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Abstract
Birds of prey rely on vision to execute flight manoeuvres that are key to their survival, such as intercepting fast-moving targets
or navigating through clutter. A better understanding of the role played by vision during these manoeuvres is not only relevant
within the field of animal behaviour, but could also have applications for autonomous drones. In this paper, we present a novel
method that uses computer vision tools to analyse the role of active vision in bird flight, and demonstrate its use to answer
behavioural questions. Combining motion capture data from Harris’ hawks with a hybrid 3D model of the environment, we
render RGB images, semantic maps, depth information and optic flow outputs that characterise the visual experience of the
bird in flight. In contrast with previous approaches, our method allows us to consider different camera models and alternative
gaze strategies for the purposes of hypothesis testing, allows us to consider visual input over the complete visual field of the
bird, and is not limited by the technical specifications and performance of a head-mounted camera light enough to attach to
a bird’s head in flight. We present pilot data from three sample flights: a pursuit flight, in which a hawk intercepts a moving
target, and two obstacle avoidance flights. With this approach, we provide a reproducible method that facilitates the collection
of large volumes of data across many individuals, opening up new avenues for data-driven models of animal behaviour.

Keywords Animal vision · Visual field · Reconstruction · Bird · Flight

Communicated by SILVIA ZUFFI.

B Graham K. Taylor
graham.taylor@biology.ox.ac.uk

Sofía Miñano
s.minano@ucl.ac.uk

Stuart Golodetz
stuart.golodetz@cs.ox.ac.uk

Tommaso Cavallari
tommaso@robots.ox.ac.uk

1 Department of Biology, University of Oxford, 11a Mansfield
Road, Oxford OX1 3SZ, UK

2 Department of Computer Science, University of Oxford,
Parks Road, Oxford OX1 3QD, UK

3 Department of Engineering Science, University of Oxford,
Oxford OX1 3PJ, UK

4 Advanced Research Computing Centre, University College
London, Gower Street, London WC1E 6BT, UK

1 Introduction

From intercepting moving targets to manoeuvring through
clutter, birds use vision to coordinate their flight manoeuvres
with an agility and flexibility beyond the reach of current
autonomous systems. Nevertheless, the links between their
vision, guidance and control are complex and poorly under-
stood. Much more is known about the role of vision in insect
flight (Taylor et al., 2008), presumably because the size and
sentience of birds complicates the experimental characteri-
sation of their visuomotor control (Altshuler & Srinivasan,
2018). Many of the previous works on avian visually guided
flight followed insect studies (Baird et al., 2021; Tammero
& Dickinson, 2002a, b; Altshuler & Srinivasan, 2018) and
investigated the animal’s behaviour in abstract visual envi-
ronments (Bhagavatula et al., 2011; Schiffner & Srinivasan,
2015; Dakin et al., 2016; Ros & Biewener, 2016), such as
corridors with vertically or horizontally striped walls. This
proved useful as a first step in exploring how birds use
visual self-motion cues, and in isolating their effects on flight
control. For example, budgerigars flying through narrow cor-
ridors regulate flight speed in response to optic flow from
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sliding gratings projected onto the walls (Schiffner & Srini-
vasan, 2015). However, these approaches oversimplify the
rich visual input available to birds in their natural habitat,
more so than for flying insects, since birds’ visual acuity
and neural organisation is more complex (Altshuler & Srini-
vasan, 2018). As a result, the conclusions that can be drawn
from these studies about the birds’ strategies in the wild are
limited.

In this paper, we present a method for reconstructing the
visual scene a bird experiences while flying through a struc-
tured environment, as a first step towards understanding how
birds use visual information to guide and control their flight.
Specifically, we combine high-speed motion capture data
with a three-dimensional (3D) reconstruction of the labo-
ratory environment to generate synthetic visual inputs that
characterise the information likely available to the bird in
flight.

We aim to support the analysis of large quantities of data
across multiple individuals, using environments that may
vary experimentally across trials. The synthetic inputs we
can generate with our method characterise the bird’s visual
experience of its own self-motion in detail over its full visual
field, opening up several new avenues of research in bio-
inspired computer vision and behavioural modelling.

We demonstrate the possibilities of using our method to
answer mechanistic questions in behaviour with pilot data
from three sample flights: one pursuit flight, in which a hawk
intercepts a moving target pulled across the ground, and two
obstacle avoidance flights, in which a hawk flies between
two perches around a set of obstacles. In the following sec-
tions, we provide an overview of active vision in bird flight,
review previous approaches to study it experimentally, and
summarise the contributions of our method.

1.1 Active Vision in Birds

In animals with well-developed visual systems, vision is
largely active: through a variety of head, eye and bodymove-
ments, animals can manipulate the position and orientation
of their viewpoint relative to their environment (Land &
Nilsson, 2012). Understanding how birds interrogate their
visual environment during flight may be key to unravelling
the cognitive processes coordinating their impressively fast
manoeuvres.

Birdsmainly use headmovements controlled by their neck
motor system to look around the environment. This is because
their eyes have a limited range of motion within their orbit,
and the largest eye movements driven by the oculomotor sys-
tem are small compared to thosemade by the head (Yorzinski
et al., 2015; Mitkus et al., 2018; Potier et al., 2020). A small
body of work has assessed how the frequency and amplitude
of head movements in birds are affected by the visual envi-
ronment experienced in flight. For example, in pigeons, these

have been shown to vary with the structure of the landscape
they are flying through (Kano et al., 2018), the structure of the
clutter they are negotiating (Ros & Biewener, 2016), and the
presence of another individual when flying in pairs (Taylor
et al., 2019). Birds’ head movements have also been found to
modulate their visual input: in turning flight, birds display a
characteristic saccade-and-fixate strategy reminiscent of pri-
mate eye movements (Eckmeier et al., 2008; Ozawa, 2010;
Kress et al., 2015; Ros & Biewener, 2017). This strategy
supports the use of optic flow in flight control by eliminating
the rotational component of the vector field during fixation,
leaving only the translational component that contains the
depth information (Eckmeier et al., 2008).

Although a bird’s head pose is the primary determinant of
its gaze direction, eye tracking provides the most direct mea-
sure of gaze. Compared to scleral search coils (Rivers et al.,
2014) or implantedmagnets (Payne&Raymond, 2017), eye-
tracking cameras offer the least invasive method to track eye
movements. In birds, these have so far been restricted to ter-
restrial use cases, such as identifying where birds look when
assessing mates (Yorzinski et al., 2013), watching predators
(Yorzinski & Platt, 2014; Yorzinski, 2021), or inspecting the
environment (Yorzinski et al., 2015). Their lack of use in
flight is due to weight limitations, and the challenge of keep-
ing the camera steady without occluding the frontal field of
view.

Most bird studies therefore take head orientation as a
proxy for gaze direction, which is often sufficient to identify
the features to which a bird is attending. For example, work
on lovebirds flying to a perch (Kress et al., 2015) investigated
the alignment of the bird’s head with the edges of the perch
and flight arena, whilst work on pigeons negotiating a forest
of vertical poles (Lin et al., 2014) investigated the alignment
of the bird’s head with the gaps between the obstacles. How-
ever, both studies analysed the problem in two dimensions,
focusing only on changes in head azimuth, and reduced these
extended features of the environment (selected a priori) to
single points in the visual field. A complete understanding of
the problem requires a full 360◦ reconstruction of the bird’s
view in flight, which is what motivates the present study.

1.2 RelatedWork

Previous approaches to reconstructing what animals see of
their environment have relied either on animal-borne cam-
eras, or on reconstructing images synthetically. We review
these approaches in the following sections, focusing on bird
flight applications.

1.2.1 Head-Mounted Cameras

Head-mounted video cameras can sample the view of a bird
as a result of its self-motion through the environment, and
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Fig. 1 Related work. (a) Reconstruction of the environment around a
nest of homing ants, and reconstructed views (A, B, C, D) at different
instances of their recorded paths (Ardin et al., 2016). (b) Reconstructed
view from each eye of a mouse hunting a cricket, using laser-scanned

data and texture from high-resolution images (Holmgren et al., 2021).
Panels (a) and (b) are reproduced from the cited works (Ardin et al.,
2016; Holmgren et al., 2021) without modification under the terms of
the Creative Commons Attribution License.

have been used to analyse aerial attack behaviours in hawks
and falcons (Kane et al., 2015; Kane & Zamani, 2014; Ochs
et al., 2016). This approach allows us to investigate a bird’s
behaviour in its natural habitat, but is subject to the extreme
limitations of pixel count, dynamic range and field of view
of any camera small enough to mount on the head. Payload
is conventionally limited to ≤ 5% of a bird’s body mass
on welfare grounds (Fair et al., 2010), but much more strin-
gent limits may be required to ensure natural behaviour if
the load is carried on the head (Kane & Zamani, 2014).
The 20 g cameras that have been used previously (Kane et
al., 2015; Kane & Zamani, 2014) are twice the weight of
many small birds, and therefore only suitable for very large
species such as raptors. Even so, it is currently not possi-
ble for a small camera to cover a bird’s full field of view at
an appropriate optical or sampling resolution. For example,
the vertical field of view (31◦) of the head-mounted cam-
era used to study goshawks and falcons (Kane et al., 2015;
Kane & Zamani, 2014) wouldn’t cover the vertical extent of
the binocular overlap (100◦) of the birds in this work, namely
Harris’ hawks (Potier et al., 2016). Furthermore, the possibil-
ities for analysinghead-mountedvideodata are also impacted
by the cameras’ low frame rates (30 Hz was used in Kane et
al., 2015, and inKane andZamani, 2014), and themotion blur
associated with low shutter speeds and rolling shutters (Kane
& Zamani, 2014). Finally, although head-mounted cameras
can be held reasonably fixed relative to a raptor’s head using
a tightly fitted hood (Kane et al., 2015), fitting a hoodmay not
be a possibility in untrained or smaller birds.Generally, head-

mounted cameras will be prone to some degree of wobble
unless surgically attached to the head (Lev-Ari & Gutfreund,
2018; Hazan et al., 2015), which is an undesirable interven-
tion. Head-mounted video cameras therefore have less utility
for studying visually guided flight in birds than might first
be imagined.

1.2.2 Synthetic Reconstruction

An animal’s visual input can be recreated synthetically using
bio-inspired hardware, for example with custom-designed
cameras (Stuerzl et al., 2010) or event-based cameras (Zhu
et al., 2021; Gallego et al., 2022). It can also be done via
software, using rendering methods (Holmgren et al., 2021).
Rendering is particularly attractive because it offers complete
control of the detail presented over the visual field (Holmgren
et al., 2021;Neumann, 2002), and it is well suited to scientific
inference because of the possibility of defining alternative
views (Eckmeier et al., 2013; Ravi et al., 2022; Miñano &
Taylor, 2021; Bian et al., 2021). For example, in a series
of works studying the effectiveness of movement-based sig-
nalling in lizards, renderings were used to investigate the
effect of different lighting and wind conditions (Bian et al.,
2018, 2019, 2021).

State-of-the-art research has proven it possible to render
novel views from only a set of camera views and poses
(Tancik et al., 2022a; Mildenhall et al., 2020). However,
while user-friendly approaches are emerging for the use
of these cutting-edge techniques among non-experts (Tan-
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cik et al., 2022b), most current rendering applications still
require an explicit 3D model of the environment. There are
some challenges involved in realisticallymodelling a natural-
looking 3D environment. Standard modelling approaches
such as simultaneous localization and mapping (SLAM) suf-
fer from accumulating noise and drift when covering large
areas (Schonberger & Frahm, 2016), and automating the
post-processing of the resulting meshes may not be straight
forward (Risse et al., 2018; Stürzl et al., 2015). Neverthe-
less, the quality of the dense maps that can now be captured
with consumer-level handheld devices has improved greatly
in the past few years, achieving results comparable to more
expensive laser-scanning methods even in complex forest
environments (Tatsumi et al., 2022; Gollob et al., 2021).

Most synthetic reconstructions of an animal’s visual scene
to date have focused on insects. Insects are generally simpler
to model than vertebrates, due to their lower sampling res-
olution, and the fact that their eyes are rigidly fixed to their
heads. A few studies have investigated ant navigation using
fully synthetic models of the natural environment (Ardin et
al., 2015; Ardin et al., 2016; see Fig. 1a), and panoramic
images of the ants’ habitat (Zeil et al., 2014). The role of optic
flow in bee flight has been analysed using a basic geomet-
ric reconstruction of the laboratory environment (Ravi et al.,
2019, 2022),whereas the homingflight of bees andwasps has
been studied using detailed 3D models of their natural envi-
ronment (Stürzl et al., 2015; Stuerzl et al., 2016; Schulte et al.,
2019). The latter used models obtained using laser scanners,
structure-from-motion (SfM), and photographic reconstruc-
tion techniques.

Although vertebrates generally have more complex visual
systems than insects, the same general approaches have been
extended to study their visually guided behaviours. One
recent study analysed prey pursuit inmice by tracking the ani-
mal’s head and eye movements, and combining them with a
high-resolution 3D laser scan of the lab environment (Holm-
gren et al., 2021; see Fig. 1b).An earlierwork in zebra finches
reconstructed a simplified view of a bird in a single turning
flight (Eckmeier et al., 2013), using a basic geometric model
of the flight arena and the bill’s orientation as a proxy for
gaze direction. In both of these studies, the environments
mapped were < 1m3, but there is currently growing interest
in reconstructing an animal’s experience of its environment
at much larger scales, relevant to ecology and conservation
(Tuia et al., 2022). This interest has led to demonstrations of
animal-borne 3D mapping sensors (McClune, 2018), and a
mobile-camera method for embedding an animal’s track in
an aerial view of its environment (Haalck et al., 2020).

Fully synthetic renderings also lend themselves to being
used in a virtual reality (VR) environment. This approach
has been applied to tethered and freely moving animals,
mostly insects (Kern et al., 2005; Taylor et al., 2008;Windsor
& Taylor, 2017), but also more recently small vertebrates.
Examples include restrained birds (Eckmeier et al., 2013)
and freely moving mice and zebra fish (Stowers et al., 2017;
Naik et al., 2020). Such environments are currently limited
to volumes of approximately 1 m3, so have yet to find use
for larger animals making larger-scale movements.

1.3 Contribution

We describe a method to render the visual scene experienced
by a bird in flight, combining high-speed motion capture
with 3D modelling of the laboratory environment. The data
rendered from the bird’s perspective includes a rich set of
outputs: RGB, semantic, depth and optic flow maps over
the complete visual field of the bird (see Fig. 2). Although
analogous data have been generated for insects, these were
produced at much lower spatial resolution (Ravi et al., 2022,
2019; Schulte et al., 2019; Stuerzl et al., 2016; Stürzl et al.,
2015). Additionally, none of these previous works involved a
unique method to produce the full set of outputs we consider
here. In birds, a similar RGB reconstruction has been previ-
ously generated for a single flight of a zebra finch (Eckmeier
et al., 2013). However, this is the first time, to our knowl-
edge, that such detailed data have been produced for large
birds in flight, capturing their full visual fields and the full 6
degrees-of-freedom of their heads’ motion.

Compared to previous approaches to characterise the
visual input of a bird in flight, our method has significant
advantages:

• It considers the complete visual field of the bird. As a
result, posterior analyses are not limited by the available
field of view of a head-mounted camera (Ochs et al.,
2016; Kane et al., 2015; Kane & Zamani, 2014), or to
local features of the scene falling in the direction of the
bird’s gaze (Eckmeier et al., 2008; Yorzinski et al., 2013;
Yorzinski & Platt, 2014; Yorzinski et al., 2015; Kress et
al., 2015; Yorzinski, 2021).
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Fig. 2 Summary of method for reconstructing the visual information
contained within the visual field of a bird in flight. The headmovements
of birds executing flight manoeuvres are recorded in a large motion cap-
ture lab (left panel). The lab environment is modelled in Blender, using
geometric primitives and a dense 3D map to model objects with a more
complex geometry (centre panel). The measured head pose is then used
to define a virtual camera that is representative of the bird’s visual field
(right panel). With this approach, we can generate detailed information
describing the visual scene that the bird experiences in flight, includ-

ing: (a) RGB renderings; (b) semantic maps; (c) depth maps; and/or (d)
optic flow. In the virtual model of the lab (centre panel), the pulleys and
target are displayed at twice their actual size for clarity. The spheres
representing the bird’s visual field in the right panel show the animal’s
view as it flies through the lab. The retinal margins of the left eye (blue
line) and right eye (red line) are shown for reference, as well as the blind
sector above the bird’s head (black fill). Note that because the spheres
are represented using an orthographic projection, not all the visual field
of the bird is visible

• It is not limited by other technical specifications of a
camera that is practical to attach to a bird’s head for use
in flight.

• It is minimally invasive, which is preferred both on
welfare grounds, and to preserve the animal’s natural
behaviour as much as possible. The total weight carried
by the bird is 3 g, much lower than the 20 g of a typ-
ical head-mounted camera (Kane et al., 2015; Kane &
Zamani, 2014).

• It allows us to consider different camera models and gaze
strategies for the purposes of hypothesis testing.

• The method is designed to support the collection of large
amounts of data across different individuals, in environ-
ments that may vary experimentally across trials.

• It is able to take advantage of a 3D modelling approach
that can be adapted to the required level of detail and
realism.

• It combines several computer vision techniques (high-
speed motion capture, 3D mapping, rendering and coor-
dinate system registration) in a novel way enabling
application in the field to investigate animal behaviour.

We demonstrate how our method can provide a unique
insight into the hawks’ visually guided behaviourwith simple
behavioural analyses on three sample flights. However, the
method would be useful too in more sophisticated and novel
approaches to animal behaviour, for example to develop data-
driven models of animal visuomotor control (Zhang et al.,
2018; Merel et al., 2020), to provide realistic stimuli relevant

for neural recording experiments in VR setups (Eckmeier et
al., 2013), or as a first step towards fully synthetic models of
an animal’s behaviour (Neumann, 2002). To support further
work in these directions, we will provide the code for the
rendering pipeline shortly after publication at https://github.
com/sfmig/hawk-eyes.

2 Methods

In this section, we describe the key details of the motion
capture experiments and of their synthetic reconstruction in
a computational environment.

2.1 Motion Capture Experiments

We recorded Harris’ hawks (Parabuteo unicinctus) flying
in a large (20 × 6 × 3.3 m) motion capture lab, using 22
Vicon Vantage V16 motion capture cameras sampling at
200 Hz (Vicon Motion Systems Ltd., Oxford, UK). Here we
present results for n = 3 sample flights from two different
birds, executing pursuit and obstacle avoidance manoeuvres.
These flights are part of a larger dataset of over > 100 trials
across 5 individuals. We use this small subset of flights to
describe and illustrate the method, and a complete descrip-
tion of the full set of experiments will be provided separately
elsewhere.
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� Fig. 3 Key features of the method. Panel I: we carried out motion cap-
ture experiments with Harris’ hawks, in which we tracked their head
movementswhile executing pursuit (a) and obstacle avoidancemanoeu-
vres (b). We used additional markers to locate the main elements of the
scene. The pursuit flight takes 2.5 s and the obstacle flights around
2 s each. Note that the two obstacle avoidance flights correspond to
the two legs of the same trial (magenta arrows and text). Panel II: we
used the motion capture data to estimate the transform from a headpack
coordinate system (c, shown schematically in red) to a coordinate sys-
tem representative of the bird’s visual field (c, shown schematically in
green). We used data available in the literature to estimate the monoc-
ular, binocular and blind regions in the bird’s visual coordinate system
(d). Panel III: we model the lab environment with a hybrid approach,
which uses a combination of geometric primitives for the simple geome-
tries in the scene, and dense 3D meshes for the more complex ones. To
facilitate the integration of the captured dense 3D maps in the motion
capture coordinate system,we transform them at the point of acquisition
using an ArUco fiducial marker (f). The transforms between coordinate
systems are shown (magenta text), where T B

A represents the transform
from A to B. We demonstrate this hybrid approach for the pursuit flight
(g), modelling the curtain with a dense 3D map. For the obstacle avoid-
anceflights,weusedgeometric primitives only (e). Panel IV: ourmethod
allows us to define alternative gaze strategies for the purpose of hypoth-
esis testing. We demonstrate this by defining two scenarios for each of
the flights. In the first scenario (h), the virtual camera (yellow) tracks the
visual coordinate system, which we expect to be representative of the
pose of the bird’s visual field. In the second one (i), the virtual camera
tracks the trajectory coordinate system, which represents a horizon-
level camera whose optical axis is tangent to the bird’s head trajectory
(black line). This is shown for the pursuit flight in the figure, along with
the target’s trajectory (orange line). The virtual camera is represented
schematically as a pyramid, but note a 360◦ virtual camera was used
for all renderings

2.1.1 Bird Flights

For the pursuit flight, the bird (Toothless) chased a cylindrical
artificial target with food reward (length: 0.15 m; diame-
ter: 0.025 m) that was dragged in an unpredictable direction
around a series of pulleys at an average speed of 5.6 m s−1.
To further challenge the bird’smanoeuvring, we hung a black
curtain across the room from floor to ceiling, leaving a gap
of approximately one wingspan (1.0− 1.1 m) to either side,
through which the bird and target passed (Fig. 3a).

For the obstacle avoidance flights, the bird (Drogon) flew
between two perches set 9 m apart, and around a set of four
cylindrical styrofoam pillars (height: 2 m; diamater: 0.3 m)
placed 1.5 m in front of one the perches (Fig. 3b). Note that
the two flights correspond to the two legs of the same trial
(see magenta arrows in Fig. 3b). Results from the two obsta-
cle avoidance flights have also been presented in the preprint
byMiñano and Taylor (2021), using a slightly different anal-
ysis approach. The walls of the laboratory environment were
hungwith camouflage netting, and other reconstruction cases
that we trialled included placing small trees within this envi-
ronment. Further details on the experimental setup and the
birds can be found in Appendix A.

2.1.2 Motion Capture Data

We tracked the bird’s head, using a custom ‘headpack’ com-
prising a rigid arrangement of four or five 6.4 mm diameter
spherical retroreflective markers that we fixed to a Velcro
patch glued to the bird’s head (see Appendix 1). We tracked
the target using three 6.4 mm diameter markers, and attached
further 6.4 or 14 mm diameter markers to the main static ele-
ments of the scene. We used Nexus v2.8.0 software (Vicon
Motion Systems Ltd., Oxford, UK) to extract the 3D posi-
tions of all the unlabelled retroreflective markers. For the
pursuit flight, we labelled the headpack markers manually
within Nexus, using its semi-automatic labelling function-
ality. For the obstacle avoidance flights, we labelled the
headpackmarkers automatically using custom scriptswritten
in MATLAB R2020b (The Mathworks Inc., Natick, MA). In
both cases we used customMATLAB scripts to label station-
ary obstacle markers, to compute and interpolate the pose of
the headpack and target, and to handle missing marker data.
Further detail on these post-processing steps is presented in
B.

2.1.3 Calibration of the Bird’s Visual Coordinate System

The headpackwas arbitrarily placed on the bird’s head before
the experiments. As a result, a coordinate system defined
relative to the headpack markers is not necessarily aligned
with the principal axes of the bird’s visual field (Fig. 3c).
To estimate the bird’s visual coordinate system, we make
use of three assumptions (Miñano & Taylor, 2021). First, we
assume that the bird’s gaze movements across the environ-
ment are largely executed via head movements, and that the
eyes’ movement relative to the head is small (Kano et al.,
2018; Brighton et al., 2017; Ros & Biewener, 2017; Kress et
al., 2015; Kane&Zamani, 2014; Eckmeier et al., 2008). Sec-
ond, we assume that the bird’s gaze direction is known from
first principles during calibration and we identify it with the
forward direction of the head. In the pursuit case, we assume
that the bird looks at food presented to it by the falconer; in
the obstacle avoidance case, we assume that the bird looks at
the perch centre upon landing (Potier et al., 2016; Kress et
al., 2015). Third, we assume that the bird holds its eyes level
during the calibration. This eye-levelling behaviour has been
reported repeatedly in the bird flight literature (Brighton &
Taylor, 2019; Ros & Biewener, 2017; Warrick et al., 2002),
and is confirmed by our reference videos too. Further detail
on the visual coordinate system calibration is included in
C.

We additionally determined the monocular, binocular and
blind areas of the visual field of a Harris’ hawk in a sphere
centred at the origin of the estimated visual coordinate system
(Fig. 3d). To do this, we digitised and interpolated the data
available in the literature (Potier et al., 2016, Figures 5C and
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6), and assumed the gaze direction of our visual coordinate
system corresponded to the direction of maximum binocular
overlap. The same method, further described in Appendix
C.4, could be used in other animal species, given the data
that is typically published to describe the visual field of an
animal.

2.1.4 Ethics Statement

This work has received approval from the Animal Welfare
and Ethical Review Board of the Department of Zoology,
University of Oxford, in accordance with University policy
on the use of protected animals for scientific research, permit
no. APA/1/5/ZOO/NASPA, and is considered not to pose any
significant risk of causing pain, suffering, damage or lasting
harm to the animals. No adverse effects were noted during
the trials.

2.2 Computational Model in Blender

We defined a computational model of the motion capture
experiments in Blender (Blender Online Community, 2021),
a 3D modelling software package with a rendering engine.
This involved: (i) defining a virtual camera, representative of
the bird’s perspective in flight, and (ii) defining a 3D model
of the lab geometry during the experiments. The code to
generate the model of the lab environment and define the
corresponding virtual camera in Blender will be made avail-
able at https://github.com/sfmig/hawk-eyes.

2.2.1 Virtual Camera

We modelled the scene viewed by the bird using a 360◦ vir-
tual camerawhose translation and rotation per framematched
those of the estimated visual coordinate system (Fig. 3h).
Since any vergence movements of the eyes are unknown, we
modelled the bird’s binocular visual system as a monocular
camera. We selected a resolution of 5 pixels per degree lati-
tude and longitude. This results in all pixels within the bird’s
visible region (monocular plus binocular) having a length
and width ∼ 10× the minimum resolution angle of the bird
at its fovea (Potier et al., 2016). Note that we consider a uni-
form resolution across the camera’s full visual field, but this
is not the case for the hawks: their visual acuity varies across
their retinas and is highest at the foveae (Mitkus et al., 2018;
Potier et al., 2016). For each flight, we rendered the view
from this virtual camera using the Cycles rendering engine,
and produced RGB, depth, semantic and optic flow data per
pixel, for each motion capture frame (sampled at 200 Hz).

To test the effect of the bird’s headmovements, we defined
an alternative gaze strategy. This is represented by a horizon-
levelled virtual camera whose optical axis is always tangent
to the bird’s head trajectory (see Fig. 3i). Specifically, the

virtual camera follows a trajectory coordinate system, whose
y-axis is defined parallel to the bird’s head velocity vector,
whose x-axis is parallel to the floor plane, andwhose origin is
that of the visual coordinate system (see Appendix C.5). For
each flight, we rendered the view from this virtual camera as
well.

2.2.2 Hybrid 3DModel of the Lab

We model the lab environment using a hybrid approach,
which uses a combination of geometric primitives for the
simple geometries in the scene, and dense 3D meshes for
the most complicated ones (Fig. 3, panel III). The dense 3D
meshes are captured with a mobile device, and expressed at
acquisition time in the same coordinate system as the motion
capture trajectories. Thiswayweminimise themodelling and
postprocessing effort, while producing realistic representa-
tions of the environment.

We demonstrate the use of a hybrid model of the lab for
the pursuit flight, modelling the curtain using a dense 3D
mesh, and the rest of the objects in the scene as geometric
primitives (Fig. 3g). In the obstacle avoidance flights, we
used geometric primitives only (Fig. 3e).

2.2.3 Dense 3DMap

To capture a dense 3D map of the curtain in the pursuit
flight, we used the open-source SemanticPaint framework
(Golodetz et al., 2015, 2018), which is built on top of Infini-
TAMv3 (Prisacariu et al., 2017).Weused theASUSZenFone
AR smartphone as a mobile mapping sensor, and to perform
visual-inertial odometry (ZenFone ZS571KL, ASUS, Taipei,
Taiwan). To facilitate the integration of the dense map in the
virtualmodel of the lab, we registered it to themotion capture
coordinate system, using ArUco fiducial markers (Romero-
Ramirez et al., 2018; Garrido-Jurado et al., 2014). The voxel
size was set to 10 mm and the truncation distance to 40 mm
(4× the voxel size).

Figure 3f summarises the coordinate transformations
applied to a captured dense 3D map to express it in the
motion capture coordinate system. The 3D mesh is initially
expressed in the SLAM world coordinate system, which is
defined by default as the first camera pose. To compute the
required transform from the SLAMworld coordinate system
to the motion capture coordinate system, we used an ArUco
calibration plate. This consisted of an ArUco fiducial marker
of size 28.8 × 28.8 cm fixed to an acrylic plastic sheet with
three retroreflective markers (10 mm diameter) on three of
its corners. When brought into camera view, the coordinates
of the ArUco marker’s corners are computed in the SLAM
world coordinate system. Since we also placed retroreflec-
tive markers on these corners, their coordinates in the motion
capture coordinate system are also known. By defining an
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auxiliary coordinate system with these three points, we can
compute the transform from the SLAM world coordinate
system to the motion capture one.

We used the open-source software MeshLab (Cignoni et
al., 2008) to crop the mesh, remove duplicate vertices, and
remove isolated pieces. We found that the floor plane of the
mesh was slightly deviated from the motion capture sys-
tem’s xy-plane (2.4◦, see Appendix D.3), likely due to drift.
We used MATLAB’s Point Cloud Processing functions to
fit a plane to the floor of the mesh (mean error = 0.038
m), and transform it to the motion capture’s xy-plane. The
transformed mesh deviated on average by 0.093 m from the
reference markers placed on the curtain’s edges, as they were
registered during the pursuit trial, and by 0.089 m from their
position recorded just before capturing the mesh. Further
details on the postprocessing of the mesh and the deviation
metrics are included in Appendix D.3.

2.2.4 Geometric Primitives

We modelled the floor, ceiling and walls of the motion cap-
ture lab as planes. The floor plane was computed during the
calibration of the motion capture system, and we determined
the walls and ceiling planes from the motion capture cam-
eras’ positions and orientations (see Appendix B.4).

In the pursuit flight, we modelled the pulleys as cones
and the boxes covering the target’s initial position as cuboids
(Fig. 3g).Wemodelled the target as a cylinder of 15 cm length
and 2.54 cm diameter. In the obstacle avoidance flights, we
modelled the obstacles as vertical cylinders, and the perches
as horizontal cylinders, thereby reducing eachA-frame perch
to the top rung on which the bird landed (Fig. 3e). The posi-
tion, orientation and size of all these geometric elements was
determined from the retroreflective markers attached to the
corresponding objects, and frommeasurements of the dimen-
sions of the real objects. We placed reference markers on
the curtain’s edges and on the wall netting at the curtain
gap, but only used them to measure deviation from our mod-
elled geometry (seeAppendicesA.3 andD.3). Further details
on the definition of the geometric primitives are included in
Appendix D.

Textures can also easily be added to make the synthetic
scene as photo-realistic as required. As an example, we
include an RGB rendering of the pursuit flight in which the
walls of the lab model are textured, replicating the camou-
flage netting that was hung in the lab to prevent the birds
from perching (see Online Resources 1 and 2).

3 Results

For the three sample flights (one showing a pursuit manoeu-
vre and two recording obstacle avoidance manoeuvres), we

rendered the view from: (i) a virtual camera aligned with the
visual coordinate system, representing the bird’s visual field
inclusive of all head movements; and (ii) a virtual camera
following the trajectory coordinate system, representing the
bird’s visual field exclusive of the animal’s rotational head
movements. The rendered outputs per frame (RGB, depth,
semantic and optic flow data) are included as supplemen-
tary videos (Online Resources 1–15, see Table 1). Further
details on how these videos were produced are included in
the Supplementary information and in Appendix 1.

We used the RGB and semantic data per frame to inspect
the birds’ gaze strategy in the pursuit and obstacle avoidance
manoeuvres, as a demonstration of how this approach can
offer new insights into the bird’s behaviour. We followed a
similar approach to the preliminary analysis presented by
Miñano and Taylor (2021).

3.1 Pursuit Flight

The RGB renderings in the visual coordinate system show
that the target remains within the bird’s area of binocular
overlap for almost the entire duration of the pursuit (see
Fig. 4a–e, and Online Resources 1 and 2). In contrast, when
the camera tracks the trajectory coordinate system the tar-
get is not held steady or centered, and the RGB renderings
display pronounced pitch oscillations. This comparison con-
firms that the bird uses its rotational head movements to
stabilize its gaze, and to keep the target reasonably well cen-
tered within its visual field.

To analyse these behaviour quantitatively, we use the
semantic data. Figure 4f shows the frequency with which
the target appears at each point in the visual field during the
flight. For each pixel, the figure displays the metric:

hi = ni
N Ai

, (1)

where ni denotes the number of frames over which the i th
pixel saw the target, N denotes the total number of frames
analysed, and Ai denotes the solid angle subtended by the i th
pixel, normalised by the maximum solid angle that any pixel
subtends. Note that different pixels subtend different solid
angles, due to the semantic output being an equirectangular
projection of a sphere. We only consider pixels within the
visible areas of the bird’s visual field, and exclude from the
analysis any frames in which the head transform was inter-
polated, and any frames after interception. The results show
that the target is held within ±10◦ longitude and from −10◦
to 4◦ latitude in the visual coordinate system for most of the
flight (Fig. 4f). This is in sharp contrast with the results in the
trajectory coordinate system, in which the target is not con-
fined to this central area at all (Fig. 4g). However, a limitation
of these results is that they are affected by the apparent size
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(a) t = 0.14 s (b) t = 0.77 s (c) t = 0.99 s (d) t = 1.76 s (e) t = 2.13 s

(f) Visual coordinate system (g) Trajectory coordinate system

h

Fig. 4 Snapshots of the rendered pursuit flight and semantic heatmaps
of the target. The snapshots of the RGB rendering (a–e) represent the
bird’s view as it flies through the lab in the pursuit flight. The caudal
blind area is shown (black fill). The full flight takes 2.5 s. The heatmaps
(f and g) show the value of h (Eq. 1), representing the frequency with
which the target appears at each pixel in the visual field throughout
a flight, normalised by the relative area of the solid angle that each
pixel subtends. Results are shown for a virtual camera following the

visual coordinate system (f), and the trajectory coordinate system (g).
The camera axis (red star) corresponds to the estimated direction of the
bird’s gaze �vgaze in the visual coordinate system, and to the direction
of the head’s velocity vector in the trajectory coordinate system. The
retinal margins for the left eye (blue line) and right eye (red line) are
shown for reference. Note that because the visual field spheres are rep-
resented using an orthographic projection, not all of the bird’s visual
field is shown (see Fig. 26)

of the target, and refer to data aggregated across the whole of
the flight. How does the target’s position in the visual field
vary along the flight?

Figure 5 plots the evolution of the target’s contour in the
visual coordinate system. The visual field is cropped close
to the binocular area and shown in equirectangular projec-
tion. The sections of flight before and after the curtain are
plotted separately for clarity (Fig. 5a and b respectively). In
the first section of the flight, the target begins drifting across
the visual field, but then seems to be stabilised at approxi-
mately 10◦ longitude (Fig. 5a). Target tracking seems to be
lost temporarily as the bird turns around the curtain (green
contours in Fig. 5a), but is quickly recovered with the tar-
get now stabilised at −10◦ longitude (Fig. 5b). Towards the
end of the flight, the target gradually becomes centred in the
visual field, looming until interception. The same evolution
can be seen by inspecting the longitudinal position of the
boundaries and midpoint of the target through time (Fig. 5c).
The target’s boundaries also remain between −10◦ and 4◦
latitude for most of the flight (Fig. 5d).

For comparison, we computed the equivalent path of the
target’s contour as seen from the trajectory coordinate system
(Fig. 6). In the first part of the flight, the target shows consid-
erably more oscillations in the vertical direction, likely due
to the wingbeat motion (Fig. 6a). Just before turning around
the curtain, the target appears to be aligned longitudinally
with the bird’s head velocity vector. In the second part of
the flight (Fig. 6b), the target is clearly not aligned with the
head’s velocity vector, drifting out of the central area of the
trajectory coordinate system (Fig. 6b). The comparison of
Figs. 5b and 6b reflects how the estimated gaze direction,
which approximates the forward direction of the bird’s head,
diverges from the bird’s velocity vector in the final phase of
interception.

3.2 Obstacle Avoidance Flights

In both obstacle avoidance flights, the RGB renderings in the
visual coordinate system show the obstacles centred in the
bird’s visual field (see Online Resources 8 and 9 for the flight
corresponding to leg 1 of the trial, and Online Resources 12
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(c) longitude boundaries of the target over time

normalised time

(d) latitude boundaries of the target over time

normalised time

(a) before turning the curtain (b) after turning the curtain
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Fig. 5 Trajectory of the target in the bird’s visual field. The edge con-
tour of the target is represented for each frame of the pursuit flight in
a cropped equirectangular projection of the area around the estimated
gaze direction �vgaze (red star), for the frames before (a) and after (b)
turning around the curtain. The colormap indicates normalised time
through the flight. The extension of the target in longitude and latitude
over time is shown in (c) and (d) respectively, with the maximum (pur-
ple), minimum (green), and mean (blue) values represented per frame.
For those frames in which the bird’s head transform was interpolated,
these values are shown in black. The blue vertical line in (c) and (d)

indicates the frame that defines the data split before (a) and after (b)
turning the curtain. Reference lines are shown in (c) and (d) at ±10◦
(red dashed lines) and at 4◦ latitude in (d) (yellow dashed line). The
normalised time is 0 at the takeoff frame, identified when the bird dips
its head just before the takeoff jump; note that it takes some frames for
the target to become visible, but the linear motor pulling it was already
triggered at this point. The normalised time is 1 at interception, when
the bird and the target reach a local minimum of distance in the terminal
phase of interception. The data shown cover 2.145 s
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(b) after turning the curtain(a) before turning the curtain
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Fig. 6 Trajectory of the target in the trajectory coordinate system. The
edge contour of the target is represented for each frame of the pursuit
flight in a cropped equirectangular projection of the area around the
camera axis (red star) in the trajectory coordinate system. The virtual
camera’s axis corresponds to the direction of the head’s velocity vector.
The extent of the retinal margins of the bird’s right eye (red) and left
eye (blue) is shown relative to the virtual camera’s axis for reference,
although they are not expected to be positioned correctly or consistently

in this coordinate system. The data is split following the same criteria as
in Fig. 5, separating the frames before (a) and after (b) turning around
the curtain. The colormap indicates normalised time through the trial.
Note that in the first part of the flight the target shows prominent pitch
oscillations likely reflecting the reaction to the wingbeat. In the second
part of the flight, the target is not constrained to the equivalent of the
binocular area, showing that the velocity vector of the head trajectory
is not aligned with the target

and 13 for the flight corresponding to leg 2). This is not the
case when inspecting the RGB renderings in the trajectory
coordinate system. In them the obstacles are not centred, and
oscillations are clearly visible (see Online Resources 10 and
11 for leg 1 of the trial, and Online Resources 14 and 15 for
leg 2). This again confirms that the bird actively stabilises its
visual field against the pitch oscillations associated with its
wingbeat, and also directs its gaze so as to keep the obstacles
broadly centered. In this case, however, close inspection of
the semantic data reveals a more subtle interpretation of how
the bird is directing its gaze.

We display the evolution of the obstacles’ contour in
Fig. 7. We use an orthographic projection, rather than the
equirectangular one we used for the pursuit flight, to reduce
the distortion, since the obstacles occupy a much larger por-
tion of the field of view than the target. The obstacles’ contour
is represented from the takeoff frame until the frame at which
the landing perch is visible without occlusion. The data show
that the nearside edge of the obstacles as seen by the bird
remains aligned longitudinally with the centre of the visual
coordinate system in both flights (Fig. 7, top row). This align-
ment does not appear for the data rendered in the trajectory
coordinate system (Fig. 7, bottom row), which reinforces the
role of the bird’s head movements in fixating the obstacles’
nearside edge.

We can inspect the bird’s attention on the obstacles and
the landing perch by combining the semantic data from these
two elements. Figure 8 plots how the longitudinal positions

of the midpoint and edges of the obstacles and the landing
perch evolve through time. For the obstacle avoidance flight
comprising the first leg of the trial, the nearside edge of the
obstacles appears to remain approximately aligned with the
centre of the visual field until the point at which the land-
ing perch first becomes fully visible (Fig. 8a). Beyond this
point, the midpoint of the landing perch becomes the object
most closely aligned with the centre of the visual field. For
the obstacle avoidance flight comprising the second leg of
the trial, the nearside edge of the obstacles is again aligned
closelywith the bird’s estimated gaze direction until the point
at which the landing perch becomes visible. Then, the bird
appears to make a head saccade such that its new gaze direc-
tion aligns with the nearside edge of the landing perch. This
remains the case for approximately the next 0.8 s (Fig. 8b),
after which the bird seems to make another head saccade, to
realign its head forward direction with the midpoint of the
perch. Both head saccades can be seen in the corresponding
RGB rendered videos (Online Resources 12 and 13).

4 Discussion

We have presented a method to generate synthetic data that
characterise the visual experience of a bird in flight. To our
knowledge, this is the first time that such a detailed descrip-
tion of the complete visual field of a large bird in flight has
been generated. A similar approach was carried out for a

123



International Journal of Computer Vision (2023) 131:1497–1531 1509

Visual 
coordinate 
system

Trajectory 
coordinate 
system

Leg 1

Leg 1

Leg 2

Leg 2

no
rm

al
is

ed
 t

im
e

no
rm

al
is

ed
 t

im
e

(a)  

(b)

Fig. 7 Trajectory of the obstacles in the visual field sphere. The edge
contour of the set of obstacles is represented in the virtual camera’s
visual field for each frame (coloured semi-transparent) of both obstacle
avoidanceflights, from thepoint of takeoff to the point atwhich the perch
is fully visible (i.e. until the second blue dashed vertical line in Fig. 8).
The colormap indicates normalised time through each flight. For the
frames in which the camera’s transform was interpolated (i.e. because
not enough markers were reconstructed), the contour of the obstacles
is shown in black. The retinal margins of Harris’ hawks are shown for
the left eye (blue line) and right eye (red line), and the virtual camera’s
axis is shown for reference (red star). Note that the virtual camera’s axis

corresponds to the estimated gaze direction �vgaze in the visual coordi-
nate system (a), and to the direction of the head’s velocity vector in
the trajectory coordinate system (b) In the visual coordinate system,
the leftmost edge of the set of obstacles stays largely aligned with the
estimated sagittal plane (i.e., the symmetry plane of the head) in both
flights. In contrast, in the trajectory coordinate system, the obstacles are
not stabilised in the vertical direction and they are not aligned with the
head velocity vector either. The visible area in the bird’s visual field
extends beyond what is shown in this orthographic projection (Color
figure online)

single lovebird in Eckmeier et al. (2013), albeit at a much
smaller scale and without focusing on its reproducibility to
other species or individuals.

We have used three sample flights to illustrate the method
and carry out behavioural analyses. Although simple, these
analyses already show the potential of using our method
to investigate the role of vision in bird flight. Comparable
studies would be exceedingly challenging if video data from
head-mounted cameras was used, given the attendant lim-
itations on payload, resolution, field of view, and motion
blur. They would also be much more limited if relying on
point estimates of the bird’s gaze direction in relation to
prominent visual features in the environment, rather than
considering the animal’s full visual field. Additionally, our
method allows us to inspect counterfactual scenarios, which
we have demonstrated by comparing the rendered views from
the visual coordinate system and the trajectory coordinate
system. Again, this would be difficult or impossible to do
using any of the other reviewed approaches.

4.1 Key Features of the RenderingMethod

We have described how to model the lab environment using
a hybrid approach, which combines basic geometric primi-
tives defined using the motion capture data with dense 3D
maps of features with more complex geometry. In this way,
we avoid the accumulated drift and noise typical of large 3D
maps, make themost of the accuratemotion capture data, and
reduce the modelling effort for the most intricate shapes. To
facilitate the integration of the dense meshes within the basic
geometric model of the lab, we transform them to the motion
capture coordinate system at the point of acquisition. We
have demonstrated the applicability of this hybrid approach
in the pursuit flight, for the simple example of reconstruct-
ing a curtain that was hung to act as an obstacle to the bird.
However, the method would be especially relevant for mod-
elling natural-looking environments with more complicated
features, such as small trees. Figure 9 illustrates this idea and
shows the 3D mesh of a set of trees that we placed around
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mid-subtended angle
outside edge
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Landing perch: 

(a) Leg 1

(b) Leg 2
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frames from takeoff
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Fig. 8 Longitudinal extension of the set of obstacles and landing perch
for the obstacle avoidance flights. The evolution through time of the
longitudinal extension of the obstacles and landing perch is represented
for the two obstacle avoidance flights, corresponding to leg 1 (a) and
leg 2 (b) of the trial. The inside and outside edges of the obstacles and
landing perch are labelled relative to the bird’s turn, together with the
midpoint of the angle subtended by the obstacles and landing perch.
Black markers denote frames in which the bird’s head transform was
interpolated. The range of frames when the landing perch is partially
occluded by the obstacles is marked between two vertical dashed lines.
Note that because objects curve when they are close to the poles of the
spherical virtual camera, it may be that the landing perch is fully visible

but that its longitudinal extension overlaps with that of the obstacles
(e.g. at around 225 frames from takeoff; see Online Resources 8 and
9). The first and last frames used to estimate the bird’s gaze direction
�vgaze are marked with vertical red dashed lines. In leg 1 of the flight
(a), the obstacles appear within the central part of the visible field after
350 frames, but in reality they would have been occluded by the bird’s
body (see Online Resource 8). In leg 2 (b), we can visually identify two
potential head saccades: one at 87 frames after takeoff seems to align
the estimated gaze direction with the left edge of the landing perch, as
seen by the bird; the other at 242 frames after takeoff seems to align
the estimated gaze direction with the centre of the perch (see Online
Resources 12 and 13). The sampling rate is 200 Hz

the lab and captured using SemanticPaint, in this case using
a Kinect v1 as the mapping sensor.

4.2 Behavioural Analysis of the Pursuit Flight

During the pursuit flight, we found that the target is held
within the area of the bird’s binocular overlap for most of the
flight. Modelling a counterfactual gaze strategy, in which the
virtual camera’s principal axis is aligned with the bird’s head
velocity vector, corroborates that the bird actively directs its
gaze to keep the target in this region of the visual field. Further
inspecting the evolution of the target’s position in the visual
field through the flight, we find that the bird fixates the target

at ±10◦ longitude from the estimated gaze direction, and
only centres it towards the terminal interception phase.

In common with most other raptors, Harris’ hawks have
two areas of acute vision per retina: one projecting frontally
and the other laterally (Mitkus et al., 2018; Potier et al., 2016;
Inzunza et al., 1991). Where these four foveal regions (two
in each retina) project on the visual field of Harris’ hawks
has not been determined experimentally. For most diurnal
raptors the frontal-facing foveae are estimated to project
between 9◦ and 16◦ longitude from the forward direction
of the head, and the lateral-facing fovea somewhere above
30◦ longitude (Wallman & Pettigrew, 1985; Frost et al.,
1990; Kane & Zamani, 2014; Tucker, 2000). It is unclear
whether the frontal-facing foveae of Harris’ hawks usually

123



International Journal of Computer Vision (2023) 131:1497–1531 1511

project to a single point in their visual fields. For example, in
Anna’s hummingbirds it has been shown that the area tem-
poralis, a high resolution area in their visual fields which
faces frontally, does not project to a single point, even when
their eyes are fully converged (Tyrrell et al., 2018). Binocular
convergence of the frontal-facing foveae does seem possible
in raptors, but was rarely observed during head-restrained
experiments with a little eagle. Its primary gaze position was
with its frontal-facing foveae at around 13◦ longitude from
the head sagittal plane (Wallman & Pettigrew, 1985).

Whilst it would be premature to draw any firm conclusions
from data for a single flight of a single bird, we hypothesise
that these locations at ±10◦ longitude at which the target
seems to be fixated in the pursuit flight may correspond to
the projections of the frontal-facing foveae of the bird’s left
and right eyes. This being so, our results could indicate that
the bird tracks the target with one or other of its frontal foveae
throughout the flight, before centering it in the visual field
prior to interception.

4.3 Behavioural Analysis of the Obstacle Avoidance
Flights

In both obstacle avoidance flights we found that the nearside
edge of the obstacles was aligned with the longitudinal cen-
tre of the visual field for substantial portions of the flights in
which the obstacleswere visible.Again thiswas not observed
in the counterfactual gaze strategy that we considered, in
which the virtual camera’s principal axis was aligned with
the bird’s head velocity. This is in accordance with similar
findings in lovebirds (Kress et al., 2015), bees (Ravi et al.,
2022) and humans (Raudies et al., 2012; Rothkopf&Ballard,
2009), all of which seem to fixate on the edges of objects that
can be perceived as obstacles, and on the centre of objects
perceived as goals. Moreover, in the flight corresponding to
the second leg of the trial, the bird seemed to align its visual
field first with the edge of the landing perch and then with
its centre before landing (see Online Resources 12 and 13,
around frames 2029 and 2184 as numbered in the video). This
is also in line with previous reports in lovebirds (Kress et al.,
2015) and may reflect a strategy based on aiming at interme-
diate goals. It is important to note that the alignment with the
perch centre is inevitable as we approach the set of frames
that we used to calibrate the bird’s gaze direction (Fig. 8).
However, the coincidence of the edge of the obstacles with
the centre of the visual coordinate system provides strong
internal support for the reliability of the visual coordinate
system calibration.

An alternative explanation for the bird’s observed gaze
behaviour around the obstacles is that the bird aligns with the
direction where it expects the landing perch to appear. This
could be the case for example in the flight executed in leg 1 of
the trial, in which the edge of the landing perch is very close

to the nearside edge of the obstacles (Fig. 8). Would the bird
fixate on the edge of the obstacle if the perch was partially
visible from the start? This could be tested directly, varying
the position of the obstacles relative to the landing perch.
The results obtained using the bird’s gaze strategy in this
scenario could be compared to the results obtained assuming
alternative gaze strategies, such as continuous fixation on the
obstacles’ edge or continuous fixation on the landing perch’s
edge or centre. In any case, as with the pursuit flight, these
hypotheses on the animal’s behaviour can only be confirmed
or rejected by analysing the complete set of flights across
different individuals.

4.4 Limitations and FutureWork

We aimed to develop a reconstruction method that would
enable the collection of large amounts of data from many
individuals. Some key steps that we have taken towards this
goal include our non-invasive tracking of head pose using
marker-basedmotion capture, our programmatic definitionof
geometric primitives basedonmotion capturemarkers placed
on objects in the environment, and our automated integration
of the dense 3D maps on the motion capture coordinate sys-
tem. The key bottleneck in our current pipeline is the need
to calibrate the bird’s visual coordinate system against the
coordinate system of the headpack. Currently we achieve
this using two different methods, one for each manoeuvre,
but both sharing common assumptions.

An alternative approach that would likely improve the
accuracy of the estimated visual coordinate system would
involve integrating calibrated stereo cameras with themotion
capture system. Using video-based motion tracking tools
(Nath et al., 2019; Pereira et al., 2022) on data collected
during a calibration trial, the 3D coordinates of easily iden-
tifiable features on the bird (such as its bill tip or its eyes)
could be determined in the headpack coordinate system. In
this way, the bird’s head pose could be directly estimated rel-
ative to the headpack coordinate system; a similar approach
was demonstrated in the recent work by Naik et al. (2020).
Even if thismethod still assumes the bird’s eyes are fixed rela-
tive to the head, it would provide an improved estimate of the
true forward direction of the bird’s head, and of the midpoint
between the bird’s eyes (the ideal origin of the visual field
sphere, see Martin, 2007). It would also allow us to estimate
the bird’s stereo baseline, and thus define the animal’s view as
a binocular system in Blender. More importantly, it provides
a common calibration method independent of the recorded
manoeuvre, and if properly automated, it would allow us to
scale up the analyses to much larger datasets. This will be a
key focus of our future work. Other improvements to further
streamline the method could be automating the correction
of the dense 3D maps (potentially using the object’s motion
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capture markers as fiducials) or improving the ArUco plate,
for better floor alignment.

Tracking the eye movements of birds in flight would
also be of interest to define a more accurate visual coor-
dinate system (Holmgren et al., 2021). It would allow us to
explore changes in the bird’s visual field configuration in
flight (Tyrrell et al., 2018), precisely inspect how the birds
make use of the high-resolution areas in their visual field
(Potier et al., 2016), or investigate whether the hawks can
track targets simultaneously and independently with each
eye, as it has been shown for grackles (Yorzinski, 2021).
However, eye-tracking in flight seems currently very chal-
lenging; in birds it has only been used in relatively large
species doing terrestrial tasks (Yorzinski et al., 2013; Yorzin-
ski & Platt, 2014; Yorzinski et al., 2015; Yorzinski, 2019).

Alternative definitions of the virtual camera or adaptations
of its synthetic outputs can also provide a better approxima-
tion of the bird’s visual system. For example, the resolution
of the camera could be defined non-uniformly across the
visual field to more closely represent the bird’s higher visual
acuity at the foveae. This would reduce rendering time and
may also provide insight into what information is required
by the bird at high resolution to solve the task (Matthis et
al., 2018). If the RGB renderings were to be used as stim-
uli for birds in VR experiments (Eckmeier et al., 2013), it
may be relevant to adapt them attending to the animals’
spectral sensitivity (Tedore & Johnsen, 2017; Lind et al.,
2013). Considering an event-based virtual camera could also
be relevant to analyse the bird’s behaviour (Mueggler et al.,
2017; Rebecq et al., 2018). These bio-inspired cameras out-
put a spike (‘event’) when pixel-level brightness changes are
detected, which makes them fast and very interesting for
low-latency control in flying robots (Gallego et al., 2022).
Analysing the bird’s gaze strategy using the event stream of
its visual experience may facilitate potential applications to
autonomous drones (Rodriguez-Gomez et al., 2022; Zhu et
al., 2021).

The method described here is primarily designed around
a motion capture system, but a relevant development going
forward would be to translate this method to the field. Bio-
loggers combining GPS and IMU units could be used to
track the bird’s head position and orientation (Kano et al.,
2018), although differential GPS or a similar technology
would be required to obtain sufficient location accuracy
(Keshavarzi et al., 2021; Sachs, 2016). To reconstruct the
natural environment, laser scanners, structure-from-motion
or photogrammetry techniquesmaybeused (Tuia et al., 2022;
Stürzl et al., 2015; Stuerzl et al., 2016; Schulte et al., 2019).
Consumer-level handheld mapping devices like the one used
here could be useful, as they have been shown to reconstruct
forest environments with reasonably accurate results (Tat-
sumi et al., 2022; Gollob et al., 2021). On the other hand,
there are still interesting research questions to address in the

Fig. 9 3D model of a forest environment in the lab. We used a mix of
20 small laurel and bay trees of under 2 m height to recreate a forest
environment in the motion capture lab. The 3D model was captured
using SemanticPaint and a Kinect v1 as a mapping sensor. Note that in
this case the world coordinate system of the captured map is not aligned
with that of the motion capture coordinate system

lab. For example, we could examine whether the gaze strat-
egy of the bird is affected by the familiarity or the novelty
of the elements in the scene, and consider the role of top-
down or bottom-up attention mechanisms in their control
of gaze. Similar questions have been explored in stationary
owls, albeit in a lab environment not representative of their
habitat (Lev-Ari & Gutfreund, 2018; Hazan et al., 2015). A
set of lab experiments with a ‘simulated forest’ like the one
shown inFig. 9 could provide this approximation, and be very
useful for comparisonwith experiments in thefield.However,
to minimise the risk of occluded motion capture markers in
the simulated forestwould likely require reducing the volume
of interest and carefully considering the cameras’ arrange-
ment, potentially with many cameras placed right overhead.

These suggestions show how there is still much to learn
about how animals interact with their environment, and inno-
vativemethods such as the onewe describe open awide range
of possibilities for behavioural analysis. Human active vision
has already inspired robotic applications (Seara & Schmidt,
2004; Seara et al., 2002, 2001), as active observers have
been shown to solve basic vision problems more efficiently
than passive ones (Aloimonos et al., 1988). Similarly, under-
standing the role of active vision in bird flight may reveal
efficient processing strategies that could be translated to
autonomous systems. Additionally, large datasets collected
with this or similar methods could support data-driven mod-
els of behaviour and offer new insights into the bird’s gaze
strategy in flight; similar approaches already exist that make
use of human motion capture data to generate active-sensing
behaviours in synthetic humanoids (Merel et al., 2020). In
conclusion, we see many exciting opportunities in the future
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Table 1 Description of
supplementary videos

Trial Filename Description (output, coordinate sys-
tem tracked, projection)

Pursuit ESM_1.avi RGB, visual coordinate system, orthographic

ESM_2.avi RGB, visual coordinate system, equirectangular

ESM_3.avi Depth, visual coordinate system, orthographic

ESM_4.avi Semantic, visual coordinate system, orthographic

ESM_5.avi Optic flow, visual coordinate system, orthographic

ESM_6.avi RGB, trajectory coordinate system, orthographic

ESM_7.avi RGB, trajectory coordinate system, equirectangular

Obstacle avoidance Leg 1 ESM_8.avi RGB, visual coordinate system, orthographic

ESM_9.avi RGB, visual coordinate system, equirectangular

ESM_10.avi RGB, trajectory coordinate system, orthographic

ESM_11.avi RGB, trajectory coordinate system, equirectangular

Leg 2 ESM_12.avi RGB, visual coordinate system, orthographic

ESM_13.avi RGB, visual coordinate system, equirectangular

ESM_14.avi RGB, trajectory coordinate system, orthographic

ESM_15.avi RGB, trajectory coordinate system, equirectangular

We provide supplementary videos for the rendered output per trial. The description field in the table specifies
the output data represented in the video, the coordinate system the virtual camera is tracking in the video and
the projection used

for mutual collaboration between the animal behaviour and
computer vision communities.

Supplementary information. We provide the rendered
outputs as video supplementary material. For the pursuit
flight, we include videos for the RGB, semantic, depth
and optic flow synthetic data generated. For the obstacle
avoidance flights, we include RGB videos. All videos are
reproduced at 20Hz, (1/10 of the real speed), except the optic
flow video which is reproduced at 5 Hz (1/40 of the real
speed). The frame numbering shown in the videos follows
the motion capture data system’s numbering. A description
of each of the video files is presented in Table 1.

The RGB outputs are presented using two projections:
equirectangular, in which the geometry appears distorted,
but which shows the complete field of view of the bird; and
orthographic, in which the distortion is reduced but doesn’t
include the most peripheral regions of the bird’s visual field.
The rest of the rendered outputs are only represented in ortho-
graphic projection. Note that for the orthographic case, the
point of view is as if looking frontally to the bird’s visual
field sphere (see Fig. 26). In all videos, a red contour around
the figure indicates that the head transform for that framewas
interpolated. The retinal margins and the areas of the bird’s
visual field (blind, monocular and binocular) are overlaid on
the rendered output. The virtual camera is also defined with
uniform resolution over its visual field, but note that this is
not the case for the birds (see Sect. 2.2.1).

In the optic flow video, the colormap represents for each
frame the instantaneous angular speed per pixel, in degrees
per second. The colorbar is in logarithmic scale and capped

at 10◦ s−1 in the lower bound and 1000◦ s−1 in the upper
bound. The vector field results from the transformation of
the output data from pixel space to the surface of the unit
sphere. Further details on the computation of the videos are
included in Appendix E.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11263-022-01733-
2.
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Appendix A: Motion Capture Experiments

A.1: Motion Capture System

The motion capture lab is equipped with 22 infrared motion
capture cameras (Vantage V16, Vicon Motion Systems Ltd,
Oxford, UK; sampling rate 200 Hz) and four video cameras
(Vue, ViconMotion Systems Ltd, Oxford, UK; sampling rate
100 Hz, only used for reference). The cameras were mounted
on a fixed scaffold fromwhich camouflage netting was hung,
to provide a natural-looking background texture and prevent
the birds from perching on the lower parts of the scaffolding.
The floor was carpeted with green astroturf.

A.2: Bird Flight Experiments

Theflights presented in this paperwere recordedwith twodif-
ferent captive-bred adult Harris’ hawks:Drogon (0.6 kg) flew
the obstacle avoidance flights, and Toothless (0.7 kg) the pur-
suit flight. Further details on the birds are provided in Table 2.
The birds were housed separately in external aviaries, fully
roofed with open fronts, receiving full natural light and water
ad libitum. The hawks were exercised in free flight at least 5
times a week and baths were provided daily.

The pursuit flight is part of a dataset we recordedwith four
different birds, in which we collected between 3 and 4 flights
per bird per day, during four weeks between December 2018
and January 2019, for a total of 251 trials. The number of
flights per bird and day in the pursuit dataset was limited by
the training approach: an extra food reward was required to
get the bird off the target and back to the falconer’s fist, which
increased the food intake per trial. This reduced the amount of

Fig. 10 Reference motion capture markers used in the pursuit trial. The
median position of the reference markers in the pursuit trial is shown
in a basic geometric model of the lab environment. The sidewalls are
shown as partially transparent and the curtain is modelled as a plane, for
clarity. The spheres representing the markers’ positions are 5 times the
markers’ real size. Note that the walls’ location was estimated from the
motion capture cameras’ positions and orientations, rather than from
the markers placed at the curtain gaps

flights we could record while keeping the animals motivated
to fly. Resetting the setup between trials also took more time
than when recording perching or obstacle avoidance trials.

The obstacle avoidance flights are part of a dataset we
recorded with four different birds (Drogon, Toothless, Char-
mander and Ruby), in which we collected 16 flights per bird
per day for a total of two weeks in November 2020. Both
periods include the training weeks for the birds.

A.3: Placement of Markers

To track the birds’ headmovements,we used rigid supports of
retroreflective markers for the birds to wear as a ‘headpack’.
In the pursuit flight, we used a headpack of 5 retroreflective
markers, made of wooden thin rods glued to a plastic cross-
shaped plate. In the obstacle avoidance flights, we specially
designed 3D-printed rigid supports for 4 retroreflectivemark-
ers. Both designs were under 5 g, which is less than 1% of the
birds’ mass (see Table 2), so we don’t expect the headpacks
to have an impact on the animals’ natural behaviour.

We used 4–5 markers even if only three markers are
required to extract the pose of a rigid body (in our case,
the headpack attached to the bird’s head). One the one hand,
additional markers allow us to derive the pack’s pose even
if at some frames some markers are not reconstructed cor-

Table 2 Birds used in the
experiments

Bird Sex Age (years) Mass (kg) Manoeuvre

Toothless Male 1.4 0.7 Pursuit

Drogon Male 3.5 0.6 Obstacle avoidance

The name, sex, age and mass of the birds at the time of their experiments is shown, along with the recorded
manoeuvre
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rectly. On the other hand, too many markers constrained to
a small volume (such as the top of the bird’s head) are more
likely to occlude each other in several motion capture camera
views, which may lead to an incorrect determination of the
markers’ 3D position. We therefore considered 4–5 markers
to be a good trade-off between these two constraints.

The headpack was attached to the head of the bird by
the falconer immediately before recording its set of flights,
and removed at the end of the set. To ensure that the head-
pack did not move relative to the bird’s head we recorded
videos of the bird on the falconer’s fist wearing the head-
packs. For the flights analysed here,we did not detect visually
any movement between the headpack and the head. The head
movements when the bird is stationary are generally of larger
amplitude than those observed in flight, so we consider these
videos are a good indication that there was no significant
relative motion between the bird’s head and the headpack in
flight.

In the pursuit flight, we fixedmarkers of 6.4–10mmdiam-
eter to the pulleys’ centres, to the top front vertices of the
starting boxes, to the edges of the curtain (which were rein-
forced with a wooden rod) and to the camouflage netting
at the curtain gap. Figure 10 shows the median position of
the reference markers used in the pursuit flight; note that the
walls’ positionswere estimatedwith themotion capture cam-
eras’ position and orientation, rather than with the markers.
To track the target’s motion, we glued three markers (6.4mm
diameter) to its canvas cover. In the obstacle avoidance flight,
we placed 14mmdiameter markers to the perches’ edges and
at the centre of the obstacles’ tops.

A.4: Experimental Procedure

In the pursuit trial, a linear motor pulled the target on a line
passing around a series of pulleys. The trajectory of the target
was randomised by selecting for each trial a set of pulleys,
from one of three starting positions to one of three end posi-
tions, via one of the two gaps around the curtain (Fig. 3a).
The curtain was made of two layers of flame-proofed cot-
ton canvas of size 6.0 m × 3.5 m, and hang from a steel
cable installed transversally across the motion capture room.
The line was a 3 mm thick parachute-style cord, in green to
minimise contrast with the astroturf carpet, and the average
speed of the target was 5.6 m s−1. To keep the target in ten-
sion, a long piece of line was attached to its back end and
rolled around the first pulley of the target’s trajectory. We
also randomised the takeoff position of the bird and placed
dummy lines along the alternative paths, to minimise the risk
of the bird predicting the target’s path. The bird began flying
freely from its falconer’s fist as soon as the target appeared
from inside the starting box in which it was hidden. Before
recording the pursuit trial, we recorded a ‘gaze calibration
trial’ to estimate the bird’s gaze direction within the head-

pack coordinate system. In it the falconer held the bird on
their fist whilst we displayed a piece of food with a marker
attached at a range of 0.5–1.5 m.

The obstacle avoidance flights are part of a set in which
we recorded the bird’s head movements as it flew from
the starting perch to the end perch, and back, with and
without obstacles in place. For each trial we recorded two
flights, which corresponded to the trajectories back and forth
between the perches. Two falconers stood at either end of
the room, to handle the bird and provide the food reward.
The lateral position of the perches was randomised for every
trial between three stations each. These were centred on
the longitudinal axis of the room and distributed with 1 m
spacing. Each obstacle was made up of two white expanded
polystyrene cylinders of 1 m height, stacked on top of each
other and bound together with white duct tape. The four
obstacles were pushed together so that there were minimal
gaps between them. For the trials with obstacles in place, we
also randomised the side of the end perch from which the
falconer would call the bird. We used the complete set of
flights from the same bird on the same day to calibrate the
bird’s gaze direction within the headpack coordinate system
(see Sect. 2.2).

We calibrated the motion capture system using an active
wand and following the manufacturer guidelines. In the
obstacle avoidance set of trials, we calibrated before record-
ing a set of trials with the same bird and headpack placement.
In the pursuit dataset, we calibrated the system without the
curtain in place, and before recording all trials per day. Since
we recorded less trials in the pursuit dataset, we don’t expect
the calibration to deteriorate significantly (the flight pre-
sented here is recorded 1.5 hours after calibrating)

Appendix B: Motion Capture Data Postpro-
cessing

B.1: Markers’Reconstruction and Labelling

We used the commercial software Vicon Nexus 2.8.0, from
the motion capture system manufacture, to extract the unla-
belled 3D coordinates of the retroreflective markers per
frame. This process is called marker reconstruction. The sys-
tem provides a residual value for each reconstructed marker
in 3D space to evaluate the measurement accuracy (Motion
LabSystems, 2021). Figure 11 shows thehistogramof residu-
als for the trials rendered in this paper. For the pursuit trial, the
mean residual is 0.82mm, the standard deviation is σ = 0.29
mm, and the median is 0.76 mm, for n = 69537 samples.
For the obstacle avoidance trial, which consists of the two
obstacle avoidance flights considered, the mean residual is
0.98 mm, the standard deviation is σ = 0.34 mm, and the
median 0.92 mm, for n = 29403 samples. All markers and
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recorded frames per trial are included in the computation of
the histograms (i.e., frames recorded before takeoff and after
landing are also considered).

Nexus is designed for collection and annotation of 3D
motion capture data, with a particular focus on human
motion. We found that our experiments pushed the system to
its limits in terms of tracking and labelling performance, and
therefore considered alternative options to process our data.
For a detailed description of the typical challenges of using
marker-based motion capture on birds the reader is referred
to Naik (2021).

For the pursuit flight, we labelled the individual head-
pack markers per frame using the Nexus software’s semi-
automatic labelling tool. For the target, it was difficult to
separate the individual identities of the markers with manual
labelling, as the target twisted and turned during the trial.
Instead we assigned a consistent set of three labels to the tar-
get markers, that allowed us to separate them easily from the
rest. We exported the manual labels to MATLAB, and wrote
custom scripts to label the remaining markers.

For the obstacle avoidance dataset,wewrote customMAT-
LAB scripts to separate headpack and object markers, and
label them. To label the headpack markers, we used the fol-
lowing approach:

• First, we labelled the frames with at least 4 markers
by iteratively solving the orthogonal procrustes prob-
lem with the headpack template; we also determined the
headpack’s transform (position and orientation) at those
frames.

• Second, we interpolated the headpack’s transform at the
remaining frames; and

• Third, we iteratively labelled the markers in the remain-
ing frames, by assigning them the label of the closest
marker of the corresponding interpolated headpack.

We iterated over the third step, keeping a constant minimum
distance for accepting a label but updating the interpolated
transform data for the headpack with the newly labelled
frames every time. We stopped when there were no new
frames labelled between two passes. To label the markers
in the objects, we used predefined bounding boxes.

Toassess thequality of our labellingof theheadpackmark-
ers, we computed the maximum distance between a labelled
marker and its corresponding position in the headpack tem-
plate, in a local coordinate system. Results are shown in
Fig. 12 and Table 3. Although the ideal distance deviation
without measurement error would of course be zero, the
actual distance deviation is in all cases smaller than the diam-
eter of the headpack markers, which implies that the markers
are correctly labelled, albeit that their precise positioning
is subject to measurement error. In line with our observa-
tions during manual labelling, the pursuit trial appears to

Table 3 Maximum distance dmax between labelled markers and corre-
sponding markers in headpack template

Label dmax (mm)
Pursuit trial Obstacle avoidance trial

1 1.8 1.6

2 3.1 2.0

3 4.6 2.8

4 2.2 1.6

5 1.6 N.A.

We considered all rendered frames in which the headpack transform
was not interpolated. Note that we used different headpack designs for
the two trials, and therefore the same label does not correspond to the
same marker. The obstacle avoidance trial consists of the two obstacle
avoidance flights analysed in the main text

have more jitter in the markers’ positions (even though the
residuals obtained from the system are not much larger, see
Fig. 11). For the set of trials with the same bird and headpack
placement as in the selected obstacle avoidance trial (which
we used to estimate the visual coordinate system), the max-
imum distance registered across all trials was 3.7 mm.

B.2: Headpack Transform Per Frame

To compute the headpack’s transform per frame, we solved
the procrustes problem on the labelled data. In the pursuit
flight, we used a template computed from the gaze calibration
data. In the obstacle avoidance flights, we used the theoretical
headpack design as the template.

For the frames where there were not enough headpack
markers reconstructed, or where these could not be reliably
labelled, we interpolated the headpack’s transform. In the
pursuit flight, we used a smoothing cubic spline to inter-
polate the headpack’s translation. In the obstacle avoidance
flights, we used a weighted variation that takes into account
the number of markers detected. In both cases we interpo-
lated the headpack’s rotation using the SLERP algorithm for
quaternions, which assumes constant angular velocity (Shoe-
make, 1985).We assumed the short path between quaternions
and constant pose in the extrapolation regions.

Duringmanual labelling of the pursuit flight we found that
some of the markers’ reconstructions were jittery and noisy
for certain sections, sowe computed the procrustes transform
on a subset of frames we determined as most reliable, and
interpolated the translation and rotation of the headpack for
the rest of the frames. The subset of frames considered most
reliable is the set of frames with 3 or more markers recon-
structed, excluding those frames inwhich the procrustes error
is above a certain threshold, themarkers are close to collinear,
or the most prominent frontal marker is missing. We then
applied a low-pass filter to the resulting head rotations, as
a moving average filter of window size equal to 2 frames,
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Fig. 11 Histogramof 3Dpoint residuals. The residuals are computed by
the motion capture system as part of the reconstruction step, in which
the markers’ 3D position is determined. The results for the rendered
pursuit trial (blue) and obstacle avoidance trial (red) are shown. The
obstacle avoidance trial consists of the two obstacle avoidance flights

analysed in the main text. The mean (dashed line) and median (contin-
uous line) values for both distributions are under 1 mm. Note that all
markers and recorded frames per trial are considered. The bins’ width
is 0.05 mm

Fig. 12 Labelled markers per trial in a local coordinate system. The
labelled markers for each of the pursuit (a) and the obstacle avoidance
trials (b) are shown in a coordinate system that moves with the head-
pack. In (a) the visual coordinate system is used and in (b) the headpack
coordinate system is shown; both correspond to the template used for

procrustes labelling in each trial. We considered all rendered frames in
which the headpack transform was not interpolated. Note that we used
different headpack designs for the two trials. The obstacle avoidance
trial consists of the two obstacle avoidance flights analysed in the main
text

using the SLERP algorithm:

q f (t) = slerp(q f (t − 1), q(t), p), (2)

where q f (t) denotes the filtered quaternion at frame t , q(t)
denotes the quaternion data point, slerp denotes the imple-
mentation of the SLERP algorithm in MATLAB, and p is
the interpolation parameter, which we set at 0.5. For the first
frame q f (0) = q(0). We applied the same filter when com-
puting the head rotations for the trajectory coordinate system.

B.3: Target Transform Per Frame

For the pursuit flight, we modelled the target as a cylinder,
with the three markers attached to it defining a right-angled
triangle. We defined a coordinate system linked to the cylin-
der, whose origin is at the cylinder’s centre, whose y-axis
is parallel to the longitudinal axis of the cylinder (pointing
inwards), and whose x and z-axis are two perpendicular radii
of the cylinder.
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Fig. 13 Estimated location of the walls. We estimated the location of
the walls from the motion capture cameras’ positions and orientations
for the pursuit flight (a) and the obstacle avoidance flights (b). Cameras
are shown in red. From the dimensions of the cameras and their mounts,
we estimated points in the scaffolding (black markers). We then used

the scaffolding points to the define the walls’ planes (blue transparent
planes). The corners of the volume are highlighted with blue markers.
A plane representing the curtain’s location is shown for reference in (a),
computed from the markers attached to it

We computed the translation of the cylinder as the trajec-
tory of the circumcentre of the triangle.We estimated it using
a cubic smoothing spline, that takes into account the number
of markers reconstructed.

We define the rotation of the cylinder’s coordinate system
as follows: its y-axis is always parallel to the origin’s velocity
vector �vorigin , and its x-axis is always parallel to the floor
plane of the lab. This mimics the actual motion of the target,
which was in tension between two lines, one pulled by the
linear motor and one looped around the initial pulley.

We consider the interception frame to be the instant at
which the distance from the bird to the target first reaches a
local minimum in the final approach phase.

B.4:Walls, Floor and Ceiling Geometry

The motion capture cameras were mounted on a fixed scaf-
fold fromwhich camouflage netting was hung. We estimated
its location using the position and orientation of the motion
capture cameras. These were computed during the calibra-
tion. We used the cameras’ positions and orientations to
estimate points on the scaffolding, taking into account the
dimensions of the cameras and their mounts. We then fit-
ted the estimated scaffolding points to a line for each wall
section. This provided an estimate of the scaffolding rungs
holding the netting and the cameras. We defined each wall
as the plane perpendicular to the floor that contained the
corresponding scaffolding rung, from which the camouflage
netting was hung.

Figure 13 shows the estimated walls and the motion cam-
eras for the pursuit and the obstacle avoidance flights. The
mean angle at the walls’ corners was 90◦, with standard devi-
ation σ = 0.2 for the pursuit flight, and σ = 0.5 for the
obstacle avoidance flights. We set the ceiling at the mean
height of the estimated scaffolding points: 3.33 m for the
pursuit flight and 3.25 m for the obstacle avoidance flights.

Appendix C: Visual Coordinate System Cali-
bration

To define the visual coordinate system relative to a headpack
coordinate system, we made use of three assumptions (see
Sect. 2.2). We identified specific periods in the collected data
in which we expect these assumptions to hold most reliably.
We used the data during these periods to estimate �vgaze, the
bird’s gaze direction, and �nsagittal , the normal to the bird’s
head symmetry plane (i.e., the sagittal plane). These vectors
define the basis of the visual coordinate system: the x-axis
is defined parallel to �nsagittal (pointing to the left side of the
head) and the y-axis parallel to−�vgaze. We defined the x and
y axes in this way so that the visual coordinate system is close
to parallel to themotion capture coordinate system at the start
of the trial; this facilitates the interpretation of the computed
rotations. The following sections describe the estimation of
�vgaze and �nsagittal for the pursuit and the obstacle avoidance
flights.
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Fig. 14 Examples of the bird’s behaviour in the fixation phase of the
gaze calibration trial. For certain periods during the gaze calibration
trial, the bird appeared to focus on the food reward presented to it, with

a characteristic behaviour of lowering its head and preparing its wings
for a downstroke. The marker on the food reward is highlighted with a
red circle

Table 4 Results of the gaze direction fitting, for the pursuit and obstacle avoidance flights

Trial Bird �vgaze Agaze (mm) d (mm) RMSE (mm) n

Pursuit Toothless
[
0.16, −0.94, 0.32

] [
103.7, −572.3, 251.5

]
54.3 47.5 462

Obstacles Drogon
[
0.13, −0.94, 0.31

] [
131.4, −969.9, 247.0

]
68.4 65.6 1274

The estimated gaze direction �vgaze and the point in the fitted line Agaze are both expressed in the headpack coordinate system. The distance between
the fitted line and the origin of the headpack coordinate system is d. RMSE stands for root mean square error, where the error is the distance between
the sample points and the fitted line. The number of samples per fit is denoted by n. For the pursuit flight, it corresponds to the number of frames
in the fixation phase in the gaze calibration trial. For the obstacle avoidance flights, it corresponds to the number of frames in the final approach
phase, across all the flights recorded with that bird and headpack placement

C.1: Estimate for the Pursuit Flight

For the pursuit flight, we estimated the visual coordinate sys-
tem using data from the gaze calibration trial. During this
trial, we recorded the bird’s head movements while it was
held on the falconer’s fist and presented with a food reward
that had a marker attached to it. In the corresponding refer-
ence video, we identified a ‘fixation phase’: a range of frames
in which the bird is likely to be fixating on the food reward
while holding its head level. We identified these frames by
a characteristic behaviour of the bird, in which it lowers its
head and prepares its wings for a downstroke; three samples
of the typical posture of the bird in this phase are shown in
Fig. 14. We selected two sequences of 342 and 120 frames of
motion capture data within the trial in which this behaviour
was most apparent.

We estimated the bird’s forward gaze direction �vgaze by
fitting a 3D line to the food marker’s trajectory during the
fixation phase, in an auxiliary coordinate system linked to

the headpack (RMSE = 47.5 mm for N = 462 samples); the
resulting vector is shown in Table 4 and Fig. 15.

For the same range of frames, we estimated the orientation
of the imaginary line connecting the bird’s eyes, assuming
the animal keeps its head approximately level during that
period. We identify this line with �nsagittal , the normal to the
bird’s head symmetry plane (i.e. the sagittal plane), whichwe
define as positive when pointing to the left side of the bird’s
head.We compute �nsagittal as the unit vector perpendicular to
�vgaze that best approximates the normal to the sagittal plane
in the headpack coordinate system.We do this by solving the
following least-squares problem:

θ∗ = argmin
θ

N∑

i=1

(�zworld,i · �nsagittal(θ))2,

�nsagittal(θ) = (cosθ)�a + (sinθ)�b,
�nsagittal = �nsagittal(θ∗), (3)
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(a) Motion capture coordinate system (b) Headpack coordinate system

Fig. 15 Estimation of gaze direction for the pursuit flight. The trajec-
tory of the marker attached to the food reward in the gaze calibration
trial is represented in two coordinate systems: one that translates with
the headpack and is parallel to themotion capture coordinate system (a),
and one fixed to the headpack (b). The estimated gaze direction �vgaze
is the orthogonal regression line (cyan) to the samples in the fixation
phase (blue) in the headpack coordinate system (b). The samples out-
side this phase are shown for reference (black, semi-transparent). The

food reward is presented to the bird at a distance between 0.5 and 1.5
m. Note how the position of the food marker in the fixation phase in (b)
falls within a small region, in contrast to the curved trajectory it follows
in (a), suggesting the bird is actively positioning the food reward on a
small area of its visual field during that phase. Inset in (b) shows the
approximate orientation of the headpack coordinate system relative to
the bird’s head

where �zworld,i is the world’s z-axis in the headpack coordi-
nate system (positive opposite to gravity), �a and �b are an
arbitrary orthonormal basis of the plane perpendicular to
�vgaze, and θ is the angle between �nsagittal and �a. The fit
over the N = 462 fixation frames yields a root-mean square
residual of 0.04; the resulting vector is shown in Table 5 and
Fig. 16.

The origin of the visual coordinate system in the pursuit
flight is defined as themidpoint between the two lateralmark-
ers of the headpack (see Fig. 19a). We estimated this point
to be close to the midpoint between the eyes, the ideal origin
of the visual coordinate system (Potier et al., 2016). From
reference images of the headpack on the bird’s head, we esti-
mate that the origin is < 10 mm from the midpoint between
the bird’s eyes in the direction perpendicular to the sagittal
plane, and < 20.1 mm in the direction perpendicular to the
headpack’s baseplate (see Appendix 1).

C.2: Estimate for the Obstacle Avoidance Flights

For the obstacle avoidance flights, we estimated the visual
coordinate system using data from 15 trials with the same
bird and headpack placement. Note that each trial consists of
two flights, which correspond to the two legs of the trial (see
Fig. 3b). From those 15 trials, 8 were recorded with obstacles
in place, and 7 without them. We identified two phases in all
the flights within this set of trials: a final approach phase, in
which we expect the bird to fixate on the centre of the perch;
and a mid-flight phase, in which we expect the bird to keep

Fig. 16 Estimation of the normal to the sagittal plane for the pursuit
flight We estimated the normal to the sagittal plane �nsagittal (magenta),
assuming the bird keeps its eyes level during the fixation phase of the
gaze calibration trial. In (a), dots represent the direction of theworld’s z-
axis in the headpack coordinate system, during the fixation phase (blue
markers) and outside the fixation phase (black, semi-transparent). Sam-
ples outside the fixation phase show larger variation in roll (i.e. rotation
around the y-axis). In (b), the local horizon (i.e. the plane perpendicular
to the world’s z-axis in the headpack coordinate system) is represented
for every frame in the fixation phase (gray circular planes). The direction
of the �nsagittal vector (magenta) is the best-fit line that is perpendicular
to the previously estimated �vgaze direction and is contained in all these
planes, in least-squares sense

its head level. We used these two phases to estimate �vgaze
and �nsagittal , respectively.

We estimated the bird’s forward gaze direction �vgaze using
data from the final approach phase. This phase was defined
based on the bird’s distance to the landing perch (0.5–1.0 m
for theobstacle trials, 0.5–2.0mfor thenoobstacle trials; note
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Fig. 17 Estimation of the gaze direction for the obstacle avoidance
flights. The gaze direction �vgaze is estimated over 8 trials with obstacles
in place (obstacle trials) and 7 trials without them (perching trials). Note
that each trial consists of two flights, which correspond to the two legs of
the trial (see Fig. 3b). The landing perch’s midpoint (grey and coloured
dots) is represented from 5m away until landing, in two coordinate sys-
tems: one that translates with the headpack and is parallel to the motion
capture coordinate system (a), and one fixed to the headpack (b). The
estimated gaze direction �vgaze is the orthogonal regression line (cyan) to

the samples in the final approach phase (plotted blue for perching trials,
and yellow for obstacle trials) in the headpack coordinate system (b).
Note the straightness of the perch’s midpoint trajectories in the head-
pack coordinate system in (b), and compare this to the curvature of the
lines in (a), which confirms unequivocally that the head pose was being
stabilised in relation to the perch. Inset in (b) shows the approximate
orientation of the headpack coordinate system relative to the bird’s head

Table 5 Results of the normal
to the sagittal plane fitting, for
the pursuit and the obstacle
avoidance trial

Trial Bird �nsagittal RMSE n

Pursuit Toothless
[
0.98, 0.11, −0.16

]
0.04 462

Obstacles Drogon
[
0.99, 0.14, −0.01

]
0.08 5056

The estimated normal �nsagittal is expressed in the headpack coordinate system. RMSE stands for root mean
square error, where the error is the residual of the least-squares problem solved. The number of samples per fit
is denoted by n. For the pursuit trial, it corresponds to the number of frames in the fixation phase in the gaze
calibration trial. For the obstacle avoidance trial, it corresponds to the number of frames in the final approach
phase, across all the trials recorded with that bird and headpack placement

that the obstacles were placed 1.5 m ahead of the end perch,
as per Fig. 3b). We fitted a 3D line to the trajectory of the
midpoint of the landingperchduring this phase, in a headpack
coordinate system (see Fig. 17). The root-mean square error
of the fit was RMSE = 65.6 mm, for N = 1274 samples; the
resulting vector is shown in Table 4. Results were similar to
those obtainedbyfitting each trial individually (seeAppendix
1, Table 6).

We computed the normal to the sagittal plane �nsagittal
following the same approach as in the pursuit flight, using
the data of the mid-flight phase. We defined this phase to be
when the bird was > 2 m away from either perch and flying
at a speed> 2.5m s−1; for all flights these conditions defined
a continuous range of frames. We solved for �nsagittal using
the set of equations in 3, and obtained a root-mean square
residual of 0.08 for N = 5056 samples; the resulting vector
is shown in Table 5 and Fig. 18.

We defined the origin of the visual coordinate system as
the centroid of the headpackmarkers projected onto the head-
pack’s baseplate plane. This is different to the definition used
in the pursuit flight because we used a different headpack
design. From reference images, we estimate this point is

within 12 mm of the midpoint between the bird’s eyes in the
direction perpendicular to the sagittal plane, and< 20 mm in
the direction perpendicular to the headpack’s baseplate (see
Appendix 1).

C.3: Distance Between the Origin and theMidpoint
Between the Eyes

In the pursuit flight, the origin of the visual coordinate system
is defined as the midpoint between the two lateral markers
of the headpack (see Fig. 19a). In the obstacle avoidance
flights, it is defined as the centroid of the headpack markers
projected onto the plane defined by the headpack baseplate
(see Fig. 21a; note that the headpack designs are not the
same in the pursuit flight and the obstacle avoidance flights).
We selected these points aiming to be close to the midpoint
between the eyes. We estimated howmuch these points devi-
ate from themidpoint between the eyes using snapshots of the
videos of the birds wearing the headpacks, recorded before
and after the trials.

The reference images used to estimate this offset for the
pursuit flight are shown in Figs. 19 and 20. Figure 19a shows
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Fig. 19 Distance between selected origin and midpoint between the
eyes for the pursuit flight, in the direction perpendicular to the sagittal
plane. Figure (a) shows the disposition of the markers in the headpack
coordinate system. The origin (which is the same for the headpack,
visual and trajectory coordinate systems) lies at the midpoint between
markers 2 (blue) and 5 (magenta). A front view of the bird wearing the
headpack is shown in (b), with the orange segments highlighting the

line between markers 2 (blue) and 5 (magenta), and the approximate
line between the eyes. The midpoints of these segments are shown as
black dots. The trace of the sagittal plane (red dashed line) contains the
midpoint between the eyes, and we estimate it based on the symmetry
of the bill. We can see that the distance between the sagittal plane and
the selected origin is smaller than the distance between the origin and
marker 5 (10 mm)

Fig. 18 Estimation of the normal to the sagittal plane for the obstacle
avoidance flights.We estimated the normal to the sagittal plane �nsagittal
(magenta) assuming the bird keeps its eyes level during the mid-flight
phase. The dots represent the direction of the world’s z-axis in the head-
pack coordinate system during the mid-flight phase, for perching (blue)
and obstacle trials (yellow). Note that each trial consists of two flights,
which correspond to the two legs of the trial (see Fig. 3b). Samples
outside of the mid-flight phase (black, transparent), show qualitatively
larger variation in pitch (i.e., rotation around the x-axis) and roll (i.e.,
rotation around the y-axis)

the selected origin lies betweenmarkers 2 and 5, and Fig. 19b
shows it is closer to the sagittal plane (red dashed line) than
tomarker 5.We therefore estimate that the offset in the direc-
tion perpendicular to the sagittal plane is, atmost, the distance
between the origin andmarker 5,which is 10mm.To estimate
the offset in the direction perpendicular to the headpack’s
baseplate, we selected three frames in which the baseplate
plane was almost perpendicular to the camera plane.We esti-

mated for each of them the real length of the yellow segment,
based on the known real length of the green segment, and
obtained a mean value of 20.1 mm.

We followed the same approach for the obstacle avoidance
flights; the reference images used are shown in Figs. 21 and
22. From these we estimate that the midpoint between the
eyes is within 12 mm from the selected origin in the trans-
verse direction (perpendicular to the sagittal plane), and 17.3
mm in the direction perpendicular to the headpack baseplate.

C.4: Gaze Direction Fit

To estimate �vgaze in both the pursuit and the obstacle avoid-
ance trials, we computed the orthogonal regression line to
the assumed points of fixation in the headpack coordinate
system. We used the singular-value decomposition approach
described in Söderkvis (2021):

USV T = svd(X − X), (4)

�vgaze = U (:, 1), (5)

Agaze = X (6)

where X denotes the array of sample points (size 3×N , with
N the number of sample points) and X is the mean of the
sample points (size 3 × 1). The singular-value decomposi-
tion is represented by the operator svd(). The matricesU , S,
V correspond to the matrix containing the left singular vec-
tors in columns, the diagonal matrix containing the singular
values, and the matrix containing the right singular vectors
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Fig. 20 Distance between selected origin and midpoint between the
eyes for the pursuit flight, in the direction perpendicular to the head-
pack’s plate. We selected three frames in which the headpack baseplate
was almost perpendicular to the camera plane. We then estimated on

each of them the real length of the yellow segment (the approximate
distance from the headpack’s baseplate to the bird’s eye), based on the
known length of the green segment (the height of marker 1 above the
baseplate). We obtained a mean value of 20.1 mm

Fig. 21 Distance between selected origin and midpoint between the
eyes for the obstacle avoidance flights, in the direction perpendicular
to the sagittal plane. Figure (a) shows the disposition of the markers
in the headpack coordinate system. The origin (which is the same for
the headpack, visual and trajectory coordinate systems) lies approxi-
mately between markers 2 (blue) and 4 (yellow). A front view of the
bird wearing the headpack is shown in (b), with the line between mark-
ers 2 (blue) and 4 (yellow) and the approximate line between the eyes.

The midpoint of the line between the eyes (white dot) falls within the
segment connecting markers 2 and 4.We therefore estimate that the dis-
tance between the midpoint between the eyes and the origin is at most,
the maximum distance between the origin and one of the highlighted
markers (12 mm). In (c), the red dashed line drawn following the bill’s
symmetry shows the approximate location of the sagittal plane, which
contains the midpoint between the eyes

in columns, respectively. The estimated gaze direction unit
vector �vgaze is computed as the first column of U . Agaze is
the centroid of the sample points, and a point in the fitted
line. Table 4 shows the complete fitting results for the flights
considered in the main text.

The rootmean square error (RMSE) inTable 4 is computed
with the error being the distance between the samples and the
fitted line.We additionally computed the distance d, between
the origin of the headpack coordinate system and the fitted
line (Table 4).

For both the pursuit and the obstacle avoidance trial, the
distance d is larger than the distance we estimated between
the origin of the headpack coordinate system and the mid-
point between the eyes in the previous section, Appendix 1.
Therefore, we don’t expect either of these lines to closely

represent a line that goes through the midpoint between the
eyes. This could be due to the bird fixating on a different
points than the ones we assume, due to eye movements that
we are not accounting for, or due to existing movement of
the headpack relative to the head. We expect this last effect
to be minimal, as we didn’t find any evidence of it in the
reference videos. In any case, we expect the estimated visual
coordinate system to be more representative of the forward
direction of the head and of the sagittal plane orientation than
a coordinate system simply aligned to the headpack. The fact
that our preliminary results seem in agreement with observa-
tions previously reported in the literature would support this,
although it should be confirmed with more flights.

For the obstacle avoidance trial, we checked for every
trial recorded with the same bird and headpack placement,
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Fig. 22 Distance between selected origin and midpoint between the
eyes for the obstacle avoidance flights, in the direction perpendicular
to the headpack’s plate. We selected three frames in which the bird’s
sagittal planewas almost parallel to the camera plane.We then estimated
on each of them the real length of the yellow segment (the approximate
distance from the headpack’s baseplate to the bird’s eye), based on the
known length of the green segment (the height of marker 1 above the
baseplate). We obtained a mean value of 17.3 mm

whether the slope of the fitted line per trial was similar across
trials. The results are shown in Table 6. We computed a devi-
ation metric σ�vgaze for the estimated unit gaze vector per trial,
as the square-root of the trace of the covariance matrix:

σ�vgaze =
√

σ 2
vx,gaze

+ σ 2
vy,gaze

+ σ 2
vz,gaze

, (7)

obtaining σ�vgaze = 0.0463. The mean gaze vector was

�vgaze = [
0.11, −0.95, 0.29

]
, very similar to the gaze direc-

tion estimate considering all trials aggregated (second row
in Table 4). We also computed the distance from the origin
of the headpack coordinate system to the fitted line per trial,
which yielded a mean value of d = 65.56 mm and a standard
deviation of σd = 22.88 mm, showing the variability in the
landing perch midpoint trajectories per trial.

C.4: Retinal Margins

The retinal margins define the set of directions in the visual
field that project on the right or left retina. We represented
the retinal margins of Harris’ hawks’ eyes in the estimated
visual coordinate system, using data from Potier et al. (2016)
(Fig. 23).

The authors in Potier et al. (2016) measured the visual
field experimentally, aligning the bird’s sagittal plane with a
visual perimeter and using an ophthalmoscopic reflex tech-
nique. They determined the degree of overlap (�θ > 0) or
divergence (�θ < 0) between the retinal margins of the
bird’s eyes, at several angles measured from the top of its
head φ. We digitized the data from the paper (figures 5C and
6 from Potier et al., 2016) and fitted a smoothing spline with

Fig. 23 Retinal margins of Harris’ hawks eyes. The retinal margins for
the left (blue) and right (red) eyes are shown on the unit sphere in the
visual coordinate system, from the front (a) and the back (b). The data
points for the retinalmargins fromPotier et al. (2016) are represented by
crosses. The blind (grey), binocular (pink) and monocular (blue) areas
are shown. The parallels on the sphere are plotted every 9◦ in latitude
and the meridians every 18◦ in longitude (Color figure online)

Fig. 24 Overlap between retinal margins of Harris’ hawks’ eyes. We
digitized the overlap between the retinal margins of the bird’s eyes (�θ)
at several angles measured from the top of its head (φ). We fitted the
data (black crosses) to a smoothing spline (blue dots) with periodic
boundary conditions (RMSE = 1.6◦)

periodic boundary conditions (8 polynomial pieces of order
2) to the relation �θ vs φ (RMSE = 1.6◦, Fig. 24). Note that
the data point at φ = 360◦ is just a duplicate of the data point
at φ = 0◦. From the interpolated overlap �θ we derived the
retinal margins for each eye, θle f t and θright , assuming sym-
metry with respect to the sagittal plane. We also assumed our
estimated gaze direction corresponds to the φ angle where
the binocular overlap is widest (φ = 90◦) (in line with the
point raised in the supplementary figure S1 from Potier et al.,
2016).

C.5 Trajectory coordinate system

We define the trajectory coordinate system as a coordinate
system with its y-axis tangent to the forward direction of the
trajectory and its x-axis parallel to the horizontal:

�yT = − �v
||�v|| , (8)
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Table 6 Results of the gaze
direction fitting per trial, for all
trials with the same bird and
headpack placement as the
rendered obstacle avoidance
trial

Trial �vgaze Agaze (mm) d (mm) RMSE n

Drogon perching 1
[
0.10 −0.94 0.33

] [
136.50 −1108.30 306.00

]
84.78 21.94 122

Drogon perching 2
[
0.13 −0.92 0.37

] [
112.38 −1086.61 317.02

]
113.15 48.07 123

Drogon perching 3
[
0.17 −0.93 0.33

] [
212.42 −1094.46 310.33

]
74.83 37.44 122

Drogon perching 4
[
0.12 −0.95 0.28

] [
122.18 −1138.82 285.44

]
46.50 44.70 117

Drogon perching 5
[
0.13 −0.96 0.25

] [
196.22 −1115.80 263.51

]
50.17 29.78 117

Drogon perching 6
[
0.12 −0.93 0.36

] [
149.82 −1095.98 315.56

]
99.12 54.63 124

Drogon perching 7
[
0.09 −0.96 0.27

] [
172.20 −1126.35 248.55

]
91.52 43.80 112

Drogon obstacles 1
[
0.12 −0.96 0.26

] [
141.08 −686.26 172.10

]
59.95 62.09 57

Drogon obstacles 2
[
0.07 −0.95 0.29

] [
65.88 −707.29 154.66

]
62.08 50.43 54

Drogon obstacles 3
[
0.09 −0.96 0.28

] [
19.18 −711.67 158.51

]
65.75 48.99 56

Drogon obstacles 4
[
0.15 −0.96 0.26

] [
117.33 −699.39 160.86

]
29.74 61.56 58

Drogon obstacles 5
[
0.11 −0.96 0.27

] [
85.59 −709.25 155.57

]
44.30 15.51 53

Drogon obstacles 6
[
0.09 −0.96 0.27

] [
32.18 −710.18 156.70

]
57.27 24.38 55

Drogon obstacles 7
[
0.12 −0.96 0.27

] [
109.94 −697.48 153.10

]
50.87 73.59 55

Drogon obstacles 8
[
0.12 −0.95 0.28

] [
83.00 −707.49 154.79

]
53.41 20.28 49

The estimated gaze direction �vgaze and the point in the fitted line Agaze are both expressed in the headpack
coordinate system. The distance between the fitted line and the origin of the headpack coordinate system is
d. RMSE stands for root mean square error, where the error is the distance between the sample points and
the fitted line. The number of samples n corresponds to the number of frames in the final approach phase, for
each trial

�xT = �yT × �zworld

||�yT × �zworld || , (9)

�zT = �xT × �yT , (10)

where �xT , �yT , �zT represent the versors of the trajectory coor-
dinate system, �v represents the velocity vector of the head,
and �zworld represents the world z-axis. We computed the
velocity vector of the head �v with a central differences
scheme on the head interpolated trajectory using the gra-
dient function in MATLAB. In the pursuit trial, we filtered
the rotations of the trajectory coordinate system using the
same approach applied to the visual coordinate system.

Appendix D: Model of the Lab Environment

D.1: Geometry of Pursuit Flight

Thepulleys used to guide the target’s trajectorywere diabolos
of 6.5 cm radius and 15 cm length, glued to a metallic base
of 1 cm width. We reduced their geometry in Blender to
cones of 6.5 cm radius at the base, and height determined by
the corresponding reference markers placed at the diabolos’
axes. Some pulleys had additional markers placed on the
contour but these were not used to model their geometry.

We modelled the starting boxes as cuboids of 1 m length,
with their height and orientation defined by the reference
markers placed at their top front vertices.

Table 7 Mean distances
between the markers fixed to the
target

Mean value (mm)

Length 91.2

Width 31.8

Diagonal 97.4

Computed from applying k-
means clustering to the distances
between markers labelled as
belonging to the target. Length,
width and diagonal refer to the
dimensions of the cylinder with
which we approximate the tar-
get’s shape

We modelled the target as a cylinder of 15 cm length and
2.54 cm diameter, based on reference images of the markers’
location on the target and on the average distances mea-
sured between the markers over the whole trial (see Table 7).
In determining the target’s width, we took into account the
diameter of the markers attached to it (6.4 mm).

We rendered one trial in which we added a texture to the
wall of themotion capture room, thatmimicked the texture of
the camouflage netting. We did this by tiling a picture of the
netting with appropriate scaling. The results are presented in
the Online Resources 1 and 2.

D.2: Geometry of Obstacle Avoidance Flights

We defined the geometry and locations of the perches and
obstacles based on the positions of their correspondingmark-
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Fig. 25 Correction of the
captured curtain mesh. We fitted
a plane to the floor of the mesh;
(a) shows the fitted plane
(magenta) and the inlier points
(yellow). We rotated the mesh
so that its fitted floor plane was
parallel to the floor plane of the
motion capture coordinate
system; (b) shows the original
mesh and the fitted floor plane
(magenta), and the rotated mesh
and floor plane (green). We then
translated the rotated mesh so
that its floor plane contained the
origin of the motion capture
system (not shown). (c) shows
the median position of the
markers fixed to the curtain
during the pursuit trial (blue
dots) and the segments (blue
lines) connecting them to the
nearest vertices from the red
subset of the mesh (highlighted
in red) (Color figure online)

ers (placed at the perches’ edges and at the centre of the
obstacles’ tops).

We reduced the perches to their top rungs and modelled
them as cylinders of radius 4 cm (based on measurements of
the actual perches). From reference images we estimated that
a line between the centres of themarkers on the perch’s edges
would be approximately tangent to the top rung cylinder.

We modelled the obstacles as vertical cylinders of 0.3 m
diameter. We estimated the offset between the larger mark-
ers’ centre and the obstacles’ tops by computing the mean
deviation from2mheight for thesemarkers.We took this off-
set into account (14 mm, including the markers’ base) when
defining the obstacles’ dimensions in Blender.

D.3: Dense 3DMap of the Curtain

The 3D mapping was carried out after collecting all bird
trials of the day. To evaluate the error in the captured mesh,
we recorded a motion capture trial just before carrying out

the 3D mapping, that registered the static motion capture
markers in the scene and on the ArUco calibration plate. We
call this themapping trial.We noticed themarkers fixed to the
curtainweren’t clearly identifiable in the capturedmeshes, so
we placed red tape around them to signal their approximate
region prior to mapping. These pieces of tape were also in
place during the bird trials.

We started the mapping procedure by setting up a local
wireless network between the motion capture computer,
the augmented reality smartphone and the laptop running
SemanticPaint, making use of its streaming functionality.We
then started the SemanticPaint application on the laptop and
connected the smartphone’s augmented reality app (Tango
Streamer) to it. Once the connection was verified, the ArUco
calibration plate was brought into camera view to compute
the required coordinate system transformation.After visually
confirming the computed coordinate system for themeshwas
correct, the mapping was carried out.
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Table 8 Distances between the
motion capture markers fixed to
the curtain and the subset of red
vertices in the curtain’s mesh

Pursuit trial Mapping trial
Original mesh Transformed mesh Original mesh Transformed mesh

Mean (cm) 9.7 9.3 9.1 8.9

Minimum (cm) 5.2 5.7 5.7 5.9

Maximum (cm) 16.4 16.6 13.0 13.3

The values shown represent the maximum, minimum and mean distance (in cm) between the median position
of the curtain markers and the 20 nearest neighbours in the red vertices subset of the curtain’s mesh

To obtain the 3D map for the curtain, we cropped it from
a partial mesh of the lab using MeshLab (Cignoni et al.,
2008). We cleaned the resulting mesh by removing duplicate
vertices and isolated pieces. We noticed that the floor plane
in the captured mesh was slightly deviated from the motion
capture coordinate system’s floor so we corrected the mesh
in MATLAB to match them.

To do this we first fitted a plane to the floor of the mesh
with a reference normal equal to [0, 0, 1], using pcfitplane
in MATLAB. This is an implementation of the M-estimator
sample consensus algorithm (MSAC), a variant of RANSAC.
The plane was computed with a 99% confidence of finding
the maximum number of inliers, with a maximum distance
between an inlier point and the plane of 10 cm, and a max-
imum angular distance between the normal vector of the
fitted plane and the reference orientation [0, 0, 1] of 2.5◦.
The resulting angle between the fitted plane and the refer-
ence orientation was 2.4◦ and the mean distance between
inlier points and the fitted plane was 3.8 cm.

We rotated and translated the input mesh so that the fitted
floor plane contained the origin of the motion capture sys-
tem, and its normal was parallel to [0, 0, 1]. This implied the
following transforms:

R =
⎛

⎝
1.00 0.00 −0.04
0.00 1.00 0.005
0.04 −0.005 1.00

⎞

⎠ , (11)

�t = [
0.00, 0.00, 3.53

]
(12)

where R denotes the rotation matrix applied and �t the trans-
lation vector, in centimetres.

We computed the deviation from the reference motion
capture markers as follows. For the markers placed on the
curtain edges, we computed their reference position as the
median of its coordinates across all frames, for the pursuit
trial and for the mapping trial. From all the points in the
mesh, we selected a subset of 400 vertices, whose colour
was closest to red (i.e., the vertices whose RGB vector had
lowest sum-of-square error from the red vector, [255, 0, 0]).
For each reference marker, we computed the mean distance
to the 20 nearest vertices from the red subset (see Fig. 25).
Themean, maximum andminimumdistances for the original
and the transformed mesh are shown in Table 8.

Fig. 26 Orthographic projection of the rendered output. The point of
view of the rendered videos in orthographic projection is represented
schematically. The rendered output (here, the RGB data) is represented
in the visual field unit sphere of the bird. The retinal margins for the
left (blue) and right (red) eyes are represented, as well as the blind area
(black). The direction of the orthographic projection is represented with
a magenta arrow and an eye icon. Note that when projecting the data as
indicated by the arrow, the most peripheral parts of the field of view of
the bird (beyond the magenta contour) are not included (Color figure
online)

Appendix E: Supplementary Videos

Figure 26 shows a representation of the orthographic projec-
tion used in the rendered videos. With an orthographic pro-
jection the distortion is less than if we use an equirectangular
projection, but the most peripheral parts of the bird’s field of
view are not included. Both projections are used to represent
the RGB data in the supplementary videos. A description of
the supplementary videos is summarised in Table 1.

The data was rendered using two GPUs model NVIDIA
3090RTX. Rendering the two obstacle avoidance flights (814
frames) took approximately 48 minutes, including all possi-
ble synthetic outputs exported as multilayer exr files and a
jpeg file per frame for preview. Rendering the same outputs
for the pursuit flight (516 frames), in a scene with the dense
map for the curtain but no texture in the walls, took approx-
imately 70 minutes.

For the pursuit trial, we exported the RGB channel in
PNG format, and the rest of channels as part of a multi-
layer OpenEXR file. In the frame numbering shown in the
video, the split between the two phases of the trial (before
and after the curtain) is at frame 1132, and the interception
frame corresponds to 1374.
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For the obstacle avoidance trial, we exported all rendered
passes as a mulitlayer OpenEXR file. For the RGB video,
we used the tonemap function in MATLAB to read the HDR
images. The analysis presented in the paper excludes the first
and last 20 frames of the videos for each leg of the trial. In
the frame numbering shown in the video, the landing perch
becomes fully visible at frame 958 in leg 1, and frame 1997 in
leg 2 of the trial. The observed saccades in the second leg of
the trial occur at approximately frame 2029 and frame 2184.
These are more evident in the orthographic projection.

We used the OpenEXR bindings available at https://
github.com/skycaptain/openexr-matlab to read theOpenEXR
files in MATLAB.
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