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Abstract

Each year, underwater remotely operated vehicles (ROVs) collect thousands of hours of video of unexplored ocean habitats
revealing a plethora of information regarding biodiversity on Earth. However, fully utilizing this information remains a
challenge as proper annotations and analysis require trained scientists’ time, which is both limited and costly. To this end, we
present a Dataset for Underwater Substrate and Invertebrate Analysis (DUSIA), a benchmark suite and growing large-scale
dataset to train, validate, and test methods for temporally localizing four underwater substrates as well as temporally and
spatially localizing 59 underwater invertebrate species. DUSIA currently includes over ten hours of footage across 25 videos
captured in 1080p at 30 fps by an ROV following pre-planned transects across the ocean floor near the Channel Islands
of California. Each video includes annotations indicating the start and end times of substrates across the video in addition
to counts of species of interest. Some frames are annotated with precise bounding box locations for invertebrate species
of interest, as seen in Fig. 1. To our knowledge, DUSIA is the first dataset of its kind for deep sea exploration, with video
from a moving camera, that includes substrate annotations and invertebrate species that are present at significant depths
where sunlight does not penetrate. Additionally, we present the novel context-driven object detector (CDD) where we use
explicit substrate classification to influence an object detection network to simultaneously predict a substrate and species class
influenced by that substrate. We also present a method for improving training on partially annotated bounding box frames.
Finally, we offer a baseline method for automating the counting of invertebrate species of interest.
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1 Introduction and where certain species gather. As scientists better under-

stand biodiversity in the oceans and where in the ocean life

Marine scientists spend enormous amounts of resources on
understanding and studying life in our oceans. These stud-
ies hold numerous benefits for environmental protection and
scientific advancement, including the ability to identify areas
of the ocean where certain habitats and substrates exist
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flourishes, they can begin working toward more focused con-
servation efforts with those areas in mind. Further, scientists
can revisit those same areas and perform surveys in the future
to monitor how life is changing in the ocean as a result of
conservation efforts (Fig. 1).

A common method for studying underwater habitats con-
sists of planning underwater routes, called transects, then
following those paths and recording the environment either
by adiver with acamera or using an underwater ROV (Shester
et al., 2017; Drap et al., 2015). Once the transects have been
recorded and videos matched with their GPS locations, com-
mon annotation methods require researchers to review each
video several times, annotating the substrates that the camera
passes over in the first few annotation passes, then counting
invertebrates in another pass, and then counting fish species
in a final pass to give a better idea of where in the ocean which
substrates exist and where different species live. This infor-
mation is vital to determining species hotspots and finding
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Fig. 1 Cropped frame from DUSIA with examples of three classes of
interest: fragile pink urchin (blue), gray gorgonian (green), and squat
lobster (red). Variations in perspective, occlusion, and size can create
large differences across appearances of species individuals and make
some individuals, like small squat lobsters, almost invisible, especially
in a single frame. Crop shown is 690x487 pixels from a 1920x1080
frame (Color figure online)

ways to protect the environment while also meeting human
needs for usage of our oceans. These studies ultimately lead
to new discoveries as they facilitate exploration of unknown
oceanic regions. Currently, however, the sheer amount of data
researchers collect can be overwhelmingly expensive and dif-
ficult to annotate and utilize as their annotation methods’
multiple passes can push annotations times to many times
the duration of the video. Additionally, researchers spend a
lot of time sifting through videos of just bare substrate (like
rocks or mud) with no visible life, and methods that can help
tell where there is no life may aid researchers in more quickly
filtering those sections of video out of invertebrate counting.

Computer vision and machine learning models can sig-
nificantly aid in managing, utilizing, analyzing, and under-
standing these videos, ultimately reducing the overall costs of
these studies and freeing researchers from tedious annotation
tasks. However, developing and training these models require
annotated data. Further, the types of annotations generated
and used by domain scientists do not directly correspond
with the typical types of annotations generated and used by
computer vision researchers, requiring new approaches to
learning from video data and their annotations.

As a step toward advancement in efficiently computa-
tionally analyzing videos from a marine science setting, we
introduce DUSIA, a real world scientific dataset including
videos collected and annotated by marine scientists who
directly use a superset of these videos to advance their own
research and exploration. To our knowledge, DUSIA is the
first public dataset to contain videos recorded in this chal-
lenging moving-camera setting where an underwater ROV
drives and records over the ocean floor. This dataset allows
us to create solutions to a host of difficult computer vision
problems that have not yet been explored such as classifying
and temporally localizing underwater habitats and substrates,
counting and tracking invertebrate species as they appear in
ROV video, and using these explicit substrate and habitat
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classifications to help detect and classify invertebrate species.
Further, the types of annotations provided in DUSIA differ
from those of typical computer vision datasets, requiring new
approaches to learning.

Our contributions can be summarized as follows:

e DUSIA provides the first publicly available dataset of
annotated, full-length videos captured via an underwater
ROV. DUSIA’s videos are annotated by expert marine sci-
entists with temporal labels indicating substrates, count
labels for 59 invertebrate species, partial bounding box
labels for ten invertebrate species of interest in the train-
ing set, and full bounding box labels for those species of
interest in the validation and testing sets.

e We introduce the novel Context-Driven Detector (CDD),
which uses implicit context representations and explicit
context labels to improve bounding box detections. In
our case, context refers to explicit class labels of the
background. Specifically, our context labels describe the
substrate present on the ocean floor, which determine the
environment and habitat in which the organisms live. In
natural images, context might refer to indoor vs outdoor
images or subcategories within such as school, office,
library, or supermarket.

e We propose Negative Region Dropping, an approach for
improving performance of an object detector trained on
a dataset with partially annotated images.

e Finally, we offer a baseline method for counting inverte-
brate species individuals in this challenging setting using
a detection plus tracking pipeline.

In Sect. 2 we review other datasets and methods with sim-
ilar data and highlight how DUSIA differs from previous
datasets. Next, in Sect. 3 we discuss the contents and collec-
tion of DUSIA’s data and annotations. Section4 describes
some of the tasks for which DUSIA can be used, and Sect. 5
discusses our approaches to those tasks including the novel
CDD, Negative Region Dropping, and baseline tracking
method. Section 6 describes our experiments and results, and
Sect.7 discusses our findings.

2 Related Works

Analyzing underwater animals and habitats remains a chal-
lenge for computer vision models. Marine scientists collect a
wide variety of visual data for an even wider variety of tasks,
so when it comes to solving specific tasks, there often exists
a scarcity of well-annotated underwater data. Although there
are a few efforts from the computer vision community to
collect and annotate underwater data (Pedersen et al., 2019;
King et al., 2018; Boom et al., 2014; Marini et al., 2018; Joly
etal., 2014), it is hardly enough to tackle this daunting prob-
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lem, and few of these efforts collect data in the same way or
provide annotations for the same goals. In general, collecting
underwater image or video data is far more difficult than land
data and day to day images of common objects. Collecting
underwater data is so difficult, in fact, that Ishiwaka et al.
(2021) proposed a method for generating synthetic datasets.
DUSIA aims to be a collaborative, comprehensive effort to
guide the exploration and automated analysis of underwater
ecosystems.

2.1 Underwater Marine Datasets

Many of the existing underwater marine datasets are devel-
oped in order to detect and recognize the various behaviors,
or simply presence, of fish (Konovalov et al., 2019; Malgy
et al., 2019; Boom et al., 2014; Joly et al., 2014; Levy et
al., 2018). Numerous current works (Konovalov et al., 2019;
Malgy et al., 2019; Levy et al., 2018; Ditria et al., 2020) have
validated their fish detection and fish behavior recognition
models on these datasets. Interestingly, these methods mainly
focus on developing novel data-hungry algorithms, but the
data on which the algorithms perform is limited by its static
perspective. For example, Malgy et al. (2019) proposed a
dual spatial-temporal recurrent network, but the algorithm is
trained and tested on a dataset that is constrained by having no
camera movement and working in a covered area. Similarly,
Konovalov et al. (2019) augments the dataset of underwa-
ter fish images that they use with the underwater non-fish
images from VOC2012 (Everingham et al., 2015) by restrict-
ing their model to generating only binary (fish vs. no fish)
predictions. In the same way, (Ditria et al., 2020; Levy et al.,
2018) confined their models to do analysis only on one sin-
gle fish. Similarly, Marini et al. (2018) works on automating
the counting of fish without distinguishing among different
species. In contrast, DUSIA provides dynamic, high defini-
tion ROV video showcasing a rich and varied environment
with many species occurring in intermingling groups.

Additionally, unlike existing datasets, a novel feature
of DUSIA is the utilization of explicit, human-annotated,
contextual information such as substrates or habitat in the
analysis workflow. Such contextual information can play a
vital role in making accurate predictions, especially in the
case of identifying fish or other marine animals. Recently,
Rashid and Chennu (2020) has developed a large scale dataset
for habitat mapping using both RGB images and hyperspec-
tral images. This dataset contains a large number of annotated
images for classifying different coral reef habitats, but marine
animal information is not included in this dataset. DUSIA,
in contrast, is unique in this aspect, as it has both explicit
substrate and invertebrate annotations. Tables 1 and 2 high-
light the differences in many underwater image and video
datasets.

2.2 Methodologies

Beery et al. (2020) propose Context R-CNN to utilize long-
term and short-term temporal context to improve recognition
in passive monitoring deployments, though they lack explicit
labels for the background context of their data. Because their
data is collected via static cameras, the background context
is unchanging, does not have explicit labels, and may not
contribute much to their detection.

As mentioned in the previous section, recently, differ-
ent works have developed deep learning-based algorithms
to detect marine species (mostly fishes). Li et al. (2015) uses
a Fast-RCNN (Girshick, 2015) based network to classify
twelve different species of fish. Salman et al. (2016) present
a deep network to detect fish in 32 x 32 size video frames.
Siddiqui et al. (2018) use a pre-trained object detection CNN
network as a generalized feature extractor. The extracted fea-
tures are then fed to an SVM (support vector machine) for
classification of fish.

Our baseline method aims to alleviate some of these meth-
ods’ shortcomings by using explicit substrate predictions to
enhance species detections.

3 Dataset

DUSIA consists of over 10h of footage captured from pre-
planned transects along the ocean floor near the Channel
Islands of California. This includes 25 HD videos recorded
using RGB video cameras attached to an observation class
ROV equipped with multiple lighting fixtures recording at
depths between 100 and 400 ms. Three of the 25 videos do not
contain species of interest, so they are excluded from exper-
iments presented in this paper. DUSIA’s videos are part of a
large collection, and we plan to release more similar videos
from different excursions in the future.

DUSIA’s videos can assist in studies of the 57 anno-
tated invertebrate species because many of those species are
widely distributed along the west coast of North America and
beyond. For example, the fragile pink urchin, Strongylocen-
trotus droebachiensis, inhabits the upper continental slope
along the entire eastern North Pacific from Alaska to Baja
California, ranging in depth from 200-1200m off central
California (Taylor et al., 2014). Several species of squat lob-
ster (Munidopsis spp.) are also common across the Eastern
Pacific, and are similar looking such that collections would
be needed to identify them to species (Wicksten, 1989). The
yellow gorgonian, Acanthogorgia gracillima, is also found
across the North Pacific from at least Japan to California
(Horvath, 2019).

Recently, the diversity and abundance of megafaunal taxa,
such as those labelled in DUSIA, have been identified as a
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Table 1 Underwater datasets with labelled images

Image datasets Environment Recording type # Images Annotation type Class description

Barrett et al.! Reef AUV 1258 Point > 10 species and abiotic elements
Beijbom et al.? Reef Photoquadrat 2055 Point ~ 30 coral

Anantharajah et al.3 Various 3960 Bbox 468 fish species
BENTHOZ-2015* Deep sea AUV 9874 Point > 70 invertebrate and substrate
Bett and Ruhl® Deep sea Static 1047 Camera location No species labels

Jager et al.f - Various 794 Bbox 12 fish species

Beijbom et al.” Reef Photoquadrat 212 Points 10 coral and substrate
J-EDI® Deep sea ROV 1,500,000 Image level > 20 fish and invertebrate
King et al.’ Reef Static 413 Segmentation 10 invertebrate and substrate
Marini et al.!? Ocean (20m deep) Static 20,000 Bbox, contour Fish/not fish

Levy et al.!l Sea Aerial 272 Bbox Shark, ray, diver

Pedersen et al.!2 Brackish strait Static 14,518 Bbox Big/small fish, 4 invertebrate
MOUSS! Ocean floor Static 159 Bbox ~ 10 fish and scallop
AFSC!? Ocean ROV 571 Points ~10 fish and scallop
MBARI! Ocean floor - 666 Bbox ~10 fish and scallop
NWESC!3 Ocean floor ROV 123 Points ~10 fish and scallop
Langenkimper et al.'* Deep sea Various 20,000 Image level 23 megafauna morphotypes
Ditria et al.! Seagrass meadows - 6080 Segmentation Fish

Rashid et al.!® Reef HyperDiver 147 Contour 47 sessile biota and substrate
fathomNet!” Deep sea Various 85,000 Bbox > 2,000 concepts

Numbers of images are approximate.

Abbreviations: Bbox, bounding box; AUV, autonomous underwater vehicle. Citations are 1: (Barrett et al., 2011), 2: (Beijbom et al., 2012), 3:
(Anantharajah et al., 2014), 4: (Bewley et al., 2015), 5: (Bett & Ruhl, 2015), 6: (Jager et al., 2015), 7: (Beijbom et al., 2016), 8: (Jamstec e-library
of deep-sea images, 2016), 9: (King et al., 2018), 10: (Marini et al., 2018), 11: (Levy et al., 2018), 12: (Pedersen et al., 2019), 13: (Richards et al.,
2019), 14: (Langenkdmper et al., 2020), 15: (Ditria et al., 2020), 16: (Rashid & Chennu, 2020), 17: (Katija et al., 2022)

Table2 Underwater datasets with labelled videos

Video Datasets Environment Recording type Total footage Res. Frame rate Annotation Class description

description
Boom et al.! Reef Static 88 kh 240p, 480p 5 fps Contour, fish track 15 fish species
Joly et al.? Reef Static 117 kh 240p 8 fps Bbox Fish
Maloy etal.>  Farming site Static 6h 244 x 244 24 fps Video class Feeding/not feeding
Siaulys et al*  Ocean floor AUV 23 min 1080p 5 fps Segmentation 12 taxons
(3-65 m deep)
DUSIA (ours) Ocean floor ROV 10h 1080p 30 fps Bbox, substrate 57 invertebrate, 4 substrate
(100-400 m) classes, and

CABOF

Note that static camera datasets include footage from cameras that are fixed underwater and run continuously for days on end.
Abbreviations: Res., resolution; bbox, bounding box; AUV, autonomous underwater vehicle. Citations are 1: (Boom et al., 2014), 2: (Joly et al.,
2014), 3: (Malgy et al., 2019), 4: (Siaulys et al., 2021)

high priority essential variable for understanding changes in
marine ecosystems (Danovaro et al., 2020).

region in order to efficiently cover and survey one section
of the ocean (Shester et al., 2017); however, to protect these
fragile ecosystems, DUSIA does not make specific GPS coor-
dinates publicly available.

Some surveys use scuba divers to collect video along tran-
sects, but DUSIA covers larger, deeper areas using an ROV
attached to a 77-foot catamaran. During the collection pro-

3.1 Data Collection

Surveys of wildlife on the ocean floor generally start with
planning a group of paths, called transects, across some
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Fig.2 Tllustration of the ROV attached to the catamaran, substrate lay-
ers, and habitat characterization. Substrates are divided into soft (mud,
cobble and sand), hard (rock and boulder), or mixed (a combination of
any soft and hard substrates). Illustration courtesy of Marine Applied
Research and Exploration (MARE) Group

cess, the ROV is attached via cable to the catamaran. Once
the boat arrives near the beginning of the desired transects,
the ROV is placed in the water and remains on a long leash
attached to the boat such that the catamaran can follow the
transects roughly while the ROV follows its path more pre-
cisely via inputs from a remote operator on the boat who
makes use of the ROV’s cameras, lights, GPS, and other
instruments that indicate the ROV’s location relative to the
boat, which allows for computing its GPS location. Figure 2
roughly illustrates the ROV rig used for data collection.

Fig.3 Example frames each
containing just one substrate
each, indicated by the in frame
text

3.2 Substrate Classes and Annotations

After the collection stage, researchers return to a laboratory
where they review, analyze, and annotate each video. DUSIA
includes four different substrates: boulder, cobble, mud, and
rock. An illustration of each one is shown in Fig. 2 and frames
from the dataset are shown in Fig. 3. The difference between
each depends on the nature of the material makeup of the
ocean floor. A description of each substrate can be found in
Tables 3, and 4 shows a toy example of the annotation format.
Each of these substrates may overlap such that a given
frame can have multiple substrate labels if enough of mul-
tiple substrates are visible. The annotation process includes
multiple passes, one for each substrate, where the annotators
indicate the start and end times of each substrate occurrence.
This arduous process can be alleviated by our methods.

3.3 Invertebrate Classes and Annotations

Once the substrate annotations are completed, scientists
make yet another pass over each video, this time annotat-
ing invertebrate species, often referencing substrate labels
as certain species have a tendency to occur in certain sub-
strates. When a group or individual of a species touches the
bottom of the video frame, they pause the video, count the
species touching the bottom of the frame, and make note of
the time stamp at which the count occurred, giving domain
researchers insight into where in the video, in the ocean, and
in which substrate, each species tends to occur. We refer to
these labels as CABOF, Count At the Bottom of the Frame,
labels. Figure4 illustrates the CABOF label collection pro-
cedure.

Count labels provide guidance in learning to classify and
detect invertebrate species, they ensure that species individ-
uals are not counted multiple times, and a human could use

Table 3 Description of the four

substrates present in DUSIA Substrate Description
Boulder Rocky substrate larger than 25 cm in diameter that is detached and clearly movable
Cobble Rocky substrate that is 6 to 25 cm in diameter
Mud Very fine sediments that stay suspended in the water when disturbed (loss of visibility)
Rock Consolidated rocky substrates that appear attached to the bottom and not movable
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Table 4 Example of combined substrate and CABOF, Count At the
Bottom of the Frame, annotations. Substrates are labeled with begin-
ning and end times, and invertebrate CABOF labels include a single
timestamp shown in the Begin column and count

Annotation Begin End Count
Boulder 0:00:20 0:00:25

FPU 0:00:21 2
Cobble 0:00:23 0:01:30

Mud 0:00:40 0:01:20

SL 0:00:49

SL 0:00:51 3
Rock 0:01:00 0:03:50

Mud 0:02:10 0:02:15

these labels to learn to label further videos. However, current
computer vision methods do not perform as well with weak
supervision as they do with strong supervision (Bearman et
al., 2016; McEver & Manjunath, 2020; Ahn et al., 2019), and
count labels of this nature are unusual for current machine
learning methods.

3.3.1 Bounding Box Labels

To address this difficulty, we further annotate a subset of the
dataset with bounding box tracks to help enable current com-
puter vision methods, which often require bounding boxes for
training and testing, and to validate those methods on DUSIA,
using the marine scientists’ CABOF labels. First, we select a
subset of species to annotate with stronger annotations. We
choose ten species, each visualized in Fig. 5 because they are
some of the most abundant species in the dataset. Appendix
A shows the counts of all invertebrate species annotated with
count labels across DUSIA.

To generate our training set, we randomly select a subset
of frames containing count labels for our species of interest.
We seek to those frames and back up in the video until the
annotated species individual or group, i.e. our annotation tar-
get(s), is either in the top half of the screen or first appearing.
In the ROV viewpoint, objects typically appear at the top
of the frame as the ROV moves forward. Once we back up
sufficiently far, we then draw a bounding box or boxes on
the annotated target(s), ignoring other instances of species of
interest (thus creating partial annotations) due to annotation
budget and visibility constraints.

We then jump 10-30 frames at a time adjusting the box
location for the annotation target(s) in each frame we land
on, referred to as keyframes. This process allows for efficient
annotation and allows us to interpolate box locations between
keyframes for additional annotation points.

@ Springer

The result of this annotation process is a partially anno-
tated training set for learning to detect and later count species
of interest. These annotations are partial because we did
not attempt to always label every individual of each species
of interest in the training set. Instead, we focused only on
the annotation targets. Because some individuals of the ten
species of interest may be labelled while other individuals of
the ten species may not be, we consider these partial labels.

We chose to partially annotate the our training set so that
we could collect boxes tracking each species. In populated
areas, there are many species hiding, coming, and going,
making collecting full annotations extremely difficult, espe-
cially across many frames.

Additionally, we provide some fully annotated frames
where we guarantee that all individuals of the ten species
of interest in the bottom half of each frame are labelled with
a bounding box. We were constrained to the bottom half of
the frame due to darkness, murky waters, low visibility, and
text embedded in the videos during the collection process.
Therefore, we use only the fully annotated bottom half of the
validation and testing frames during training, testing, and
presenting our detection results. Seeing as the marine scien-
tists count the creatures that touch the bottom of the frame,
we expect the bottom half of the frame to provide a good
metric for count estimations. These frames are provided for
validation and testing.

In order to generate these fully annotated validation and
testing frames, we randomly selected a subset of count anno-
tated frames in the validation and test sets. For each of those
selected frames, we labelled all instances of species of inter-
estin the bottom half of the frame including but not limited to
the original targets. For rare species, we often labelled frames
a second or two before and/or after the count annotated frame
in order to provide more validation and testing frames. Still,
the number of validation and testing frames is limited by the
difficulty in collecting these fully annotated frames as well
as the scarcity of some species.

These fully annotated frames took on average 146.5 s per
frame for trained individuals to annotate. For reference, it
took annotators approximately 22.1 s per image to fully anno-
tate with single point annotation and 34.9 s per image with
squiggle supervision in the VOC2012 natural image dataset
of 20 classes including cats, busses, and similar common
object classes (Bearman et al., 2016). Collecting bounding
boxes, consisting of two precise points, with half the number
of classes should take a similar amount of time, but the dif-
ference in time spent per image illustrates the challenge of
annotating DUSIA as each annotator struggled to find every
object of interest even after being trained to specifically to
localize the species of interest. An example of a fully labelled
validation frame is shown in Fig. 6.
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Fig.4 Sequence of video begins on the left and continues to the right
as indicated by the time stamps in the top right of the video. The basket
star indicated by the white arrow will be counted when it first touches

the bottom of the frame in the middle frame at time 21:00:36. The yel-
low gorgonian indicated by the yellow arrow will be counted when it
touches the bottom of the frame later in the video

WSSsC
-

WSsC

FPU

Fig.5 Cropped screenshots of each of the ten species of interest: basket
star (BS), fragile pink urchin (FPU), gray gorgonian (GG), long-legged
sunflower star (LLS), red swifita gorgonian (RSG), squat lobster (SL),

3.4 Dataset Splits

We provide a split of the dataset into training, validation, and
testing sets with 13, 3, and 6 videos in each split respectively.
The training setincludes 8682 keyframes used for training the
detector (described in detail in Sect. 3.3). The validation and
test sets respectively include 514 and 677 frames with fully
annotated lower halves. Between each split, we attempted
to maintain a relatively even distribution across our species
of interest; however, preserving this distribution leads to a
slightly uneven distribution of substrate occurrences.

laced sponge (LS), white slipper sea cucumber (WSSC), white spine
sea cucumber (WSpSC), and yellow gorgonian (YG)

3.5 Statistical Analysis of Data

Table 5 shows the frequency of each of the substrate classes
present in our dataset.

Table 6 shows the frequency of bounding box labels for
invertebrate species of interest represented in our dataset,
and Table 7 illustrates the frequency of CABOF labels for
invertebrate species.

Table 8 illustrates the distributions of CABOF labels
for each species across the different substrates. While not
weighted against the relative presence of each substrate, this
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Fig.6 Fully annotated frame example. Color to species map is as follows: yellow: laced sponge, magenta: white spine sea cucumber, cyan: white

slipper sea cucumber, green: squat lobster

Table 5 Distribution of number of frames containing each substrate
across DUSIA and its splits. Note that a given frame may have multiple
labels

Boulder Cobble Mud Rock Total
Train 70,248 247,764 259,535 183,020 760,567
Val 14,899 28,694 23,656 63,322 130,571
Test 30,742 91,695 102,422 87,399 312,258
Total 115,889 368,153 385,613 333,741 1,203,396

table still illustrates that certain species occur much more
frequently in certain substrates. For example, fragile pink
urchins (FPU) rarely occur in the boulder substrate, and fre-
quently occur in mud while laced sponges (LS) almost always
occur in a substrate that includes rock. These correlations
suggest that learning to predict substrate may aid in learning
the relationship between substrate and species and motivate
a context driven approach for species detection and counting.

4 Tasks

While our dataset has a plethora of uses, we present two
specific tasks for which our dataset is well suited.

4.1 Substrate Temporal Localization

The first step marine researchers take to analyzing the videos
that they collect is to define the temporal spans of each
substrate by indicating the start and end times of each sub-
strate as the substrate changes while the ROV drives over
the ocean floor. Many substrates may occur simultaneously,
which slightly complicates the problem making it a mutli-
label classification problem. Our dataset makes it possible to
develop and test automated methods for this problem.

Localization Evaluation We evaluate the performance of
substrate temporal localization using mean Average Preci-
sion (mAP). For each frame, we make a prediction for each
substrate class with some confidence value. We use these pre-

Table 6 Distribution of

bounding box annotations of BS FPU GG LLS RSG SL LS WSSC  WSpSC  YG  Total

each species across splits Train 1247 3675 3294 735 775 3264 1071 1397 819 1024 17,301
Val 61 394 259 20 85 594 91 439 51 38 2032
Test 124 653 277 61 79 1181 98 506 28 180 3187
Total 1432 4722 3830 816 939 5039 1260 2342 898 1242 22,520
Note that one species individual may be annotated with multiple bounding boxes as it occurs across multiple
frames

-lr:bbelles zchofst%'i‘J‘;II": Zfldcﬁ‘sBOF BS FPU GG LLS RSG SL LS  WSSC WSpSC YG Totl

splits. Train 292 2828 398 269 190 1649 517 832 279 103 7357
Val 17 154 80 8 19 208 40 164 22 9 721
Test 52 420 78 29 48 742 75 317 17 38 1816
Total 361 3402 556 306 257 2599 632 1313 318 150 9894

As described in Sect. 3.3, each species individual is counted only once when it touches the bottom of the frame
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Table8 Percentage of total BS FPU GG  LLS RSG  SL LS WSSC  WSpSC  YG
species individuals occuring in
each substrate according to B 0302 0059 0362 0206 0198 0219 0.168  0.224 0.176 0.340
CABOF labels
C 0773 0370 0797 0575 0712 0581 0454  0.754 0.601 0.887
M 0288 0813 0.18 0951 0471 0689 0372  0.467 0.896 0.127
R 0670 0424 0464 0297 0716 0745 0998  0.585 0.324 0.380

Note that a given frame may have multiple substrate labels, so a given individual may occur in multiple

substrates at one time

dictions and ground truth to compute per class AP and take
the mean of the per class AP scores to compute mAP.

4.2 Counting Species Individuals

DUSIA also makes it possible to count the number of indi-
viduals of species occurring in the videos. Counting can be
achieved in three stages: detection, tracking, and then count-
ing. We present a simple baseline method for achieving this.
While many computer vision methods for counting may rely
on localization information such as bounding boxes, marine
researchers are interested in the number of individuals occur-
ring in the video and are less interested in where exactly in the
frame an organism occurs. They can use video timestamps
of those individuals’ occurrence to map those timestamps
back to their GPS coordinate time log from the expedition in
which the video was captured, generating population density
maps for different species.

Additionally, we provide bounding box labels for ten
species of interest as described in Sect. 3.3.
Detection Evaluation We use these bounding box labels to
evaluate the performance of the object detection stage of
counting with mean Average Precision (mAP). For each
bounding box prediction, we compute its intersection over
union (IOU) with each ground truth box. If a box’s IOU
is over a threshold, this box is counted as a true positive.
Each ground truth box can correspond with only one predic-
tion, and additional predicted boxes with high IOU with that
ground truth box are counted as negative. Using this nega-
tive, positive system, we can compute the average precision
(AP) for each class, and take the mean of per class APs to
compute mean Average Precision (mAP). This object detec-
tion computation follows standard practice (Lin et al., 2014;
Everingham et al., 2015).
Counting Evaluation To evaluate our counting performance,
we simply compute relative error (RE)

_ Predicted — Actual
o Actual

RE (D

using our predicted counts. Negative RE indicates that
species was under-counted, and a positive sign indicates that
a species was over-counted. In order to summarize the per-

formance of our counting method, we take the mean of the
absolute values of per class REs.

5 Methods

While our dataset can be used to train models to solve a wide
variety of problems including substrate classification, species
hotspot estimation, species counting, and invertebrate track-
ing, we present methods for substrate temporal localization
and invertebrate species detection using partially supervised
frames with our primary focus on invertebrate species detec-
tion. We feed our detection results to ByteTrack’s tracking
algorithm (Zhang et al., 2021) to track invertebrate species
and present a simple method for using these tracks to count
invertebrate individuals.

5.1 Substrate Classification

For a baseline, we train two basic classifiers for substrate
classification. First, we trained an out-of-the-box ResNet-
50 based (He et al., 2016) classification CNN, pre-trained on
ImageNet (Deng et al., 2009), on frames pulled from training
videos to predict four substrates at once. Then, we trained
four separate ResNet-50 classifiers, one per substrate, and
combined the prediction results from each of the classifiers by
simply assigning each of their confidence predictions to each
class since substrate classification allows multiple substrates
to be present in a single frame.

5.2 Invertebrate Species Detection

We trained an out-of-the-box Faster RCNN model using
our partially annotated keyframes (see Sect. 3.3 for partial
annotation description). We chose Faster RCNN for its adapt-
ability and ability to classify smaller boxes, with which some
object detectors struggle. As shown in Fig. 10, many classes
in DUSIA are made up of small boxes.

Figure 7 shows vanilla Faster RCNN in black. An image
is fed to a backbone network, and image features are fed to
a region proposal network. Then, region of interest pooling
selects proposed regions. Finally, fully connected layers clas-
sify each region and regress the bounding box coordinates to
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Context Description Branch

Fig. 7 Context-Driven Detector: the Context Description Branch
(green) takes features from the backbone, classifies context explic-
itly (blue), and feeds a global representation of context (purple) to the

refine their localization. We made no modifications to Faster
R-CNN for this baseline model and refer to this version as
vanilla Faster RCNN with the loss function, L,, described
by Ren et al. (2015):

Ly=Ly+L, @

where L is the loss for the detector and L, is the loss for the
region proposal network. Since we make no modifications to
this part of the loss, we leave the details of the original loss
description to the source paper.

5.2.1 Negative Region Dropping

Because much of our partially annotated training set contains
unlabelled individuals of species of interest, we propose an
approach for teaching the detection network to pay more
attention to the true positive labels, and to pay less attention
to potential false positives during training because a false
positive may actually just be an unlabelled positive. There
is generally no way of being sure whether an individual of
interest is not present given a partially labelled training set,
but all of the boxes provided for training are correct, true
positive examples. Since humans can make sense of such a
scenario, we aim to create a method for a detector to emulate
that process.

Faster RCNN’s region proposal network (RPN) generates
proposals and computes a loss to learn which proposal con-
tains an object of interest or not. Each proposal is assigned a
label, positive or negative, based on whether it has sufficient
overlap with a ground truth box (positive) or not (negative).
Because DUSIA'’s training set contains unlabelled positives,
we propose randomly dropping out a percentage of the neg-
ative proposals, thereby giving negative examples a lower
weight and positive examples a higher weight. Dropping
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box classification layer to enhance detections. We show that using this
branch enhances the detections overall indicating that learning from
explicit context labels can enhance detections (Color figure online)

these negative proposals simply equates to not including them
in the RPN’s loss, L .

We explore different percentages, p, to drop in Sect. 6,
and show that dropping negative proposals in this way
leads to significant improvement in detection performance
on DUSIA.

5.2.2 Context Driven Detection

To improve invertebrate detection using context annotations,
we introduce the novel Context Description Branch as shown
in green in Fig.7. The first iteration of the context descrip-
tion branch (blue in Fig. 7) flattens the feature map from the
backbone network and feeds this flattened vector to a fully
connected layer which is trained in tandem with the detec-
tion branch to predict the multi-class substrate label. Simply
backpropagating a weighted binary cross entropy loss to the
backbone network to predict the substrate label increases the
model’s performance and generalizability (as measured by
performance on the test set) by teaching the network about
context via explicit context classification. This joint opti-
mization generates cues in the backbone feature map that
improve the invertebrate detection. For this iteration of the
network, the loss function looks the same as Eq. (2) with the
additional loss for explicit context classification.

L=L,+axL, 3)

where « is a hyperparameter weight and L. is a binary cross
entropy loss for context labels.

By feeding global features alongside local features to the
box classification layer, we can also enhance the model’s
performance; however, for the network to learn from them
simultaneously, the global and local features must be on sim-
ilar orders of magnitude. For vanilla Faster RCNN, the local
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box features are vectors of size 1,024. Global features from
the ResNet-50 backbone, though, are much larger. To address
this size mismatch, we add a 1D convolution layer to the con-
text description branch, which reduces the dimension of the
backbone’s feature map. This reduced map represents the
global context information, which is largely the visible sub-
strate, to a dimensionality on the same order of magnitude as
each of the box features that are fed to the box classification
head’s fully-connected layer. Along those lines, we also scale
the global features to match the local box feature vector by
simply multiplying the global features element-wise with a
scalar hyperparameter, f.

Because Faster RCNN predicts the class of each box based
on a set of box features, which is a local representation of
the object that is being classified, we enhance these box
classifications by concatenating each image’s global context
information to each of its box features. This concatenation
fuses together local and global features and allows the net-
work to draw more immediate conclusions about the global
information, object features, and their relationship, which is
especially relevant when classifying invertebrate species in
this setting. Here, we make no changes to the loss function
from Eq. (3), and the 1D convolution kernel is learned.

5.3 Invertebrate Tracking and Counting

To illustrate an example pipeline for invertebrate counting,
we use a detection plus tracking approach. First, we train
our detector on keyframes from our training set, and then we
run inference on the full validation and testing videos at 30
fps saving all detections including their spatial and temporal
locations, class labels, and confidence scores.

As an intermediate step, we filter out all low confidence
detections under different thresholds so that the tracker does
not see low confidence detections.

ByteTrack (Zhang et al., 2021) takes as input the detec-
tions (box coordinates and confidence scores) of a single class
at a time and metadata from the images (e.g. image size). In
short, ByteTrack performs a modified Kalman filter based
algorithm to the detections in order to link them in adjacent
frames and assign each detection a track ID, or filter it out.

We apply a second filter to the output of ByteTrack such
that track IDs that occur in too few frames are filtered out.

Finally, we count species individuals. To emulate the
process used by marine scientists, we only count species indi-
viduals that touch the bottom of the frame. So, if a tracked
species’ box touches the bottom of the frame, we mark its
track ID as counted and simply increment its class’s count.
This way, for each video, we can compute a total num-
ber of species per video that we can then compute relative
error using our predicted counts and the sum of each video’s
CABOF labels.

6 Experiments

We test a few models and methods for the substrate temporal
localization task in an effort to provide a baseline for other
works to improve upon.

6.1 Substrate Temporal Localization
6.1.1 Single Classifier

We test a simple ResNet-50 based image classifier trained
with a batch size of 32, learning rate of 0.1, and up to 50
epochs, selecting the epoch weights that perform best on the
validation set. We also tested learning rates of 0.01 and 0.001
for our classifiers, and these models performed similarly but
slightly worse. Table 9 shows the results of these experiments
as predictions were made on the fully annotated frames of
our validation and testing sets. These two sets are included
for comparison with the context classification performance of
CDD with explicit context classification, though CDD is opti-
mized to perform detection simply using substrate prediction
as a guiding sub-task. For substrate localization, though, we
have annotations for almost every frame. So, we also present
our classification performance on the test_I1fps set, which
includes many more frames from the test videos. To generate
test_1fps we simply sample the entire test videos uniformly
at one frame per second. We then classify each frame, and
present the AP scores. test_1fps aims to illustrate the per-
formance of the substrate classifiers across the length of the
entire video rather than only on small parts of the video con-
taining bounding box labels for species of interest.

6.1.2 Combination of Binary Classifiers

As mentioned in previous sections, substrate annotations are
currently completed by trained marine scientists in multiple
passes through each video, one pass per substrate. Inspired by
this approach, we use one binary classifier network per sub-
strate class. Each ResNet-50 image classification network is
trained independently on the training set; however, each net-
work is trained to simply indicate whether one substrate is
present or not. We use each classifier’s prediction together
to predict the multi-class label and refer to this method as
our combined approach. Table 9 shows that this method
improves performance over a single multi-classifier for most
substrates, indicating that each approach may have different
use cases.

All classifiers seem to struggle with correctly identifying
the boulder substrate, and, given the nuance in differences
between hard substrates, this is not surprising considering the
classifiers have little scale information to use to determine
and differentiate exact sizes of different pieces of cobble,
boulders, or larger rock formations. Additionally, the chang-
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Table 9 Substrate classifier
performance. Per class APs are

test_1fps per class APs

shown for the test_1fps set val mAP test mAP Boulder Cobble Mud Rock test_1fps mAP
described in Sect.6.1.1. CDD Binary  0.588 0.646 0.274 0.802 0750 0826  0.663

shows the classification .

performance of the CDD with « Single 0.551 0.572 0.259 0.777 0.951 0.781 0.692
=0.0001 and p = 0.75, which CDD 0.517 0.596 - - - - -

was not run on test_1fps
because CDD is not a dedicated
substrate classifier

ing perspective of the ROV makes it difficult to understand
scale in the videos. That said, a dedicated boulder detector
out-performed the single classifier method overall due to its
impressive performance classifying the mud class.

6.2 Invertebrate Species Detection

In order to detect species individuals, we present mean aver-
age precision (mAP) results for object detection with an
intersection over union (IOU) threshold of 0.5 because our
counting task is not particularly sensitive to high overlap.
This metric is known as APsq from the popular COCO eval-
uation metric suite (Zhao et al., 2019). As long as the object
is detected reliably, the quality of the localization is not as
important as coming up with the correct counts of species
individuals. We present the full COCO suite of evaluations
for a more in depth analysis of our best CDD model in
Table 16.

We offer a comparison of single-stage, transformer-based,
and two-stage out-of-the-box detection models on DUSIA in
Table 10. YOLOvVSI (Jocher et al., 2022) is the large model
of the single stage object and performs best of all default
YOLOVS5 model sizes. The DEtection TRansformer (DETR)
is a recent object detection model that uses a transformer-
based object detector to make object detections.

For each Faster-RCNN and CDD detection experiment,
we initialize our models with weights pretrained on ImageNet
and then train the network for up to 15 epochs. All detection
networks (including YOLOv5 and DETR) only ever see the
bottom half of any given video frame. That is, the top half is
cropped out, and the models are trained on the bottom half.
Section3.3.1 describes more on the reasoning for avoiding
the top half of DUSIA’s video frames for object detection.

We select the model from the epoch with the best perfor-
mance on the fully annotated frames of the validation set.
Then, we run inference on the fully annotated frames of the
test set using those selected model weights. We repeat the
training and testing procedure four times for each exper-
iment and report the average results over the four runs
because PyTorch does not support deterministic training for
our model at the time of writing.

We first train vanilla Faster RCNN (Ren et al., 2015) with
abatch size of 8 and try several learning rates after initializing
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Table 10 Detection models tested, the approximate number of param-
eters of each model, and their performance on DUSIA. YOLOvVS5] and
DETR were trained and tested with default parameters

Models # params val mAP test mAP
YOLOVS51 46 M 0.485 0.363
DETR 41M 0.499 0.387
Faster RCNN 42M 0.490 0.391
CDD 41M 0.524 0.447
Tab!e 11 Performance f)f Ir val mAP  test mAP
vanilla Faster RCNN with
varying learning rates 0.1 0.454 0.361

0.01 0.490 0.391

0.001 0.482 0.367

with weights pre-trained on COCO (Lin et al., 2014) provided
by PyTorch (Paszke et al., 2019). The results are shown in
Table 11.

We then perform hyperparameter searches for each of our
method contributions described in Sect. 5: « for explicit con-
text learning and backbone refinement, 8 for global context
feature fusion, and p for Negative Region Dropping. After
testing each hyperparameter independently, we try combina-
tions of each and discuss the results. We prioritize test mAP
over val mAP as test mAP is more indicative of the generaliz-
ability of our model since the best model weights are selected
on best val mAP.

6.2.1 Negative Region Dropping Percent p

Table 12 shows that Negative Region Dropping consistently
improves the training on DUSIA by teaching the network
to focus more on learning from true examples than negative
examples. Interestingly, setting p to 1.0 detrimentally harms
performance indicating that having some negative regions
contribute to the region proposal loss is still important.

6.2.2 Global Feature Fusion Scalar 8

By creating a global feature representation and feeding it later
in the network, the network is better able to classify boxes
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Table 12 Performance of Faster-RCNN with varying Negative Region
Dropping percentages

Table 14 Performance of the Context Driven Detector given different
context loss scaling « values

Ir P val mAP test mAP Ir o val mAP test mAP
0.01 0 0.490 0.391 0.01 0 0.490 0.391
0.01 0.5 0.492 0.413 0.01 0.1 0.470 0.389
0.01 0.75 0.509 0.439 0.01 0.01 0.494 0.419
0.01 0.9 0.492 0.403 0.01 0.001 0.487 0.401
0.01 1 0.297 0.264 0.01 0.0001 0.502 0.420
0.001 0.75 0.479 0.380 0.01 1.0E-05 0.507 0.410
0.001 0.9 0.481 0.380 0.01 1.0E-06 0.501 0.408
0.001 0.01 0.456 0.358
0.001 0.001 0.453 0.361

Table 13 Performance of the Context Driven Detector given different
B scalar values

Ir B val mAP test mAP
0.01 0 0.490 0.391
0.01 0.1 0.471 0.371
0.01 0.01 0.491 0.397
0.01 0.001 0.499 0.396
0.01 0.0001 0.494 0.410
0.01 1.0E-05 0.496 0.406
0.01 1.0E-06 0.482 0.394
0.001 0.01 0.475 0.374
0.001 0.001 0.477 0.371

correctly, but concatenating a global feature representation
with the local box features requires that the features come in
at similar scales. As described in Sect.5.2.2, 8 is used as an
element-wise multiplicative scalar to re-scale of the global
features. Table 13 shows the effect of different scalar values
for this fusion.

6.2.3 Context Loss Weight a

By modifying the detector to simultaneously classify the con-
text of an image in parallel with detection, we demonstrate
that simply backpropagating information useful for classi-
fying substrate to the backbone also serves to help improve
detection performance. Training a joint task in this way leads
to less powerful context classifications than a dedicated con-
text classifier, but it leads to a more powerful object detector.
Table 14 shows the effects of @ on the detection performance.

6.2.4 Hyperparameter Combinations

We illustrate that each hyperparameter alone can improve
the detector performance over the baseline out-of-the-box
models. We further illustrate that Negative Region Dropping
and context driven detection can work in tandem to further
improve performance. We also find that a context driven

Table 15 Average performance of best models from each hyperparam-
eter combination

o B P val mAP test mAP
0 0 0 0.490 0.391
0 0.0001 0 0.494 0.410
0.01 0.1 0 0.480 0.420
0.0001 0 0 0.502 0.420
1.0E-06 0.01 0.75 0.517 0.430
0 0 0.75 0.509 0.439
0.0001 0 0.75 0.514 0.439
0 0.01 0.75 0.524 0.447

detector with both implicit attention to context (global feature
fusion) and explicit context classification does not necessar-
ily outperform implicit context usage or explicit classification
only. Training on both implicit and explicit context simulta-
neously may interfere with each other. Still, we emphasize
that learning from context can significantly improve object
detection performance in this setting, and we aim to find even
better ways to utilize contextual information to better classify
objects in future work.

Table 15 highlights the best hyperparameter settings
revealed during our search, and Appendix B goes into more
detail on the settings tested for this study. Note that the 8 col-
umn set to zero indicates that global features are not being
scaled by 0, rather they are not being concatenated with the
local box features at all.

Table 16 shows the performance of the best CDD model
over the whole COCO evaluation suite, which is commonly
used to evaluate the performance of object detectors (Zhao
et al., 2019). This suite shows the performance of object
detectors over a range of IOU thresholds and for different box
sizes: small, medium, and large. AP5q is the metric shown
in other object detection performance tables as our tasks are
not particularly sensitive to high IOU detections. The metrics
show that our detector struggles to find small objects.
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Table 16 Full COCO suite

i metric val test
showing performance of the best
single CDD model with £=0.01 AP50.05 0.226 0.201
and p=0.75 on both the val and APs, 0517 0.449
test sets
AP75 0.150 0.155
APg 0.011 0.010
APy 0.154 0.144
AP 0.310 0.302
Vanilla [ CDD
0.800
0.678
0.622 0.625
0.580

AP

0.600
0.500
0.446 0.447
0.385
0.400
0.65] 0.280
0572 %%
0.199
0.200 0154 04
0. 343 0. 345 .
o200
0.000 —

= N o o QO v % C) O
T KT O Y Q_% "N %%\$%Q%

Species

Fig. 8 Per class test AP comparison of vanilla Faster RCNN and the
best Context Driven Detector

We find that Negative Region Dropping increases the over-
all performance of both vanilla Faster RCNN and context
driven detectors. While explicit and implicit context usage
may conflict with one another in training, independently they
can achieve performance increases. The best model overall
is achieved with global context feature fusion and Negative
Region Dropping, and a model with explicit context classifi-
cation and Negative Region Dropping follows close behind.
We find that using context to influence detections leads to
a 7.4% increase, using negative region dropping leads to a
12.3%, and together they can achieve a 14.3% increase in
mAP on the fully annotated frames in DUSIA’s test set.

Figure 8 illustrates the per class AP detection performance
of our best model compared with vanilla Faster RCNN show-
ing that our model significantly increases performance on all
classes. Figure 9 shows qualitative examples of success and
failure cases of the best version of CDD.

6.3 Invertebrate Species Counting

There are some noteworthy differences between the detec-
tion and counting problems. As mentioned in Sect.3.4, we
partition DUSIA’s videos into three sets: training, validation,
and testing sets. However, the detector sees only a small frac-
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tion of each video as only a small subset of each video has
bounding box annotations. Further, while we refer to three of
our videos as validation videos, our detection models do not
train on those videos at all, and only 514 frames from those
124,000 validation video frames are used in the detection
validation process to select our best model weights.

In contrast, our counting method runs our detector on the
entire lengths of the videos in the validation and testing sets,
posing a great challenge to the generalizability and robust-
ness of an object detection model. That is, the sets of frames
used for the counting task are much larger than those used
for detection. Also, the frames annotated with invertebrate
species (i.e. all the frames in the detector’s training set) all
include instances of those species of interest. In contrast, each
video contains long time spans of both densely and sparsely
annotated areas including some long regions with no species
of interest. As a result, counting species individuals poses
a very challenging problem, and much work remains to be
done in the power of a detector and its ability to differentiate
between background and species of interest in both sparsely
and densely populated environments.

Still, we aim to demonstrate the challenge of this problem
with a simple baseline method, though much work remains
to be done to achieve a result that would be able to replace
the annotation abilities of trained marine scientists. We hope
that DUSIA can aid in pushing the limits of computer vision
models and extend computer vision methods’ usefulness into
more challenging, scientific data.

In order to count invertebrate individuals, we first run the
best performing version of CDD on each of our val and test
videos at the full frame rate of 30 fps and save all detections.
Then, we filter out all detections with confidence scores under
a threshold, 7, before feeding all detections to ByteTracker.
We then filter the output of ByteTrack by discarding any
track IDs with less than y detections in the track. That is,
if a track ID is assigned to boxes in only a few frames, we
discard that track ID. We experimented with ByteTracker’s
hyperparameters and found that their effect was significantly
smaller than the effects of 7 and y, so we opt to use the
default hyperparameter settings for ByteTracker. We leave
the details of ByteTracker to the original work (Zhang et al.,
2021). Finally, for each species, we count the number of that
species’ track IDs that touch the bottom of any frame.

We applied the two aforementioned filters because, with-
out any filters, our method vastly over counts all species
through all videos. Figure 9 shows examples of a few false
positive detections, and these types of errors likely contribute
heavily to our method’s over counting as the detector is run
over hours of videos, accumulating false positive results.

To address the over counting issue, we opted to feed the
tracker only our most confident detections and to only count
tracks that occur across multiple frames. This filtering sig-
nificantly improved the performance, but the error remains
unacceptably high.
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Fig.9 Detection examples from our dataset. Blue indicates fragile pink
urchin; green, gray gorgonian; and red, squat lobster. We show the suc-
cess of our detector with the exception of the bottom right image. A
crab (not a species of interest) is mislabeled as a fragile pink urchin
toward the top center of the image. In the left side of the image, two

pieces of floating debris are labelled as urchins, and close to the center
two urchins are counted thrice. Right of center, a rock is labelled as
an urchin. These failure cases demonstrate some of the challenges of
DUSIA. In the top right corner of the bottom right image, a very difficult
to see pink urchin is correctly detected (Color figure online)

Table 17 Relative errors of our counting method with no thresholding and the best threshold settings. Darker color indicates better performance.

See Table 7 for ground truth counts for each species

val set per species relative errors

y T BS FPU GG LLS RSG
0 0 11.2 4.04 5.75 25.6 60.9
20 0.5 —0.18 —0.091 —0.34 1.13 —0.11
test set per species relative errors

y T BS FPU GG LLS RSG
0 0 6.00 4.73 15.38 46.66 70.23
20 0.5 —0.56 0.14 —0.03 1.28 —-0.25

SL LS WSSC WSpSC YG mean
3.18 0.35 2.98 232 18.7 13.5
—-0.50 —0.90 —0.88 -0.27 0.00 0.439
SL LS WSSC WSpSC YG mean
3.29 2.57 2.84 3.71 12.21 16.8
—-0.51 —-0.84 —-0.91 —0.24 -0.39 0.515

Table 17 shows the relative error for each class on the
val and test videos as well as the mean relative error, aver-
aged over all classes, as we vary the 7 and y parameters. We
leave the error sign to indicate over (positive error) or under
(negative error) counting, but we compute the mean errors
using the absolute value of the error values for each class.
Clearly, the detector hardly learns some of the rarer classes
(e.g. long-legged sunflower star and red swiftia gorgonian)
and regularly misclassifies background, which may include
species outside of our ten species of interest, as our species of
interest. Appendix B contains more experiment error results
for varying these filter thresholds.

Ultimately, these baseline results indicate that this simple
method is not powerful enough to put into practice given the
effectiveness of our current detection model. Much work on
methods for this problem is left to be done. We could look
deeper into per class thresholds, but we expect improving
object detections, false positive filtering, and the tracking
algorithm would be more robust. We leave these improve-
ments to future work.

7 Discussion and Future Work

Our baseline methods’ detection and counting performance
leaves plenty of room for improvement as a counting system
51.5% average error cannot replace human annotators. Our
detection methods can improve because they do not enforce
any sort of temporal continuity present in the ROV videos,
which could likely improve performance, and the methods do
not yet take advantage of the abundant, weak CABOF labels
during training. Further, Table 16 reveals that our detector
struggles to find small objects. This weakness may be an
area to improve in future work.

Itis interesting to find the difference in performance of the
different types of substrate classifiers. Overall, the substrate
classification results are good enough for some substrates,
and in future work we hope to see results good enough to
fully automate this process. Additionally, marine scientists
are interested in real time substrate classifiers that can indi-
cate which substrates the ROV is passing in real time. Any
indication of species hotspots in real time during expeditions
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can improve each excursion’s productivity by reducing more
manual means of searching for given substrates, habitats, and
species hotspots.

The detection results of the Context Driven Detector pro-
vide a baseline, but in order to fully translate these detections
to tracks with individual re-identification and counting, there
is much work to be done. We hope to next take full advantage
of the CABOF labels and to use context in more power-
ful ways to improve detection performance in future work.
Further, we plan to enforce temporal continuity to improve
our counting predictions. These improvements can lead us to
eventually begin automating some of the invertebrate count-
ing that is currently done manually.

By making DUSIA public, we also invite other collabora-
tors to work independently or in cooperation with us to help
improve our methods.

Supplementary Information

DUSIA’s data, annotations, and baseline methods will be
made publicly available at the time of publication.
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Appendix A: Species Statistics

See Table 18 and Fig. 10.

Table 18 All species and their counts in DUSIA. Bold shows the species
that also include bounding box annotations. Ul stands for unidentified
and is used when organism’s exact species cannot be determined

Species Count  Species Count

Fragile pink urchin 3402 Spot prawn 18

Squat lobster 2593 UI anemone 17

UI lobed sponge 1753 Thorny sea star 16

White slipper sea cucumber 1313 UI anemone 2 14

Laced sponge 632 California king 13
crab

Gray gorgonian 556 UI trumpet 12
sponge

UI hairy boot sponge 426 Pom-pom 11
anemone

Basket star 361 UI prawn 9

White spine sea cucumber 318 Crested sea star 8

Long legged sunflower star 306 White sea pen 8

Red swiftia gorgonian 257 Red sea star 8

UI branched sponge 228 Ul sea pen 7

UI vase sponge 210 Solaster sun star 6
complex

Yellow gorgonian 150 UI octopus 5

UI boot sponge 128 UI nipple sponge 4

Cookie star 90 UI gorgonian 3

UI anemone 4 67 Spiny/thorny star 3
complex

Ul sea star 54 Gray moon 2
sponge

UI tubeworm 50 Brown box crab

Henricia complex 47 Decorator crab

UI large yellow sponge 44 UI sand dwelling
anemone

UI thin red star 39 UI nudibranch 1

UI orange gorgonian 38 Orange puftball
sponge

Mushroom soft coral 36 Red octopus 1

Black coral 34 Red gorgonian 1

Benthic siphonophore 25 Rose star 1

Bubblegum coral 24 Cushion star 1

Deep sea cucumber 20 UI urchin 1

Fish eating star 19 Ul anemone 1 1

Spiny red star 18
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Basket Star

Fragile Pink Urchin

Fig. 10 Histograms illustrating
the distributions of box sizes (in
pixels squared) for each species
of interest
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Appendix B: Hyperparameter Search Sum-

mary

See Tables 19, 20, 21.

Table 19 Results of hyperparameter search experiments on learning rate, «, 8, and p

Ir o B P val mAP test mAP Ir o B P val mAP test mAP
0.1 0 0 0 0.454 0.361 0.01 1.00E-04 0.01 0 0.487 0.405
0.01 0 0 0 0.490 0.391 0.01 1.00E-05 0.01 0 0.489 0.404
0.001 0 0 0 0.482 0.367 0.01 1.00E-06 1.00E-02 0 0.486 0.404
0.01 0.1 0 0 0.470 0.389 0.01 1.00E-04 1.00E-04 0 0.471 0.395
0.01 0.01 0 0 0.494 0.419 0.01 1.00E-05 1.00E-04 0 0.487 0.383
0.01 1.00E-03 0 0 0.487 0.401 0.01 1.00E-04 0.001 0 0.491 0.388
0.01 1.00E-04 0 0 0.502 0.420 0.001 0.01 0.001 0 0.469 0.373
0.01 1.00E-05 0 0 0.507 0.410 0.001 0.001 0.001 0 0.477 0.377
0.01 1.00E-06 0 0 0.501 0.408 0.01 0.01 0 0.75 0.491 0.405
0.001 0.01 0 0 0.456 0.358 0.01 0.001 0 0.75 0.487 0.406
0.001 0.001 0 0 0.453 0.361 0.01 1.00E-04 0 0.75 0.514 0.433
0.01 0 0.1 0 0.471 0.371 0.01 1.00E-05 0 0.75 0.503 0.417
0.01 0 0.01 0 0.491 0.397 0.01 1.00E-06 0 0.75 0.503 0.433
0.01 0 1.00E-03 0 0.499 0.396 0.01 0.1 0 0.9 0.500 0.431
0.01 0 1.00E-04 0 0.494 0.410 0.01 0.01 0 0.9 0.504 0.421
0.01 0 1.00E-05 0 0.482 0.395 0.01 0 0.1 0.75 0.512 0.435
0.01 0 1.00E-06 0 0.482 0.394 0.01 0 0.01 0.75 0.524 0.447
0.001 0 0.01 0 0.475 0.374 0.01 0 1.00E-03 0.75 0.513 0.426
0.001 0 0.001 0 0.477 0.371 0.01 0 1.00E-04 0.75 0.506 0.420
0.1 0 0 0.75 0.456 0.354 0.01 0 1.00E-05 0.75 0.506 0.436
0.01 0 0 0.25 0.485 0.392 0.01 0 0.01 0.9 0.497 0.402
0.01 0 0 0.5 0.492 0.413 0.01 0 0.001 0.9 0.512 0.430
0.01 0 0 0.75 0.509 0.439 0.01 0.01 1.00E-02 0.75 0.503 0.412
0.01 0 0 1 0.297 0.264 0.01 0.01 1.00E-01 0.75 0.502 0.414
0.01 0 0 0.9 0.492 0.403 0.01 0.1 0.01 0.75 0.515 0.427
0.001 0 0 0.75 0.479 0.380 0.01 0.1 0.1 0.75 0.513 0.437
0.001 0 0 0.9 0.481 0.380 0.01 0.01 0.001 0.75 0.516 0.428
0.1 0.1 0.1 0 0.451 0.372 0.01 0.1 0.001 0.75 0.510 0.419
0.1 0.01 0.1 0 0.462 0.371 0.01 0.01 0.01 0.9 0.508 0.420
0.1 0.01 0.01 0 0.454 0.375 0.01 0.01 0.001 0.9 0.497 0.418
0.01 0.1 0.1 0 0.450 0.370 0.01 0.1 0.001 0.9 0.503 0.417
0.01 0.01 0.1 0 0.480 0.420 0.01 0.001 0.01 0.75 0.509 0.427
0.01 0.1 0.01 0 0.497 0.399 0.01 1.00E-04 0.01 0.75 0.510 0.425
0.01 0.01 0.01 0 0.489 0.403 0.01 1.00E-04 1.00E-04 0.75 0.515 0.433
0.01 0.01 0.001 0 0.488 0.408 0.01 1.00E-05 0.01 0.75 0.509 0.428
0.01 0.001 0.01 0 0.486 0.396 0.01 1.00E-06 0.01 0.75 0.517 0.430
0.01 0.001 0.001 0 0.492 0.396
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Table 20 Relative errors of our counting method with different settings
across the validation set’s videos. y represents the threshold for number
of frames per track ID to count track. T represents detection confidence
score threshold. Darker color indicates better performance. Note that

we include the sign for per species errors to indicate over (postive) or
under (negative) counting, but the absolute values of relative error are
used in the mean computation

val set per species errors

y T BS FPU GG LLS RSG
0 0 11.24 4.04 5.75 25.63 60.89
10 0 1.65 0.05 0.01 2.50 3.00
15 0 0.76 —0.06 —-0.14 1.25 0.68
18 0 0.53 —0.09 -0.17 1.00 0.37
20 0 0.53 —-0.09 —0.20 1.00 0.11
22 0 0.41 —0.10 —-0.25 1.00 —0.05
25 0 0.24 —0.12 —0.26 1.00 —0.16
27 0 0.00 —0.13 —0.29 1.00 —0.26
30 0 —-0.12 —0.14 —0.36 0.88 —0.42
0 0.5 7.24 3.95 4.59 25.75 58.42
10 0.5 0.12 —0.03 —0.24 2.13 0.63
15 0.5 —0.12 —0.06 —0.30 1.25 0.16
18 0.5 -0.18 —0.08 —-0.32 1.13 —0.05
20 0.5 -0.18 —0.09 —0.34 1.13 —0.11
22 0.5 —0.24 —0.10 —-0.35 1.13 —0.11
25 0.5 —0.29 —0.11 —0.37 1.13 —0.26
27 0.5 —0.41 —0.12 —0.37 1.13 —-0.32
30 0.5 —0.47 —-0.13 —0.42 0.88 —0.47
0 0.9 0.18 1.23 0.23 8.00 9.26
10 0.9 —0.41 —0.05 —0.32 1.63 0.21
15 0.9 —0.47 —0.08 —-0.35 1.38 —0.11
18 0.9 —0.53 —0.10 —0.39 1.25 —0.26
20 0.9 —0.59 —0.10 —0.39 1.25 —-0.37
22 0.9 —0.59 —0.10 —0.42 1.13 —0.42
25 0.9 —0.59 —0.11 —0.45 1.13 —0.58
27 0.9 —0.59 —0.12 —0.47 1.13 —0.58
30 0.9 —0.65 —-0.13 —0.49 0.88 —0.68

SL
3.18
—-0.26
—0.41
—0.45
—-0.47
—0.51
—0.54
—0.55
—0.55
2.74
—0.40
—-0.49
—0.50
—0.50
—0.52
—0.54
—0.55
—0.55
0.42
—0.49
—-0.52
—-0.53
—0.54
—0.55
—0.56
—0.56
—-0.58

LS
0.35
—-0.70
—0.80
—0.82
—-0.85
—0.85
—0.85
—0.85
—0.85
—0.35
—0.85
—0.87
—0.87
—0.90
—0.90
—0.90
—0.90
—0.90
—0.90
—0.90
—0.90
—0.90
—0.90
—-0.92
—-0.92
—-0.92
—-0.92

WSSC
2.98

—-0.74
—0.80
—0.84
—0.86
—0.87
—-0.91
—-0.92
—-0.93
2.80

—0.83
—0.87
—0.88
—0.88
—0.89
—0.90
—-091
—-0.91
—-0.37
—-0.87
—-0.91
—-091
—-0.91
—-0.91
—-0.92
—-0.93
-0.93

WSpSC
2.32
—0.14
—027
—~0.32
~0.32
—~0.36
—041
—041
—041
2.14
~0.14
-023
—-027
—-027
—~0.32
036
036
036
0.45
~0.32
~0.36
—~0.36
—~0.36
~0.36
—0.41
—0.41
—045

YG
18.7
1.89
1.22
1.00
0.89
0.78
0.33
0.00
—-0.22
15.2
0.78
0.22
0.11
0.00
—0.11
—-0.22
—-0.33
—-0.33
1.67
—0.44
—0.56
—0.56
—0.56
—0.56
—0.56
—0.56
—0.56

mean
13.5

1.09

0.641
0.560
0.531
0.519
0.482
0.441
0.488
12.3

0.613
0.457
0.440
0.439
0.466
0.510
0.540
0.544
2.27

0.564
0.563
0.579
0.597
0.596
0.623
0.627
0.627
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Table 21 Relative errors of our counting method with different settings across the test set’s videos

test set per species errors test val

y T BS FPU GG LLS RSG SL LS WSSC WSpSC YG mean mean
0 0 6.00 4.73 15.38 46.66 70.23 3.29 2.57 2.84 3.71 12.21 16.8 13.5
10 0 0.19 0.33 1.22 3.62 2.02 —0.32 —045 —-0.77 0.00 1.08 1.00 1.09
15 0 —-0.15 0.20 0.44 2.03 0.17 —0.44 —0.64 —-0.85 —0.06 0.37 0.535 0.641
18 0 —-0.25 0.17 0.31 1.52 —0.21 —0.48 —0.71 —0.89 —0.18 0.03 0.473 0.560
20 0 —0.35 0.16 0.23 1.34 —0.35 —0.51 —-0.77 —0.91 —-0.24 —0.13 0.499 0.531
22 0 —0.38 0.14 0.13 1.07 —0.44 —0.53 —0.80 —0.91 —0.24 —0.18 0.482 0.519
25 0 —0.44 0.10 —0.01 0.93 —0.56 —0.54 —0.80 —-0.92 —0.24 —0.26 0.481 0.482
27 0 —0.46 0.09 —0.06 0.79 —0.56 —0.55 —-0.83 —-0.93 —0.24 —-0.29 0.480 0.441
30 0 —0.60 0.07 —0.10 0.62 —0.67 —-0.57 —0.84 —-0.93 —0.35 —0.34 0.509 0.488
0 0.5 4.90 4.24 11.88 44.66 66.31 2.82 1.15 2.59 3.82 9.26 15.2 12.3
10 0.5 —0.44 0.24 0.36 2.79 0.65 —0.42 —-0.71 —0.82 —0.18 0.03 0.663 0.613
15 0.5 —0.52 0.17 0.06 1.79 0.00 —0.47 —0.80 —-0.85 —0.18 —0.29 0.514 0.457
18 0.5 —0.54 0.15 —0.01 1.34 —0.12 —0.50 —0.84 —0.89 —0.24 —0.37 0.500 0.440
20 0.5 —0.56 0.14 —-0.03 1.28 —0.25 —0.51 —0.84 —-0.91 —0.24 —0.39 0.515 0.439
22 0.5 —0.56 0.13 —0.08 1.03 —-0.29 —-0.53 —0.84 —-0.91 —0.24 —0.39 0.501 0.466
25 0.5 —0.58 0.11 —-0.13 0.93 —0.42 —0.54 —0.84 —-0.92 —0.24 —0.42 0.512 0.510
27 0.5 —0.60 0.10 —-0.15 0.86 —0.46 —0.56 —0.84 —-0.93 —0.24 —0.45 0.518 0.540
30 0.5 —0.62 0.08 —0.18 0.66 —0.52 —0.57 —-0.85 —0.94 —-0.35 —0.45 0.521 0.544
0 0.9 —0.44 1.51 0.79 13.34 11.00 0.48 —0.79 —0.36 0.82 0.71 3.03 227
10 0.9 —-0.71 0.17 —-0.17 1.90 —0.02 —0.49 —0.88 —0.89 —041 —-0.53 0.616 0.564
15 0.9 —-0.73 0.12 —0.24 1.07 —0.42 —0.55 —0.88 —-0.91 —041 —0.63 0.596 0.563
18 0.9 —-0.75 0.10 —0.28 0.76 —0.54 —-0.57 —0.88 —-0.93 —0.47 —-0.71 0.599 0.579
20 0.9 —-0.75 0.09 —0.31 0.66 —0.56 —0.58 —0.88 —0.94 —0.47 —-0.71 0.595 0.597
22 0.9 —0.75 0.08 —0.31 0.55 —0.58 —0.59 —0.89 —-0.95 —0.47 —0.74 0.591 0.596
25 0.9 —0.75 0.06 —0.35 0.41 —-0.67 —0.60 —-0.92 —-0.95 —0.47 —0.76 0.594 0.623
27 0.9 —-0.75 0.05 —0.35 0.41 —-0.71 —0.60 —-0.93 —0.96 —0.47 —0.79 0.602 0.627
30 0.9 —0.75 0.03 —0.36 0.21 —-0.75 —0.61 —-0.93 —0.96 —-0.53 —0.82 0.595 0.627
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