one or both catch trials are ignored.

4.1.3 Breed Prototype Consistency

We complement the perceptual shape evaluation by an evalu-
ation which exploits the fact that dogs of the same breed have
similar shapes.We define prototype shapes for several breeds
with the help of toy figurines that are scanned, registered to
the SMAL template, and reposed to the canonical T-pose.We
use 20 prototypes. Figure7 shows a few examples. Then, for
all StanExt images of the corresponding breeds, we regress
their shape using variousmethods. These predictions are then
also transferred to T-pose and aligned to the matching proto-
type with the Procrustes method. The vertex-to-vertex error
between the estimate and the prototype serves as indicator
of how well a given prediction method captures the breed
shape.
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Table 2 3D CG models Breed Stanford extra name

American Staffordshire Terrier n02093428-American_Staffordshire_terrier

Boxer n02108089-boxer

German Shepherd n02106662-German_shepherd

Doberman n02107142-Doberman

Staffordshire Bullterrier n02093256-Staffordshire_bullterrier

French Bulldog n02108915-French_bulldog

Bull Mastiff n02108422-bull_mastiff

Great Dane n02109047-Great_Dane

Italian Greyhound n02091032-Italian_greyhound

Rottweiler n02106550-Rottweiler

Siberian Husky n02110185-Siberian_husky

Models used for our 3D model loss LB
3D

Table 3 Comparison to SOTA

Method IoU PCK @ 0.15

Avg Legs Tail Ears Face

3D-M 69.9 69.7 68.3 68.0 57.8 93.7

CGAS 63.5 28.6 30.7 34.5 25.9 24.1

WLDO 74.2 78.8 76.4 63.9 78.1 92.1

Ours 75.1 82.8 82.3 63.3 83.3 91.3

Bold means better
Numbers for 3D-M (Zuffi et al., 2017), CGAS (Biggs et al., 2018),
WLDO (Biggs et al., 2020a) reproduced from Biggs et al. (2020a)

4.2 Comparison to Baselines

In terms of 2D error metrics (IoU and PCK) BARC outper-
forms prior art, i.e., WLDO (Biggs et al., 2020a), CGAS
(Biggs et al., 2018) and 3D-M (Zuffi et al., 2017). Table 3
summarizes the results. Importantly, the methods compared
in the table exploit different types and amounts of informa-
tion during training. In particular, our method has access
to breed labels, which WLDO has not not. Moreover, our
method employs additional keypoints for the eyes and the
throat, and a quite different pose prior. Also in the perceptual
comparison,BARC is judged to represent the depicted dog
better than its closest competitor WLDO, in an overwhelm-
ing 92.4% of all cases. See last line of Table 4. The marked
gap in visual realism is evident in Fig. 8.

4.3 Ablation Study

Our key contribution is the addition of breed losses to
improve 3D shape regression. To ablate the impact of indi-
vidual loss terms, 2D errors are not meaningful, so we again
report results in terms of relative perceptual correctness
(Table 4) and in terms of consistencywith the prototype breed
shape (Table 5). We compare the following versions of our

Fig. 8 Comparison to SOTA. Qualitative comparison of BARC (left
half) with WLDO (Biggs et al., 2020a) (right half). For each method
we show the input image, the 3D reconstruction projected on the input
image, the 3D reconstruction, and a 90◦ rotated view

method: (i) our network, trained without any breed losses;
(ii-a) the same network with classification loss LB

cs,; (ii-b)
with full breed similarity losses LB

sim, i.e., classification LB
cs

and triplet LB
triplet loss; (iii) with all breed losses, including

the 3D CG model loss LB
3D.

4.3.1 Perceptual Shape Evaluation

Table 4 shows that in terms of perceptual agreement, the two
parts, similarity loss and 3D CG model loss, have similar
impact.

Even though they do not explicitly constrain the 3D shape,
triplet and classification loss bring a clear improvement.
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Fig. 9 BARC results. Each row shows the input image with the projected 3D shape. Below that is an overlay of our predicted model and the image,
and finally a rendering of the posed 3D shape

Table 4 Perceptual studies

Experiment settings AMT results

Votes Percentage

LB
sim versus no breed losses 638: 382 62.55%: 37.45%

{LB
sim, LB

3D} versus LB
sim 670: 440 60.36%: 39.64%

{LB
sim, LB

3D} versus WLDO 998: 82 92.41%: 7.59%

Bold means better
Ablation of breed losses and comparison with WLDO. See text

Breed-specific 3D shape information as exploit by the 3D
CG model loss can further improve the prediction, but may
be difficult to collect at large scale. Note that adding 3D CG
models as additional supervision leads to a small improve-
ment (on average) across all breeds, even though they are
only available for 11 out of 120 breeds. All differences in
votes are highly significant (χ2-test, p<0.0001).

4.3.2 Breed Prototype Consistency

Wecomplement the perceptual studywith a quantitative eval-
uation with respect to breed prototypes (Table 5).

For 20 different breeds we evaluate WLDO, as well as
our method without any breed losses, with only classifica-
tion loss LB

cs, with classification and triples loss summarized
as similarity loss LB

sim, and with both LB
sim and LB

3D. Already

Table 5 3D shape evaluation

Method WLDO BARC

None LB
cs LB

sim {LB
sim, L

B
3D}

Error (cm) 11.55 8.58 7.99 7.76 6.95

Bold means better
For different breed losses, breed prototype consistency averaged over
20 breeds

without breed information, our model outperforms WLDO
by a clear margin in terms of 3D error, presumably due to
technical choices like details of the dog model and network
architecture, and the new pose prior. Adding the breed clas-
sification and triplet losses decreases the error further. The
additional 3D breed loss brings another reduction, which is
consistent with the perceptual study. Again, all pairwise dif-
ferences are highly significant (paired t-test, p < 0.0001).
Furthermore, the gains are consistent across breeds: For 19
out of 20breedsweget the sameorder,WLDO>BARCnobreed

>BARCsim >BARCsim+3D.

4.3.3 T-SNE Visualizations

Tomake the influence of the breed informationmore tangible,
we also visualize the effect of the breed similarity loss. Fig-
ure3 shows a t-SNE visualization of the latent feature spaces
learned by (left) a network without LB

sim and (middle, right)
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Fig. 10 Ablation study. Qualitative comparison of from left to right (1) our method trained without any breed losses (2) our method trained with
similarity breed loss only (3) BARC (our method). We show for various input images, front views as well as side views

an identical network trained with LB
sim. The breed similar-

ity pulls dogs of the same breed closer together in the latent
space z, which is closely linked to the body shape parame-
ters β. Different saturation levels of the same color indicate
breeds within the clade and clade colors are kept consistent
with the colors of the cladogram in Fig. 2. Even though the
notion of clades is not imposed or made explicit anywhere
in our network, breeds of the same clade tend to cluster. This
suggests that not only within breeds, but also above breed
level, shape knowledge can be transferred (Fig. 9).

4.3.4 Qualitative Results for Ablated Models

Figure10 shows results for ablated versions of BARC. To
the left we render results from our method without any of
the breed related losses, in the middle results with the breed
similarity loss only and to the right with the breed similarity
loss as well as the 3D CG model loss. For each of the three
versions, we show the front as well as a side view.

4.4 Failure Case Analysis

We divide the failure cases in two main groups: shape and
pose failures.

Fig. 11 Failure cases. Most failure cases are due to occlusion and poses
not seen during training

4.4.1 Pose Failure Cases

At development time we have trained our network with var-
ious pose priors, such as a mixture of Gaussians prior as
in Zuffi et al. (2018) and Biggs et al. (2020a), a variational
auto-encoder as in Zuffi et al. (2019) and our final normal-
izing flow pose prior. One failure mode that goes through
all priors is the erroneous prediction of dogs not facing the
camera. The Stanford Extra training set is unbalanced in the

123



1976 International Journal of Computer Vision (2023) 131:1964–1979

Fig. 12 Results for unseen breeds. Qualitative results of BARC (ourmethod) on images of previously unseen breeds. All test images are downloaded
from the American Kennel Club web page. We show for various input images an overlay, front view as well as side view of our predicted dog

sense that it shows many dogs from a front- or side-view.
Furthermore, most of the dogs do not bend the front legs
as they are either sitting, laying or standing, this leads to
challenges when predicting poses for dogs with heavily bent
wrists. As training with different pose priors lead to similar
error cases, we believe that those challenges are not struc-
tural problems of the pose prior itself, but rather of the image
dataset. Nevertheless, it might be worth examining different
training schedules such that rare poses obtain higher weights
or are repeatedmore often. Onemore thingworthmentioning
is that often perceived 3Dquality from front view is consider-
ably higher than from side-views. A strong 3D regularization
is inevitable. Predictions for laying and sitting dogs could be
improved by training a pose prior on a more suitable 3D pose
dataset. Furthermore, BARC is not always able to correctly
predict the pose if the dog is only partly visible, or if its pose
is far from those seen at training time. All methods, including
BARC, fail completely for a few images and predict transla-
tions where the dog does not even project into the image.

4.4.2 Shape Failure Cases

Our breed losses help to regularize dog shape. BARC can
predict more reasonable shapes, especially for dogs that are
not fully visible from the side. Nevertheless, we do some-
times observe shortened limbs when they are difficult to
predict due to poses such as a dog laying and facing the
camera. Working with a single shape for each dog breed is

Fig. 13 Puppies. Qualitative results on puppies from the Stanford Extra
test set

not an option, as there is no negligible intra-class variabil-
ity. Another challenge is dog hair. First, shape variability can
become enormous, consider for example differently sheared
poodles. Secondly, long hair does swing and the shape that
we want to predict for a dog with fluffy hair is not clearly
defined. In such cases, representing a dog with a mesh is not
ideal.

4.4.3 Some Visual Examples of Failure Cases

We show four failure cases in Fig. 11:
(1) a dog which is not fully visible, our prediction shows a

shrunken body. (2) most training images show dogs that face
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Fig. 14 Randomly sampled results. We show qualitative results on the Stanford Extra test set: for each sample an input image, the overlay of our
prediction (BARC) with that image, our prediction and previous state-of-the-art (WLDO)
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the camera. When the dog is turned away, pose prediction
fails. (3) a JapaneseSpanielwith lots of hair. Shape prediction
for such breeds is difficult. (4) A dog that is hard to recognize
and where, in part, the difficult pose is compensated by a
wrong shape - instead of bending the back, the dog is given
a stouter body.

4.5 BARCVisualized

In this section we present qualitative results of our final
method BARC and show that BARC generalizes well to new
dog shapes. BARC results on StanExt test images for dif-
ferent breeds, are displayed in Fig. 9. While input images in
this figure are sampled for variety, we use Fig. 14 to present
results on completely randomly sampled Stanford Extra test
set images. For each input image we show the overlap of our
prediction with this image, a 3D visualization of our predic-
tion and a 3D visualization of the previous state-of-the-art
method WLDO.
Finally, we aim to gain insights with respect to the gener-
alization ability of BARC to new shapes. StanExt contains
images of dogs belonging to 120 different breeds, and we are
interested to see how BARC performs on previously unseen
breeds. To that aim, images of new dog breeds are down-
loaded from the American Kennel Club web page. Figure12
illustrates an overlay of our prediction on the input image, as
well as front and side view for each of the seven dogs. In a
second experiment, we direct our attention to puppies. While
a few puppies are part of the StanExt training set, they are
not labelled as such and treated similarly as the adult dogs.
We visualize results on puppy images in Fig. 13. We provide
for each example, the input image, an overlay of the predic-
tion with that image, a rendering of the posed 3D model and
a rendering of the dog’s shape in t-pose. We conclude that
BARC generalizes to previously unseen breeds as well as
puppies (Fig. 14).

5 Conclusion

We present a method to reconstruct 3D pose and shape of
dogs from images. Monocular 3D reconstruction of articu-
lated objects is an unconstrained problem that requires strong
priors on 3D shape and pose. We overcome the limitation of
current 3D shape models of animals by training for model-
based shape prediction with a novel breed-aware loss. We
obtain state-of-the-art estimates of 3D dog shape and pose
from images while also producing consistent, breed-specific
3D shape reconstructions. Our results outperform previous
work metrically and perceptually. Combining visual appear-
ance and genetic information through breed labels, we obtain
a latent space that expresses relations between different
breeds. We believe this is the first work that combines breed

information for learning to reconstruct 3D animal shape, and
we hope it will be the basis of further investigation for other
species.

5.1 Limitations and Ethics

BARC is limited by its shape space and is not able to go
outside it. Given the high-quality regression results, future
work should explore learning an improved shape space from
images by exploiting breed constraints. We focused mainly
on shape, but pose and motion are also important, and learn-
ing models of these from image data may be possible using
ourmethods.Our research uses public image sources of dogs,
and no animal experiments were conducted. While we focus
on dogs, our method should be applicable to other animals
andmay eventually find positive uses in conservation, animal
science, and veterinary medicine.
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