Skip to main content
Log in

Aggregate cell suspension cultures of Tripterygium wilfordii Hook. f. for triptolide, wilforgine, and wilforine production

  • Research Note
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The relationships between aggregate cell types, cell growth, and the triptolide, wilforgine, and wilforine content in aggregate cell suspension cultures of Tripterygium wilfordii Hook. f. were examined. Aggregate cells larger than 2 mm grew quickly and constituted the majority of the white aggregates. The accumulation of triptolide was strongly correlated with the size of the aggregates and the length of the culture period. The aggregates 0.5–2 mm in diameter accumulated higher triptolide content than those with other sizes throughout the culture. However, the size of the aggregate cells did not significantly affect on the wilforgine and wilforine content. Two other kinds of aggregate cells, the brown and green aggregate cells, also formed in the suspension cultures. The smallest aggregates (0.1–0.5 mm) had a lower biomass and growth rate and had more chloroplasts and higher alkaloid content. The results of this study can be used to improve the selection process for the mass production of triptolide, wilforgine, and wilforine from cell suspension cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Beroza M (1952) Alkaloids from Tripterygium wilfordii Hook.: wilforgine and wilfortrine. J Am Chem Soc 74:1585–1588

    Article  CAS  Google Scholar 

  • Bolta Ž, Baričevič D, Raspor P (2003) Biomass segregation in sage cell suspension culture. Biotechonol Lett 25:61–65

    Article  CAS  Google Scholar 

  • Boonsnongcheep P, Korsangruang S, Soonthornchareonnon N, Chintapakorn Y, Saralamp P, Prathanturarug S (2010) Growth and isoflavonoid accumulation of Pueraria candollei var. candollei and P. candollei var. mirifica cell suspension cultures. Plant Cell Tissue Organ Cult 101:119–126

    Article  CAS  Google Scholar 

  • Brinker AM, Raskin I (2005) Determination of triptolide in root extracts of Tripterygium wilfordii by solid-phase extraction and reverse-phase high-performance liquid chromatography. J Chromatogr A 1070:65–70

    Article  PubMed  CAS  Google Scholar 

  • Brinker AM, Ma J, Lipsky PE, Raskin I (2007) Medicinal chemistry and pharmacology of genus Tripterygium (Celastraceae). Phytochemistry 68:732–766

    Article  PubMed  CAS  Google Scholar 

  • Capataz-Tafur J, Rodríguez-Monroy M, Trejo-Tapia G, Sepúlveda-Jiménez G (2011) Arabinogalactan proteins are involved in cell aggregation of cell suspension cultures of Beta vulgaris L. Plant Cell Tissue Organ Cult 106:169–177

    Article  CAS  Google Scholar 

  • Dai KM, Wang Y (1994) Determination of total alkaloids in different areas and different application parts of Triptergium wilfordii and T. hypoglaucun. Chin Tradit Pat Med 16:41–42

    Google Scholar 

  • Ellis DD, Zeldin EL, Brodhagen M, Russin WA, McCown BH (1996) Taxol production in nodule cultures of Taxus. J Nat Prod 59:246–250

    Article  PubMed  CAS  Google Scholar 

  • Gamborg OL, Eveleigh DE (1968) Culture methods and detection of glucanases in suspension cultures of wheat and barley. J Biochem 46:417

    CAS  Google Scholar 

  • Hulst AC, Meyer MMT, Breteler H, Tramper J (1989) Effect of aggregate size in cell cultures of Tagetes patula on thiophene production and cell growth. Appl Microbiol Biotechnol 30:18–25

    Article  CAS  Google Scholar 

  • Keßler M, Ten Hoopen HJG, Furusaki S (1999) The effect of the aggregate size on the production of ajmalicine and tryptamine in Catharanthus roseus suspension culture. Enzym Microb Tech 24:308–315

    Article  Google Scholar 

  • Kolewe ME, Henson MA, Roberts SE (2010) Characterization of aggregate size of Taxus suspension cell culture. Plant Cell Rep 29:485–494

    Article  PubMed  CAS  Google Scholar 

  • Kolewe ME, Roberts SC, Henson MA (2012) A population balance equation model of aggregation dynamics in Taxus suspension cell cultures. Biotechnol Bioeng 109:472–482

    Article  PubMed  CAS  Google Scholar 

  • Kutney JP, Choi LS, Duffin R, Hewitt G, Kawamura N, Kurihara T, Salisbury P, Sindelar R, Stuart KL, Townsley PM, Chalmers WT, Webster F, Jacoli GG (1983) Cultivation of Tripterygium wilfordii tissue cultures for the production of the cytotoxic diterpene tripdiolide. Planta Med 48:158–163

    Article  PubMed  CAS  Google Scholar 

  • Lange BM, Rujan T, Martin W, Croteau R (2000) Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci 97:13172–13177

    Article  PubMed  CAS  Google Scholar 

  • Lee EK, Jin YW, Park JH et al (2010) Cultured cambial meristematic cells as a source of plant natural products. Nat Biotechnol 28:1213–1217

    Article  PubMed  CAS  Google Scholar 

  • Liu Q (2011) Triptolide and its expanding multiple pharmacological functions. Int Immunopharmacol 11:377–383

    Article  PubMed  CAS  Google Scholar 

  • Luo DQ, Zhang X, Tian X, Liu JK (2004) Insecticidal compounds from Tripterygium wilfordii active against Mythimna separata. Z Naturforsch C 59:421–426

    PubMed  CAS  Google Scholar 

  • Ma J, Brach AR, Liu Q (1999) A revision of the genus Tripterygium (Celastraceae). Edinb J Bot 56:33–46

    Article  Google Scholar 

  • Madhusudhan R, Ravishankar GA (1996) Gradient of anthocyanin in cell aggregates of Daucus carota in suspension cultures. Biotechnol Lett 18:1253–1256

    Article  CAS  Google Scholar 

  • Monache FD, Bettolo GBM, Bernays EA (1984) Isolation of insect antifeedant alkaloids from Maytenus rigida (Celastraceae). Zeitschrift für Angewandte Entomologie 97:406–414

    Article  Google Scholar 

  • Oksman-Caldentey K, Inz D (2004) Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends Plant Sci 9:433–440

    Article  PubMed  CAS  Google Scholar 

  • Pépin MF, Chavarie C, Archambault J (1991) Growth and immobilization of Tripterygium wilfordii cultured cells. Biotechnol Bioeng 38:1285–1291

    Article  PubMed  Google Scholar 

  • Plas LHWV, Eijkelboom C, Hagendoorn MJM (1995) Relation between primary and secondary metabolism in plant cell suspension; competition between secondary metabolite production and growth in a model system (Morinda citrifolia). Plant Cell Tissue Organ Cult 43:111–116

    Article  Google Scholar 

  • Schlatmann JE, Vinke JL, ten Hoopen HJG, Heijnen JJ (1995) Relation between dissolved oxygen concentration and ajmalicine production rate in high density cultures of Catharanthus roseus. Biotechnol Bioeng 45:435–439

    Article  PubMed  CAS  Google Scholar 

  • Simões-Gurgel C, Cordeiro LS, Castro TC, Callado CH, Albarello N, Mansur E (2011) Establishment of anthocyanin-producing cell suspension cultures of Cleome rosea Vahl ex DC (Capparaceae). Plant Cell Tissue Organ Cult 106:537–545

    Article  Google Scholar 

  • Smetanska I (2008) Production of secondary metabolites using plant cell cultures. Adv Biochem Eng/Biotechnol 111:187–228

    Article  CAS  Google Scholar 

  • Sun YM, Xu JZ, Wang ZA, Yu XP (2009) Determination of triptolide in different ages of root and different parts of Tripterygium wilfordii Hook.f. by HPLC. Chin J Mod Appl Pharm 26:904–906

    Google Scholar 

  • Tholl D (2006) Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol 9:1–8

    Article  Google Scholar 

  • Trejo-Tapia G, Rodríguez-Monroy M (2007) Cellular aggregation in secondary metabolite production in in vitro plant cell cultures. Interciencia 32:669–674

    Google Scholar 

  • Tsoulpha P, Doran PM (1991) Solasodine production from self-immobilised Solanum aviculare cells. J Biotechnol 19:99–110

    Article  PubMed  CAS  Google Scholar 

  • Xia Z, Chen J (1990) Alkaloids from stems and leaves of Tripterygium wilfordii. Chin Pham J 25:266–267

    CAS  Google Scholar 

  • Xu JF, Su ZG, Feng PS (1998a) Suspension culture of compact callus aggregate of Rhodiola sachalinensis for improved salidroside production. Enzym Microb Technol 23:20–27

    Article  Google Scholar 

  • Xu JF, Yin PQ, Wei XG, Su ZG (1998b) Self-immobilized aggregate culture of Taxus cuspidata for improved taxol production. Biotechnol Tech 12:241–244

    Article  CAS  Google Scholar 

  • Zhao J, Zhu WH, Hu Q, He XW (2001) Enhanced indole alkaloid production in suspension compact callus clusters of Catharanthus roseus: impacts of plant growth regulators and sucrose. Plant Growth Regul 33:33–41

    Article  Google Scholar 

  • Zhao D, Huang Y, Jin Z, Qu W, Lu D (2003) Effect of aggregate size in cell cultures of Saussurea medusa on cell growth and jaceosidin production. Plant Cell Rep 21:1129–1133

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National 863 project (2011AA10A202-1) and the Special Fund for Agro-scientific Research in the Public Interest (No. 200903052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Zhang.

Additional information

Guo-peng Miao and Chuan-shu Zhu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miao, Gp., Zhu, Cs., Feng, Jt. et al. Aggregate cell suspension cultures of Tripterygium wilfordii Hook. f. for triptolide, wilforgine, and wilforine production. Plant Cell Tiss Organ Cult 112, 109–116 (2013). https://doi.org/10.1007/s11240-012-0211-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-012-0211-0

Keywords

Navigation