Skip to main content
Log in

Widespread Chemical Detoxification of Alkaloid Venom by Formicine Ants

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The ability to detoxify defensive compounds of competitors provides key ecological advantages that can influence community-level processes. Although common in plants and bacteria, this type of detoxification interaction is extremely rare in animals. Here, using laboratory behavioral assays and analyses of videotaped interactions in South America, we report widespread venom detoxification among ants in the subfamily Formicinae. Across both data sets, nine formicine species, representing all major clades, used a stereotyped grooming behavior to self-apply formic acid (acidopore grooming) in response to fire ant (Solenopsis invicta and S. saevissima) venom exposure. In laboratory assays, this behavior increased the survivorship of species following exposure to S. invicta venom. Species expressed the behavior when exposed to additional alkaloid venoms, including both compositionally similar piperidine venom of an additional fire ant species and the pyrrolidine/pyrroline alkaloid venom of a Monomorium species. In addition, species expressed the behavior following exposure to the uncharacterized venom of a Crematogaster species. However, species did not express acidopore grooming when confronted with protein-based ant venoms or when exposed to monoterpenoid-based venom. This pattern, combined with the specific chemistry of the reaction of formic acid with venom alkaloids, indicates that alkaloid venoms are targets of detoxification grooming. Solenopsis thief ants, and Monomorium species stand out as brood-predators of formicine ants that produce piperidine, pyrrolidine, and pyrroline venom, providing an important ecological context for the use of detoxification behavior. Detoxification behavior also represents a mechanism that can influence the order of assemblage dominance hierarchies surrounding food competition. Thus, this behavior likely influences ant-assemblages through a variety of ecological pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams ES, Traniello JFA (1981) Chemical interference competition by Monomorium minimum (hymenoptera: formicidae). Oecologia 51:265–270

    Article  Google Scholar 

  • AntWeb (2014) The California Academy of Sciences. www.antweb.org. Accessed 26 August 2015

  • Blum MS (1992) Ant venoms - chemical and pharmacological properties. J Toxicol-Toxin Rev 11:115–164

    Article  CAS  Google Scholar 

  • Blum MS, Hermann HR (1978) Venoms and venom apparatuses of the formicidae: dolichoderinae and aneuretinae. In: Arthropod venoms. Springer, Berlin/Heidelberg, pp. 871–894

    Google Scholar 

  • Blum MS, Jones TH, Holldobler B, Fales HM, Jaouni T (1980) Alkaloidal venom mace - offensive use by a thief ant. Naturwissenschaften 67:144–145

    Article  CAS  Google Scholar 

  • Bolton B (1995) A new general catalogue of the ants of the world. Harvard University Press, Cambridge

    Google Scholar 

  • Boudinot BE, Sumnicht TP, Adams RMM (2013) Central american ants of the genus megalomyrmex forel (hymenoptera: formicidae): six new species and keys to workers and males. Zootaxa 3732:1–82

    Article  PubMed  Google Scholar 

  • Brady SG, Schultz TR, Fisher BL, Ward PS (2006) Evaluating alternative hypotheses for the early evolution and diversification of ants. Proc Natl Acad Sci U S A 103:18172–18177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brand JM, Blum MS, Fales HM, Jg M (1972) Fire ant venoms - comparative analyses of alkaloidal components. Toxicon 10:259-&

    Article  Google Scholar 

  • Buschinger A, Maschwitz U (1984) Defensive behavior and defensive mechanisms in ants. In: Defensive mechanisms in social insects. Praeger, New York, pp. 95–150

    Google Scholar 

  • Cavill GWK, Houghton E, Mcdonald FJ, Williams PJ (1976) Isolation and characterization of dolichodial and related compounds from argentine ant, Iridomyrmex humilis. Insect Biochem 6:483–490

    Article  CAS  Google Scholar 

  • Chen L, Mullen GE, Le Roch M, Cassity CG, Gouault N, Fadamiro HY, Barletta RE, O'Brien RA, Sykora RE, Stenson AC and others (2014) On the formation of a protic ionic liquid in nature. Angew Chem 126:11956–11959

  • Cruz-Lopez L, Jackson BD, Hefetz A, Morgan ED (2006) Alkaloids in the venom of messor ants. Biochem Syst Ecol 34:199–204

    Article  CAS  Google Scholar 

  • Daloze D, de Biseau J-C, Leclercq S, Braekman J-C, Quinet Y, Pasteels JM (1998) (13E, 15E, 18Z, 20Z)-1-hydroxypentacosa-13, 15, 18, 20-tetraen-11-yn-4-one 1-acetate, from the venom of a brazilian crematogaster ant. Tetrahedron Lett 39:4671–4672

    Article  CAS  Google Scholar 

  • Feener DH, Orr MR, Wackford KM, Longo JM, Benson WW, Gilbert LE (2008) Geographic variation in resource dominance-discovery in brazilian ant communities. Ecology 89:1824–1836

    Article  PubMed  Google Scholar 

  • Gilpin ME (1975) Limit cycles in competition communities. Am Nat 109:51–60

    Article  Google Scholar 

  • Gorman JST, Jones TH, Spande TF, Snelling RR, Torres JA, Garraffo HM (1998) 3-hexyl-5-methylindolizidine isomers from thief ants, Solenopsis (diplorhoptrum) species. J Chem Ecol 24:933–943

    Article  CAS  Google Scholar 

  • Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8:15–25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hölldobler B (1973) Chemical strategy during foraging in Solenopsis fugax latr. And Monomorium pharaonis L. Oecologia 11:371–380

    Article  Google Scholar 

  • Holway DA (1999) Competitive mechanisms underlying the displacement of native ants by the invasive argentine ant. Ecology 80:238–251

    Article  Google Scholar 

  • Hosmer DW, Lemeshow S (1999) Applied survival analysis : regression modeling of time to event data. Wiley, New York

    Google Scholar 

  • Inderjit K, Wardle DA, Karban R, Callaway RM (2011) The ecosystem and evolutionary contexts of allelopathy. Trends Ecol Evol 26:655–662

    Article  CAS  PubMed  Google Scholar 

  • Jackson JBC, Buss L (1975) Allelopathy and spatial competition among coral-reef invertebrates. Proc Natl Acad Sci U S A 72:5160–5163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jones TH, Blum MS, Fales HM (1982) Ant venom alkaloids from Solenopsis and Monomorium species - recent developments. Tetrahedron 38:1949–1958

    Article  CAS  Google Scholar 

  • Jones TH, Torres JA, Spande TF, Garraffo HM, Blum MS, Snelling RR (1996) Chemistry of venom alkaloids in some Solenopsis (diplorhoptrum) species from Puerto Rico. J Chem Ecol 22:1221–1236

    Article  CAS  PubMed  Google Scholar 

  • Jusino-Atresino R, Phillips S, Williams D (1994) Impact of red imported fire ants on the ant fauna of central Texas. Exotic ants. Biology, impact, and control of introduced species. Westview Press, Boulder, Colorado, In, pp. 259–268

    Google Scholar 

  • Kerr B, Riley MA, Feldman MW, Bohannan BJM (2002) Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature 418:171–174

    Article  CAS  PubMed  Google Scholar 

  • Lange C, Celerier JP, Lhommet G, Basselier JJ, Lemaire M, Escoubas P, Clement JL (1989) Analysis of worker Monomorium minimum ants venom using gas-chromatography mass-spectrometry and gas-chromatography tandem mass-spectrometry. Biomed Environ Mass 18:780–786

    Article  CAS  Google Scholar 

  • Lankau RA, Strauss SY (2007) Mutual feedbacks maintain both genetic and species diversity in a plant community. Science 317:1561–1563

    Article  CAS  PubMed  Google Scholar 

  • LaPolla JS, Fisher BL (2014) Then there were five: a reexamination of the ant genus Paratrechina (hymenoptera, formicidae). ZooKeys 422:35–48

    Article  PubMed  Google Scholar 

  • LaPolla JS, Brady SG, Shattuck SO (2010) Phylogeny and taxonomy of the Prenolepis genus-group of ants (hymenoptera: formicidae). Syst Entomol 35:118–131

    Article  Google Scholar 

  • Laurent P, Hamdani A, Braekman J-C, Daloze D, Isbell LA, De Biseau J-C, Pasteels JM (2003) New 1-alk (en) yl-1, 3, 5-trihydroxycyclohexanes from the dufour gland of the african ant Crematogaster nigriceps. Tetrahedron Lett 44:1383–1386

    Article  CAS  Google Scholar 

  • Law JH, Wilson EO, Ja M (1965) Biochemical polymorphism in ants. Science 149:544–54&

    Article  CAS  PubMed  Google Scholar 

  • LeBrun EG, Abbott J, Gilbert LE (2013) Imported crazy ant displaces imported fire ant, reduces and homogenizes grassland ant and arthropod assemblages. Biol Invasions 15:2429–2442

    Article  Google Scholar 

  • LeBrun EG, Jones NT, Gilbert LE (2014) Chemical warfare among invaders: a detoxification interaction facilitates an ant invasion. Science 343:1014–1017

    Article  CAS  PubMed  Google Scholar 

  • Leclercq S, Braekman JC, Kaisin M, Daloze D, Detrain C, De Biseau J, Pasteels J-M (1997) Venom constituents of three species of Crematogaster ants from Papua New Guinea. J Nat Prod 60:1143–1147

    Article  CAS  Google Scholar 

  • Leclercq S, de Biseau JC, Daloze D, Braekman J-C, Quinet Y, Pasteels JM (2000) Five new furanocembrenoids from the venom of the ant Crematogaster brevispinosa ampla from Brazil. Tetrahedron Lett 41:633–637

    Article  CAS  Google Scholar 

  • Meinwald J quoted in: Everts S (2014) Chemical and Engineering News 92:44–45

  • Merlin P, Braekman JC, Daloze D, Pasteels JM (1988) Tetraponerines, toxic alkaloids in the venom of the Neo-guinean pseudomyrmecine ant Tetraponera sp. J Chem Ecol 14:517–527

    Article  CAS  PubMed  Google Scholar 

  • Moreau CS, Bell CD (2013) Testing the museum versus cradle tropical biological diversity hypothesis: phylogeny, diversification, and ancestral biogeographic range evolution of the ants. Evolution 67:2240–2257

    Article  PubMed  Google Scholar 

  • Moreau CS, Bell CD, Vila R, Archibald SB, Pierce NE (2006) Phylogeny of the ants: diversification in the age of angiosperms. Science 312:101–104

    Article  CAS  PubMed  Google Scholar 

  • Morris JR, Steigman KL (1993) Effects of polygyne fire ant invasion on native ants of a blackland prairie in Texas. Southwest Nat 38:136–140

    Article  Google Scholar 

  • Obin MS, Vandermeer RK (1985) Gaster flagging by fire ants (Solenopsis spp) - functional-significance of venom dispersal behavior. J Chem Ecol 11:1757–1768

    Article  CAS  PubMed  Google Scholar 

  • Pasteels J, Daloze D, Boeve JL (1989) Aldehydic contact poisons and alarm pheromone of the antCrematogaster scutellaris (hymenoptera: myrmicinae). J Chem Ecol 15:1501–1511

    Article  CAS  PubMed  Google Scholar 

  • Pavan M (1952) Iridomyrmecin as insecticide. In: Proceedings of the 9th International Congress of Entomology, pp. 321–327

    Google Scholar 

  • Pedder D, Fales H, Jaouni T, Blum M, MacConnell J, Crewe RM (1976) Constituents of the venom of a South african fire ant (Solenopsis punctaticeps): 2, 5-dialkylpyrrolidines and-pyrrolines, identification and synthesis. Tetrahedron 32:2275–2279

    Article  CAS  Google Scholar 

  • Porter SD, Savignano DA (1990) Invasion of polygyne fire ants decimates native ants and disrupts arthropod community. Ecology 71:2095–2106

    Article  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rifflet A, Tene N, Orivel J, Treilhou M, Dejean A, Vetillard A (2011) Paralyzing action from a distance in an arboreal african ant species. PLoS One 6: e28571

  • SAS Institute Inc (2011) JMP 9.0®. Version 9.0. Cary. SAS Institute Inc, North Carolina

    Google Scholar 

  • Schmidt JO, Blum MS (1978) A harvester ant venom: chemistry and pharmacology. Science 200:1064–1066

    Article  CAS  PubMed  Google Scholar 

  • Schmidt JO, Blum MS, Overal WL (1986) Comparative enzymology of venoms from stinging hymenoptera. Toxicon 24:907–921

    Article  CAS  PubMed  Google Scholar 

  • Snyder AJ, Jones TH, Snelling GC, Snelling RR (2009) Venom alkaloids from some Monomorium species. J Hymenopt Res 18:145–150

    Google Scholar 

  • Tragust S, Mitteregger B, Barone V, Konrad M, Ugelvig LV, Cremer S (2013) Ants disinfect fungus-exposed brood by oral uptake and spread of their poison. Curr Biol 23:76–82

    Article  CAS  PubMed  Google Scholar 

  • Weir TL, Park SW, Vivanco JM (2004) Biochemical and physiological mechanisms mediated by allelochemicals. Curr Opin Plant Biol 7:472–479

    Article  CAS  PubMed  Google Scholar 

  • Wetterer JK (2008) Worldwide spread of the longhorn crazy ant, Paratrechina longicornis (hymenoptera: formicidae). Myrmecol News 11:137–149

    Google Scholar 

  • Wheeler JW, Olubajo O, Storm CB, Duffield RM (1981) Anabaseine - venom alkaloid of Aphaenogaster ants. Science 211:1051–1052

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Thanapat Pongwarin for technical assistance. Nathan Jones and Rob Plowes provided useful discussion. Alex Wild and James Trager contributed to species identification. Two anonymous reviewers improved the quality of the manuscript. Donald H. Feener was a Co-PI on the NSF grant funding the original Brazil research. Texas Parks and Wildlife, Chaparral Wildlife Management Area and Conselho Nacional de Desevolvimento Cientifico e Tecnológico (CNPq) provided permission to conduct research. Universidade Federal do Mato Grosso do Sul provided access to Base de Estudos do Pantanal, and Sergio Seike and Woody Benson coordinated the Brazilian research. Funding was provided by Lee and Ramona Bass Foundation (to LEG) and National Science Foundation, U.S.A. (DEB - 9528120 to LEG and DHF). Data are available on the Dryad Digital Repository.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward G. LeBrun.

Electronic supplementary material

ESM 1

(DOCX 36.3 kb)

Video 1

(MPG 38.0 mb)

Video 2

(MPG 82.7 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LeBrun, E.G., Diebold, P.J., Orr, M.R. et al. Widespread Chemical Detoxification of Alkaloid Venom by Formicine Ants. J Chem Ecol 41, 884–895 (2015). https://doi.org/10.1007/s10886-015-0625-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-015-0625-3

Keywords

Navigation