Skip to main content
Log in

Nanomaterial-based adsorbents: the prospect of developing new generation radionuclide generators to meet future research and clinical demands

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Nanostructured materials by virtue of huge surface to volume ratios, altered physical properties, tailored surface chemistry, favorable adsorption characteristics, and enhanced surface reactivity resulting from the nanoscale dimensions, have attracted considerable attention as a new class of adsorbent material in column chromatographic separation. This emerging class of adsorbent represents an innovative paradigm and is expected to play an important role in the development of radionuclide generators for nuclear medicine. The optimal combination of suitable nanomaterial and appropriate parent/daughter radionuclide pair forms the basis of such generators. Development of such generators is currently under intensive investigations and the utility of such systems is expected to pave the way for broad panoply of diagnostic and therapeutic applications in nuclear medicine. While nanomaterial-based radionuclide generator is still in its infancy, the use of such novel class of adsorbents is expected to have potential impact on shaping the radionuclide generator technology of future generation. This review provides a comprehensive summary on the utility of nanomaterials as effective adsorbents in the development column chromatographic radionuclide generators for medical applications. This overview outlines a critical assessment of role of the nanosorbents, recent developments, the contemporary status, and key challenges and apertures to the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lambrecht RM (1983) Radionuclide generators. Radiochim Acta 34:9–24

    CAS  Google Scholar 

  2. Knapp FF Jr, Mirzadeh S (1994) The continuing important role of radionuclide generator systems for nuclear medicine. Eur J Nucl Med 21:1151–1165

    Article  Google Scholar 

  3. Mirzadeh S, Knapp FF Jr (1996) Biomedical radioisotope generator systems. J Radioanal Nucl Chem 203:471–488

    Article  CAS  Google Scholar 

  4. Chakravarty R, Dash A (2013) Development of radionuclide generators for biomedical applications. Lambert Academic Publishing, Saarbrücken

    Google Scholar 

  5. Knapp Jr FF, Butler TA (eds) (1984) Radionuclide generators: new systems for nuclear medicine applications. ACS symposium series, vol 241. American Chemical Society

  6. Rosch F, Knapp FF Jr (2003) Radionuclide generators. In: Vertes A, Nagy S, Klenscar Z (eds) Radiochemistry and radiopharmaceutical chemistry in life sciences: handbook of nuclear chemistry. Kluwer Academic Publisher, Dordrecht, pp 81–118

    Google Scholar 

  7. Jones AG (1995) Technetium in nuclear medicine. Radiochim Acta 71:289–297

    Google Scholar 

  8. Richards P, Tucker WD, Srivastava SC (1982) Technetium-99m: an historical perspective. Int J Appl Radiat Isot 33:793–799

    Article  CAS  Google Scholar 

  9. Eckelman WC (2009) Unparalleled contribution of technetium-99m to medicine over 5 decades. J Am Coll Cardiol Imaging 2:364–368

    Article  Google Scholar 

  10. Banerjee S, Pillai MR, Ramamoorthy N (2001) Evolution of Tc-99m in diagnostic radiopharmaceuticals. Semin Nucl Med 31:260–277

    Article  CAS  Google Scholar 

  11. Dash A, Knapp FF Jr, Pillai MRA (2013) Industrial radionuclide generators: a potential step towards accelerating radiotracer investigations in industry. RSC Adv. doi:10.1039/C3RA41639A

    Google Scholar 

  12. Mushtaq A (2004) Inorganic ion-exchangers: their role in chromatographic radionuclide generators for the decade 1993–2002. J Radioanal Nucl Chem 262:797–810

    Article  CAS  Google Scholar 

  13. Therapeutic radionuclide generators: 90Sr/90Y and 188W/188Re generators (2009). IAEA Technical Report Series No. 470

  14. Guhlke S, Beets AL, Oetjen K, Mirzadeh S, Biersack HJ, Knapp FF Jr (2000) Simple new method for effective concentration of 188Re solution from an alumina based 188W–188Re generator. J Nucl Med 41:1271–1278

    CAS  Google Scholar 

  15. Blower PJ (1993) Extending the life of a Tc-99m generator: a simple and convenient method for concentrating generator eluate for clinical use. Nucl Med Commun 14:995–997

    Article  CAS  Google Scholar 

  16. Guhlke S, Beets AL, Oetjin K (1998) Convenient concentration of rhenium-188 and technetium-99m eluates from tungsten-188/rhenium-188 or (n,γ)-produced molybdenum-99/technetium-99m generators to high specific volumes. J Label Compd Radiopharm 40:294–297

    Google Scholar 

  17. Sarkar SK, Venkatesh M, Ramamoorthy N (2009) Evaluation of two methods of concentrating perrhenate (188Re) eluates from 188W–188Re generator. Appl Radiat Isot 67:234–239

    Article  CAS  Google Scholar 

  18. Mansur MS, Mushtaq A, Jehangir M (2006) Concentration of 99mTc-pertechnate and 188Re-perrhenate. Radiochim Acta 94:107–111

    Article  CAS  Google Scholar 

  19. Jackel B, Cripps R, Guntay S, Bruchertseifer H (2005) Development of semi-automated system for the preparation of 188Re aqueous solutions of high and reproducible activity concentrations. Appl Radiat Isot 63:299–304

    Article  CAS  Google Scholar 

  20. Mushtaq A (2004) Concentration of 99mTcO4 /188ReO4 by a single, compact, anion exchange cartridge. Nucl Med Commun 25:957–962

    Article  CAS  Google Scholar 

  21. Chakravarty R, Dash A, Pillai MRA, Venkatesh M (2010) Post-elution concentration of 188Re by an electrochemical method. Appl Radiat Isot 68:2302–2305

    Article  CAS  Google Scholar 

  22. Chakravarty R, Sarkar SK, Venkatesh M, Pillai MRA (2012) An electrochemical procedure to concentrate 99mTc availed from a zirconium [99Mo] molybdate gel generator. Appl Radiat Isot 70:375–379

    Article  CAS  Google Scholar 

  23. Chakravarty R (2011) Development of radionuclide generators for biomedical applications. PhD Thesis, Homi Bhabha National Institute, Mumbai. http://www.hbni.ac.in/phdthesis/thesis_aug2012/CHEM01200804008_RChakravarty.pdf. Accessed 8 Nov 2013

  24. Chakravarty R, Shukla R, Tyagi AK, Dash A (2012) In: Ariga K (ed) Manipulation of nanoscale materials: an introduction to nanoarchitectonics. Royal Society of Chemistry, London, pp 259–301

    Chapter  Google Scholar 

  25. Pradeep T (2008) Nano: the essentials understanding nanoscience and nanotechnology, 1st edn. Tata McGraw Hill Publishing Company Limited, New Delhi

    Google Scholar 

  26. Poole CP Jr, Owens FJ (2007) Introduction to nanotechnology, 1st edn. Wiley India Pvt. Ltd., New Delhi

    Google Scholar 

  27. Feynman RP (1961) There’s plenty of room at the bottom. In: Gilbert HD (ed) Miniaturization. Reinhold Publishing Corporation, New York, pp 282–296

    Google Scholar 

  28. Andrievski RA (2003) Modern nanoparticle research in Russia. J Nanopart Res 5:415–418

    Article  Google Scholar 

  29. Cao G (2004) Nanostructures & nanomaterials: synthesis, properties & applications, 1st edn. Imperial College Press, London

    Book  Google Scholar 

  30. Rao CNR, Thomas PJ, Kulkarni GU (2007) Nanocrystals: synthesis, properties and applications. Springer series on material science, vol 95

  31. Rao CNR, Muller A, Cheetham AK (eds) (2004) The chemistry of nanomaterials: synthesis, properties and applications, 1st edn. Wiley-VCH Verlag, Weinheim

    Google Scholar 

  32. Rao CNR, Muller A, Cheetham AK (eds) (2007) Nanomaterials chemistry: recent developments and new directions, 1st edn. Wiley-VCH Verlag, Weinheim

    Google Scholar 

  33. Chakravarty R, Dash A (2013) Role of nanoporous materials in radiochemical separations for biomedical applications. J Nanosci Nanotechnol 13:2431–2450

    Article  CAS  Google Scholar 

  34. Chakravarty R, Dash A (2013) Nano structured metal oxides as potential sorbents for 188W/188Re generator: a comparative study. Sep Sci Technol 48:607–616

    Article  CAS  Google Scholar 

  35. Chakraborty S, Chakravarty R, Dash A, Pillai MRA (2013) The practicality of nanoceria–PAN-based 68Ge/68Ga generator toward preparation of 68Ga-labeled cyclic RGD dimer as a potential PET radiotracer for tumor imaging. Cancer Biother Radiopharm 28:77–83

    Article  CAS  Google Scholar 

  36. Chakravarty R, Ram R, Dash A, Pillai MRA (2012) Preparation of clinical-scale 99Mo/99mTc column generator using neutron activated low specific activity 99Mo and nanocrystalline γ-Al2O3 as column matrix. Nucl Med Biol 39:916–922

    Article  CAS  Google Scholar 

  37. Chakravarty R, Ram R, Venkatesh M, Dash A (2012) Development of a 68Ge/68Ga generator to avail 68Ga in organic medium for industrial radiotracer applications. Sep Sci Technol 47:1673–1676

    Article  CAS  Google Scholar 

  38. Chakravarty R, Shukla R, Ram R, Venkatesh M, Tyagi AK, Dash A (2011) Exploitation of nano alumina for the chromatographic separation of clinical grade 188Re from 188W: a renaissance of the 188W/188Re generator technology. Anal Chem 83:6342–6348

    Article  CAS  Google Scholar 

  39. Chakravarty R, Shukla R, Ram R, Tyagi AK, Dash A, Venkatesh M (2011) Development of nano-zirconia based 68Ge/68Ga generator for biomedical applications. Nucl Med Biol 38:575–583

    Article  CAS  Google Scholar 

  40. Chakravarty R, Shukla R, Ram R, Venkatesh M, Dash A, Tyagi AK (2010) Nano-ceria–PAN composite based advanced sorbent material: a major step forward in the field of clinical grade 68Ge/68Ga generator. ACS Appl Mater Interfaces 2:2069–2075

    Article  CAS  Google Scholar 

  41. Chakravarty R, Shukla R, Ram R, Tyagi AK, Dash A, Venkatesh M (2010) Practicality of tetragonal nano-zirconia as a prospective sorbent in the preparation of 99Mo/99mTc generator for biomedical applications. Chromatographia 72:875–884

    Article  CAS  Google Scholar 

  42. Chakravarty R, Shukla R, Ram R, Tyagi AK, Dash A, Venkatesh M (2010) Nanocrystalline zirconia: a novel sorbent for the preparation of 188W/188Re generator. Appl Radiat Isot 68:229–238

    Article  CAS  Google Scholar 

  43. Chakravarty R, Dash A, Venkatesh M (2009) Separation of clinical grade 188Re from 188W using polymer embedded nanocrystalline titania (TiP). Chromatographia 69:1363–1371

    Article  CAS  Google Scholar 

  44. Chakravarty R, Shukla R, Gandhi S, Ram R, Dash A, Venkatesh M, Tyagi AK (2008) Polymer embedded nanocrystalline titania sorbent for 99Mo–99mTc generator. J Nanosci Nanotechnol 8:4447–4452

    Article  CAS  Google Scholar 

  45. Chakravarty R, Chakraborty S, Dash A, Pillai MRA (2013) Long-term evaluation of ‘BARC 68Ge/68Ga generator’ based on the nanoceria–polyacrylonitrile composite sorbent. Cancer Biother Radiopharm 28:631–637

    Google Scholar 

  46. Osso JA Jr, Catanoso MF, Barrio G, Brambilla TP, Teodoro R, Dias CRBR, Suzuki KN (2012) Technetium-99m—new production and processing strategies to provide adequate levels for SPECT imaging. Curr Radiopharm 5:178–186

    Article  CAS  Google Scholar 

  47. Boyd RE (1982) Molybdenum-99:technetium-99m generator. Radiochim Acta 30:123–145

    CAS  Google Scholar 

  48. Boyd RE (1987) Technetium generators: status and prospects. Radiochim Acta 41:59–63

    CAS  Google Scholar 

  49. Bremer KH, Aktiengesellschaft H (1987) Large scale production and distribution of Tc-99m generators for medical use. Radiochim Acta 41:73–81

    CAS  Google Scholar 

  50. Molinsky VJ (1982) A review of 99mTc generator technology. Int J Appl Radiat Isot 33:811–819

    Article  Google Scholar 

  51. Cecchin D, Zucchetta P, Faggin P, Bolla E, Bui F (2010) 99Mo/99mTc generator shortage. J Nucl Med 51:14N–15N

    Google Scholar 

  52. Gould P (2009) Medical isotope shortage reaches crisis level. Nature 460:312–313

    Article  CAS  Google Scholar 

  53. Perkins AC, Vivian G (2009) Molybdenum supplies and nuclear medicine services. Nucl Med Commun 30:657–659

    Article  Google Scholar 

  54. Webster P (2009) North America’s medical isotope crisis. Lancet 374:103

    Article  Google Scholar 

  55. Ballinger JR (2010) 99Mo shortage in nuclear medicine: crisis or challenge? J Label Compd Radiopharm 53:167–168

    CAS  Google Scholar 

  56. Pillai MRA, Knapp FF Jr (2011) Overcoming the 99mTc shortage: are options being overlooked? J Nucl Med 52:15N–28N

    CAS  Google Scholar 

  57. Gould P (2008) Medical isotopes: time to secure supplies? Lancet Oncol 9:1027

    Article  Google Scholar 

  58. Ruth T (2009) Accelerating production of medical isotopes. Nature 457:536–537

    Article  CAS  Google Scholar 

  59. Pillai MRA, Dash A, Knapp FF Jr (2013) Sustained availability of 99mTc: possible paths forward. J Nucl Med 54:313–323

    Article  CAS  Google Scholar 

  60. Pillai MRA, Knapp FF Jr (2012) Molybdenum-99 production from reactor irradiation of molybdenum targets: a viable strategy for enhanced availability of technetium-99m. Q J Nucl Med Mol Imaging 56:385–399

    CAS  Google Scholar 

  61. Dash A, Knapp FF Jr, Pillai MRA (2013) 99Mo/99mTc separation: an assessment of technology options. Nucl Med Biol 40:167–176

    Article  CAS  Google Scholar 

  62. Hasegawa Y, Nishino M, Takeuchi T, Tatenuma K, Tanase M, Kurosawa K (1987) Mo adsorbent for 99Mo–99mTc generators and manufacturing thereof. US Patent 5,681,974, 28 Oct 1997

  63. Lee JS, Han HS, Park UJ, Son J, Shin HY, Hong SB, Jang KD, Lee JS (2010) Adsorbents for radioisotopes, preparation methodology thereof, and radioisotope generators using the same. US Patent 2010/0,248,955 A1, 30 Sep 2010

  64. Salehi H, Mollarazi E, Abbasi H, Zoghi M (2008) A new 99mTc generator using cerium(IV) oxide as an adsorbent for 99Mo. J Phys Theor Chem 4:245–249

    Google Scholar 

  65. Mushtaq A, Mansoor MS, Karim HMA, Khan MA (1991) Hydrated titanium dioxide as an adsorbent for 99Mo/99mTc generator. J Radioanal Nucl Chem 147:257–261

    Article  CAS  Google Scholar 

  66. Serrano J, Bertin V, Bulbulian S (2000) 99Mo sorption by thermally treated hydrotalcites. Langmuir 16:3355–3360

    Article  CAS  Google Scholar 

  67. Qazi QM, Mushtaq A (2011) Preparation and evaluation of hydrous titanium oxide as a high affinity adsorbent for molybdenum (99Mo) and its potential for use in 99mTc generators. Radiochim Acta 99:231–235

    Article  CAS  Google Scholar 

  68. Gómez JS, Correa FG (2002) 99mTc generator with hydrated MnO2 as adsorbent of 99Mo. J Radioanal Nucl Chem 254:625–628

    Article  Google Scholar 

  69. Tanase M, Tatenuma K, Ishikawa K, Kurosawa K, Nishino M, Hasegawa Y (1997) A 99mTc generator using a new inorganic polymer adsorbent for (n,γ)99Mo. Appl Radiat Isot 48:607–611

    Article  CAS  Google Scholar 

  70. British Pharmacopoeia Commission (2008) British pharmacopoeia. The Stationery Office, Norwich. www.pharmacopoeia.org.uk. Accessed 8 Nov 2013

  71. Chakravarty R, Ram R, Mishra R, Sen D, Mazumder S, Dash A, Pillai MRA (2013) Mesoporous alumina (MA) based double column approach for development of clinical scale 99Mo/99mTc generator using (n,γ)99Mo: an enticing application of nanomaterial. Ind Eng Chem Res 52:11673–11684

    Google Scholar 

  72. International Atomic Energy Agency. Operation research reactors in the world [database]. www.naweb.iaea.org/napc/physics/research_reactors/database/RR%20Data%20Base/datasets/foreword_home.html. Accessed 20 July 2013

  73. Knapp FF Jr (1998) Rhenium-188—a generator-derived radioisotope for cancer therapy. Cancer Biother Radiopharm 13:337–349

    Article  CAS  Google Scholar 

  74. Jeong JM, Knapp FF Jr (2008) Use of the Oak Ridge National Laboratory Tungsten-188/Rhenium-188 generator for preparation of the Rhenium-188 HDD/Lipiodol complex for trans-arterial liver cancer therapy. Semin Nucl Med 38:S19–S29

    Article  Google Scholar 

  75. Abram U, Alberto R (2006) Technetium and rhenium—coordination chemistry and nuclear medical applications. J Braz Chem Soc 17:1486–1500

    Article  CAS  Google Scholar 

  76. Savio E, Gaudiano J, Robles AM, Balter H, Paolino A, López A, Hermida JC, De Marco E, Martinez G, Osinaga E, Knapp FF Jr (2001) Rhenium-188 HEDP: pharmacokinetic characterization, clinical and dosimetric evaluation in osseous metastatic patients with two levels of radiopharmaceutical dose. BMC Nucl Med 1:2–10

    Article  Google Scholar 

  77. Blower PJ, Kettle AG, O’Doherty MJ, Coakley AJ, Knapp FF Jr (2000) 99mTc(V)-DMSA quantitatively predicts 188Re(V) DMSA distribution in patients with prostate cancer metastatic to bone. Eur J Nucl Med 9:1405–1409

    Google Scholar 

  78. Liepe K, Hlises R, Kropp J, Gruning T, Runge R, Koch R, Knapp FF Jr, Franke WG (2000) Rhenium-188-HEDP in palliative treatment of bone metastases. Cancer Biother Radiopharm 15:261–265

    Article  CAS  Google Scholar 

  79. Palmedo H, Guhlke S, Bender H, Sartor J, Schoeneich G, Grunwald F, Knapp FF, Biersack HJ (2000) Dose escalation study with rhenium-188 hydroxyethylidene diphosphonate in prostate cancer patients with osseous metastases. Eur J Nucl Med 27:123–130

    Article  CAS  Google Scholar 

  80. Knapp FF Jr, Spencer R, Kropp J (2001) Intravascular radiation therapy with radioactive filled balloons for inhibition of restenosis after angioplasty: a new opportunity for nuclear medicine. J Nucl Med 42:1384–1387

    CAS  Google Scholar 

  81. Weinberger J, Giedd KN, Simon AD, Marboe C, Knapp FF Jr, Trichter F, Amols H (1999) Radioactive beta-emitting solution filled balloon treatment prevents porcine coronary restenosis. Cardiovasc Radiat Med 1:252–256

    Article  CAS  Google Scholar 

  82. Tzanopoulou S, Sagnou M, Paravatou-Petsotas M, Gourni E, Loudos G, Xanthopoulos S, Lafkas D, Pelecanou M (2010) Evaluation of Re and 99mTc complexes of 2-(4′-aminophenyl) benzothiazole as potential breast cancer radiopharmaceuticals. J Med Chem 53:4633–4641

    Article  CAS  Google Scholar 

  83. Chen Y, Xiong QF, Yang XQ, He L, Huang ZW (2010) Evaluation of 188Re–DTPA–deoxyglucose as a potential cancer radiopharmaceutical. Am J Roentgenol 194:761–765

    Article  Google Scholar 

  84. Hafeli UO, Warburton MC, Landau U (1998) Electrodeposition of radioactive rhenium onto stents to prevent restenosis. Biomaterials 19:925–933

    Article  CAS  Google Scholar 

  85. Pillai MRA, Dash A, Knapp FF Jr (2012) Rhenium-188: availability from the 188W/188Re generator and status of current applications. Curr Radiopharm 5:228–243

    Article  CAS  Google Scholar 

  86. Knapp FF Jr, Callahan AP, Beets AL, Mirzadeh S (1994) Processing of reactor-produced 188W for fabrication of clinical scale alumina based 188W/188Re generators. Appl Radiat Isot 45:1123–1128

    Article  CAS  Google Scholar 

  87. Luo TY, Lo AR, Hsieh BT, Lin WJ (2007) A design for automatic preparation of highly concentrated (Re-188)-perrhenate solutions. Appl Radiat Isot 65:21–25

    Article  CAS  Google Scholar 

  88. Lewis RE (1996) Production of 70-day Tungsten-188 and development of a 17 hour Rhenium-188 radioisotope generator. J Nucl Med 7:804–805

    Google Scholar 

  89. Hayes RL (1966) Rhenium-188 as a possible diagnostic agent. Oak Ridge Associated Universities. Medical Division Report ORAU 101, pp 74–77

  90. Monroy-Guzman F, Badillo-Almaraz VE, Flores De La Torre JA, Cosgrove J, Knapp FF (2007) Hydroxyapatite-based Mo-99/Tc-99m and W-188/Re-188 generator systems. In: Proceeding of the international symposium on trends in radiopharmaceuticals, ISTR-2005, vol 1. IAEA, Vienna, pp 333–348

  91. Knapp FF, Mirzadeh S (1992) Reactor capabilities for production of Tungsten-188 for the Tungsten-188/Rhenium-188 generator system. Oak Ridge National Laboratories, Report ORNL/TM-12222, pp 6–9

  92. So LV, Nguyen CD, Pellegrini P, Bui VC (2009) Polymeric titanium oxychloride sorbent for 188W/188Re nuclide pair separation. Sep Sci Technol 44:1074–1098

    Article  Google Scholar 

  93. Iller E, Polkowska-Motrenko H, Wawszczak D, Konior M, Milczarek J (2007) Synthesis and testing of a gel metal oxide composites as filling materials for 188W–188Re generator column. Annual Report, Radioisotope Centre, POLATOM, vol 4, p 102

  94. Iller E, Deptula A, Brykala M, Sypula M, Konior M (2007) Preliminary results of synthesis and investigations of new materials for packing of chromatographic columns of W-188/Re-188 generators. Eur J Nucl Med Mol Imaging 34:S210

    Google Scholar 

  95. Monroy-Guzman F, Almaraz VEB, Gutierrez TR, Cohen LG, Cosgrove J, Knapp Jr FF, Nava PR, Rosales CJ (2009) Development of inorganic adsorbents as matrices of generators for therapeutic radionuclides. In: Therapeutic radionuclide generators: 90Sr/90Y and 188W/188Re generators. IAEA-TRS-470

  96. Matsuoka H, Hasimoto K, Hishinuma Y, Ishikawa K, Terunuma H, Tatenuma K (2005) Application of PZC to 188W/188Re generator. J Nucl Radiochem Sci 6:189–191

    Article  CAS  Google Scholar 

  97. Iller E, Polkowska-Motrenko H, Lada W, Wawszczak D, Sypula M, Doner K, Konior M, Milczarek J, Zoladek J, Ralis J (2009) Studies of gel metal–oxide composite samples as filling materials for W-188/Re-188 generator column. J Radioanal Nucl Chem 281:83–86

    Article  CAS  Google Scholar 

  98. Lee JS, Lee JS, Park UJ, Son KJ, Han HS (2009) Development of a high performance 188W/188Re generator by using a synthetic alumina. Appl Radiat Isot 67:1162–1166

    Article  CAS  Google Scholar 

  99. Dadachova MS, So LV, Lambrecht RM, Dadachova E (2002) Development of a titanium tungstate-based 188W/188Re gel generator using tungsten of natural isotopic abundance. Appl Radiat Isot 57:641–664

    Article  Google Scholar 

  100. Rosch F (2013) 68Ge/68Ga Generators: past, present, and future. Recent Results Cancer Res 194:3–16

    Article  CAS  Google Scholar 

  101. Rosch F (2013) Past, present, and future of 68Ge/68Ga generators. Appl Radiat Isot 76:24–30

    Article  CAS  Google Scholar 

  102. Breeman WAP, Verbruggen AM (2007) The 68Ge/68Ga generator has high potential, but when can we use 68Ga-labelled tracers in clinical routine? Eur J Nucl Med Mol Imaging 34:978–981

    Article  Google Scholar 

  103. Smith DL, Breeman WAP, Sims-Mourtada J (2013) The untapped potential of Gallium 68-PET: the next wave of 68Ga-agents. Appl Radiat Isot 76:14–23

    Article  CAS  Google Scholar 

  104. Banerjee SR, Pomper MG (2013) Clinical applications of Gallium-68. Appl Radiat Isot 76:2–13

    Article  CAS  Google Scholar 

  105. Roesch F, Riss PJ (2010) The renaissance of the 68Ge/68Ga radionuclide generator initiates new developments in 68Ga radiopharmaceutical chemistry. Curr Top Med Chem 10:1633–1668

    Article  CAS  Google Scholar 

  106. Decristoforo C (2012) Gallium-68—a new opportunity for PET available from a long shelflife generator—automation and applications. Curr Radiopharm 5:212–220

    Article  CAS  Google Scholar 

  107. Razbash AA, Sevastianov YG, Krasnov NN, Leonov AI, Pavlekhin VE (2005) Germanium-68 row of products. In: Proceedings of the 5th international conference on isotopes 5ICI, Brussels, Belgium, 25–29 April 2005. Medimond, Bologna, pp 147–151

  108. IGG100 68Ge/68Ga generator product information Eckert and Ziegler AG, Berlin. http://www.radiustech.it/public/files/1d000044.pdf. Accessed 8 Nov 2013

  109. Aardaneh K, van der Walt TN (2006) Ga2O for target, solvent extraction for radiochemical separation and SnO2 for the preparation of a 68Ge/68Ga generator. J Radioanal Nucl Chem 268:25–32

    Article  CAS  Google Scholar 

  110. de Blois E, Sze Chan H, Naidoo C, Prince D, Krenning EP, Breeman WA (2011) Characteristics of SnO2-based 68Ge/68Ga generator and aspects of radiolabelling DOTA-peptides. Appl Radiat Isot 69:308–315

    Article  Google Scholar 

  111. Zhernosekov KP, Filosofov DV, Baum RP, Aschoff P, Bihl H, Razbash AA (2007) Processing of generator-produced 68Ga for medical application. J Nucl Med 48:1741–1748

    Article  CAS  Google Scholar 

  112. Mueller D, Klette I, Baum RP, Gottschaldt M, Schultz MK, Breeman WAP (2012) Simplified NaCl based 68Ga concentration and labeling procedure for rapid synthesis of 68Ga radiopharmaceuticals in high radiochemical purity. Bioconjug Chem 23:1712–1717

    Article  CAS  Google Scholar 

  113. Loktionova NS, Belozub AN, Filosofov DV, Zhernosekov KP, Wagner T, Turler A, Rosch F (2011) Improved column-based radiochemical processing of the generator produced 68Ga. Appl Radiat Isot 69:942–946

    Article  CAS  Google Scholar 

  114. Rösch F (2013) Post-processing via cation exchange cartridges: versatile options. Recent Results Cancer Res 194:33–42

    Article  Google Scholar 

  115. Mueller D, Klette I, Baum RP (2013) Purification and labeling strategies for 68Ga from 68Ge/68Ga generator eluate. Recent Results Cancer Res 194:77–87

    Article  Google Scholar 

  116. Boschi S, Lodi F, Malizia C, Cicoria G, Marengo M (2013) Automation synthesis modules review. Appl Radiat Isot 76:38–45

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research at the Bhabha Atomic Research Centre is part of the ongoing activities of the Department of Atomic Energy, India and is fully supported by government funding. The authors are grateful to Dr. Gursharan Singh, Associate Director, Radiochemistry and Isotope Group (I), Bhabha Atomic Research Centre for his valuable support to the isotope program.

Conflict of interest

The authors have declared no conflicting financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashutosh Dash.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakravarty, R., Dash, A. Nanomaterial-based adsorbents: the prospect of developing new generation radionuclide generators to meet future research and clinical demands. J Radioanal Nucl Chem 299, 741–757 (2014). https://doi.org/10.1007/s10967-013-2823-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-013-2823-1

Keywords

Navigation