Skip to main content
Log in

Propagation Phenomena for A Reaction–Advection–Diffusion Competition Model in A Periodic Habitat

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

This paper is devoted to the study of propagation phenomena for a Lotka–Volterra reaction–advection–diffusion competition model in a periodic habitat. We first investigate the global attractivity of a semi-trivial steady state for the periodic initial value problem. Then we establish the existence of the rightward spreading speed and its coincidence with the minimal wave speed for spatially periodic rightward traveling waves. We also obtain a set of sufficient conditions for the rightward spreading speed to be linearly determinate. Finally, we apply the obtained results to a prototypical reaction–diffusion model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berestycki, H., Hamel, F., Nadirashvili, N.: The speed of propagation for KPP type problems: I. Periodic framework. J. Eur. Math. Soc. 7, 173–213 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berestycki, H., Hamel, F., Roques, L.: Analysis of the periodically fragmented environment model: I-Species persistence. J. Math. Biol. 51, 75–113 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berestycki, H., Hamel, F., Roques, L.: Analysis of the periodically fragmented environment model: II-Biological invasions and pulsating traveling fronts. J. Math. Pures Appl. 84, 1101–1146 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Coville, J., Dávila, J., Martínez, S.: Pulsating fronts for nonlocal dispersion and KPP nonlinearity. Ann. Inst. H. Poincaré Anal. Non Linéaire 30, 179–223 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dockery, J., Hutson, V., Mischaikow, K., Pernarowski, M.: The evolution of slow dispersal rates: a reaction diffusion model. J. Math. Biol. 37, 61–83 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fang, J., Zhao, X.-Q.: Traveling waves for monotone semiflows with weak compactness. SIAM J. Math. Anal. 46, 3678–3704 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Friedlin, M.I.: On wavefront propagation in periodic media, stochastic analysis and applications. In: Adv. Probab. Related Topics, vol. 7, Dekker, New York, pp. 147–166 (1984)

  8. Gärtner, J., Freidlin, M.I.: The propagation of concentration waves in periodic and random media. Soviet Math. Dokl. 20, 1282–1286 (1979)

    MATH  Google Scholar 

  9. Guo, J.-S., Liang, X.: The minimal speed of traveling fronts for the LotkaVolterra competition system. J. Dyn. Differ. Equ. 23, 353–363 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hess, P.: Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Search Notes in Mathematics Series, vol. 247. Longman Scientific Technical, Harlow (1991)

    Google Scholar 

  11. Hess, P., Lazer, A.C.: On an abstract competition model and applications. Nonlinear Anal. T.M.A. 16, 917–940 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hosono, Y.: The minimal speed of traveling fronts for a diffusive Lotka–Volterra competition model. Bull. Math. Biol. 60, 435–448 (1998)

    Article  MATH  Google Scholar 

  13. Hsu, S.B., Smith, H.L., Waltman, P.: Competitive exclusion and coexistence for competitive systems on ordered Banach spaces. Trans. Am. Math. Soc. 348, 4083–4094 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Huang, W.: Problem on minimum wave speed for a Lotka–Volterra reaction–diffusion competition model. J. Dyn. Differ. Equ. 22, 285–297 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Huang, W., Han, M.: Non-linear determinacy of minimum wave speed for a Lotka–Volterra competition model. J. Differ. Equ. 251, 1549–1561 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kan-on, Y.: Fisher wave fronts for the Lotka–Volterra competition model with diffusion. Nonlinear Anal. TMA 28, 145–164 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kong, L., Rawal, N., Shen, W.: Spreading speeds and linear determinacy for two species competition systems with nonlocal dispersal in periodic habitats, preprint. arXiv:1410.0317v1 (2014)

  18. Lam, K.-Y., Ni, W.-M.: Uniqueness and complete dynamics of the Lotka–Volterra competition diffusion system. SIAM J. Appl. Math. 72, 1695–1712 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lewis, M.A., Li, B., Weinberger, H.F.: Spreading speeds and linear determinacy for two-species competition models. J. Math. Biol. 45, 219–233 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liang, X., Zhao, X.-Q.: Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Commun. Pure Appl. Math. 60, 1–40 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liang, X., Zhao, X.-Q.: Spreading speeds and traveling waves for abstract monostable evolution systems. J. Funt. Anal. 259, 857–903 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lutscher, F., Lewis, M.A., McCauley, E.: Effects of heterogeneity on spread and persistence in rivers. Bull. Math. Biol. 68, 2129–2160 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lutscher, F., McCauley, E., Lewis, M.A.: Spatial patterns and coexistence mechanisms in systems with unidirectional flow. Theor. Popul. Biol. 71, 267–277 (2007)

    Article  MATH  Google Scholar 

  24. Martin, R.H.: Nonlinear Operators and Differential Equations in Banach Spaces. Wiley-Interscience, New York (1976)

    Google Scholar 

  25. Shen, W., Zhang, A.: Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats. J. Differ. Equ. 249, 747–795 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shen, W., Zhang, A.: Traveling wave solutions of spatially periodic nonlocal monostable equations. Comm. Appl. Nonlinear Anal. 19, 73–101 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Shigesada, N., Kawasaki, K.: Biological Invasions: Theory and Practice. Oxford Series in Ecology and Evolution. Oxford University Press, Oxford (1997)

    Google Scholar 

  28. Shigesada, N., Kawasaki, K., Teramoto, E.: Traveling periodic waves in heterogeneous environments. Theor. Popul. Biol. 30, 143–160 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  29. Smith, H.L.: Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, vol. 41. American Mathematical Society, Providence, RI (1995)

    Google Scholar 

  30. Thieme, H.R.: Spectral bound and reproduction number for infinite dimensional population structure and time heterogeneity. SIAM J. Appl. Math. 70, 188–211 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Weinberger, H.F.: Long-time behavior of a class of biological models. SIAM J. Math. Anal. 13, 353–396 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  32. Weinberger, H.F.: On spreading speeds and traveling waves for growth and migration models in a periodic habitat. J. Math. Biol. 45, 511–548 (2002).; J. Math. Biol., 46, 190 (2003) (Erratum)

    Article  MathSciNet  MATH  Google Scholar 

  33. Weinberger, H.F., Lewis, M.A., Li, B.: Analysis of linear determinacy for spread in cooperative models. J. Math. Biol. 45, 183–218 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Weng, P., Zhao, X.-Q.: Spatial dynamics of a nonlocal and delayed population model in a periodic habitat. Discret. Contin. Dyn. Syst. Ser. A 29, 343–366 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Xin, J.: Front propagation in heterogeneous media. SIAM Rev. 42, 161–230 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhao, X.-Q.: Dynamical Systems in Population Biology. Springer, New York (2003)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the NSERC of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Qiang Zhao.

Appendix

Appendix

In this section, we extend the abstract results in [6] and [21] on spreading speeds and traveling waves to the case of a periodic habitat.

Let \({\mathcal {C}}\) be the set of all bounded and continuous functions from \(\mathbb {R}\) to \(\mathbb {R}^m\) with \(m\ge 1\) and \({\mathcal {C}}_+=\{\phi \in {\mathcal {C}}:\phi (x)\ge 0,\ \forall x\in \mathbb {R}\}\). Clearly, any vector in \(\mathbb {R}^m\) can be regarded as a function in \({\mathcal {C}}\). For \(u=(u_1,\ldots ,u_m), w=(w_m,\ldots ,w_m)\in {\mathcal {C}}\), we write \(u\ge w (u\gg w)\) provided \(u_j(x)\ge w_j(x)(u_j(x)>w_j(x)), \forall 1\le j\le m,\, x\in \mathbb {R}\), and \(u>w\) provided \(u\ge w\) but \(u\ne w\). Assume that \(\beta \) is a strongly positive \(L\)-periodic continuous function from \(\mathbb {R}\) to \(\mathbb {R}^m\). Set

$$\begin{aligned} {\mathcal {C}}_{\beta }=\{u\in {\mathcal {C}}:\, 0\le u(x)\le \beta (x),\ \forall x\in \mathbb {R}\},\ {\mathcal {C}}^{per}_{\beta }=\{u\in \mathcal {C_\beta }:\, u(x)=u(x+L),\ \forall x\in \mathbb {R}\}. \end{aligned}$$

Let \(X=C([0,L],\mathbb {R}^m)\) equipped with the maximum norm \(|\cdot |_X, \, X_+=C([0,L],\mathbb {R}_+^m), \,\)

$$\begin{aligned} X_{\beta }=\{u\in X:\ 0\le u(x)\le {\beta }(x),\ \forall x\in [0,L]\},\ \text {and} \ \overline{X}_{\beta }=\{u\in X_{\beta }: u(0)=u(L)\}. \end{aligned}$$

Let \(BC(\mathbb {R}, X)\) be the set of all continuous and bounded functions from \(\mathbb {R}\) to \(X\). Then we define

$$\begin{aligned}&{\mathcal {X}}=\{v\in BC(\mathbb {R},X):v(s)(L)=v(s+L)(0),\forall s\in \mathbb {R}\}, \\&{\mathcal {X}}_+=\{v\in {\mathcal {X}}:v(s)\in X_+,\forall s\in \mathbb {R}\}, \end{aligned}$$

and

$$\begin{aligned} {\mathcal {X}}_{\beta }=\{v\in BC(\mathbb {R},X_{\beta }):v(s)(L)=v(s+L)(0),\forall s\in \mathbb {R}\}. \end{aligned}$$

Let

$$\begin{aligned} {\mathcal {K}}_{\beta }:=\{v\in BC(L\mathbb {Z},X_{\beta }):v(i)(L)=v(i+L)(0),\forall i\in L\mathbb {Z}\}. \end{aligned}$$

Clearly, any element in \(\overline{X}_{\beta }\) can be regarded as a constant function in \({\mathcal {X}}_{\beta }\), that is, any element in \({\mathcal {C}}^{per}_\beta \) corresponds to a constant function in \({\mathcal {X}}_{\beta }\). We equip \({\mathcal {C}}\) and \({\mathcal {X}}\) with the compact open topology, that is, \(u_n\rightarrow u\) in \({\mathcal {C}}\) or \({\mathcal {X}}\) means that the sequence of \(u_n(s)\) converges to \(u(s)\) in \(\mathbb {R}^m\) or \(X\) uniformly for \(s\) in any compact set. We equip \({\mathcal {C}}\) and \({\mathcal {X}}\) with the norm \(\Vert \cdot \Vert _{\mathcal {C}}\) and \(\Vert \cdot \Vert _{\mathcal {X}}\), respectively, which are defined by

$$\begin{aligned} \Vert u\Vert _{{\mathcal {C}}}=\sum \limits _{k=1}^{\infty }\frac{\max _{|x|\le k}|u(x)|}{2^k},\ \forall u\in {\mathcal {C}}, \end{aligned}$$

where \(|\cdot |\) denotes the usual norm in \(\mathbb {R}^m\), and

$$\begin{aligned} \Vert u\Vert _{{\mathcal {X}}}=\sum \limits _{k=1}^{\infty }\frac{\max _{|x|\le k}|u(x)|_X}{2^k},\ \forall u\in {\mathcal {X}}. \end{aligned}$$

Define a translation operator \({\mathcal {T}}_a\) by \({\mathcal {T}}_a[u](x)=u(x-a)\) for any given \(a\in L\mathbb {Z}\). Let \(Q\) be an operator on \({\mathcal {C}}_{\beta }\), where \(\beta \in \mathcal {C}\) is strongly positive and \(L\)-periodic. In order to use the theory developed in [6] and [21], we need the following assumptions on \(Q\):

(A1):

\(Q\) is \(L\)-periodic, that is, \({\mathcal {T}}_a[Q[u]] =Q[{\mathcal {T}}_a[u]],\quad \forall u\in {\mathcal {C}}_{\beta },\, a\in L\mathbb {Z}\).

(A2):

\(Q:\, {\mathcal {C}}_{\beta } \rightarrow {\mathcal {C}}_{\beta }\) is continuous with respect to the compact open topology.

(A3):

\(Q:\, {\mathcal {C}}_{\beta } \rightarrow {\mathcal {C}}_{\beta }\) is monotone (order preserving) in the sense that \(Q[u] \ge Q[w]\) whenever \(u \ge w\).

(A4):

\(Q\) admits two \(L\)-periodic fixed points \(0\) and \(\beta \) in \({\mathcal {C}}_+\), and for any \(z\in {\mathcal {C}}^{per}_{\beta }\) with \(0\ll z\le \beta \), there holds \(\lim \limits _{n\rightarrow \infty }Q^n[z](x)=\beta (x)\) uniformly for \(x\in \mathbb {R}\).

(A5):

\(Q[{\mathcal {C}}_{\beta }]\) is precompact in \({\mathcal {C}}_{\beta }\) with respect to the compact open topology.

Define a homeomorphsim \(F:{\mathcal {C}}\rightarrow {\mathcal {K}}\) by

$$\begin{aligned} F[\phi ](i)(\theta )=\phi (i+\theta ),\ i\in L\mathbb {Z},\ \theta \in [0,L], \end{aligned}$$

and an operator \(P:{\mathcal {K}}_{\beta }\rightarrow {\mathcal {K}}_{\beta }\) by

$$\begin{aligned} P=F\circ Q\circ F^{-1}. \end{aligned}$$
(5.10)

Next, we define \(\tilde{P}: {\mathcal {X}}\rightarrow {\mathcal {X}}\) by

$$\begin{aligned} \tilde{P}[v](s):=P[v(\cdot +s)](0),\quad \forall v\in {\mathcal {X}},\ s\in \mathbb {R}. \end{aligned}$$
(5.11)

We further claim that

$$\begin{aligned} \tilde{P}[v](s)(\theta )=Q[v_s](\theta ),\quad \forall v\in {\mathcal {X}},\ s\in \mathbb {R},\ \theta \in [0,L], \end{aligned}$$
(5.12)

where \(v_s\in {\mathcal {C}}\) is defined by

$$\begin{aligned} v_s(x)=v(s+n_x)(\theta _x),\quad \forall x=n_x+\theta _x\in \mathbb {R},\ n_x=L\left[ \frac{x}{L}\right] ,\ \theta _x\in [0,L). \end{aligned}$$

Indeed, since

$$\begin{aligned} F[\phi ](i)(\theta )=\phi (i+\theta ),\quad F^{-1}[\psi ](x)=\psi (n_x)(\theta _x), \end{aligned}$$

it then follows that

$$\begin{aligned} \tilde{P}[v](s)&= P[v(\cdot +s)](0)=FQF^{-1}[v(\cdot +s)](0)\\&= F[Q[v(n_\cdot +s)(\theta _\cdot )]](0)=F[Q(v_s)](0), \end{aligned}$$

and hence,

$$\begin{aligned} \tilde{P}[v](s)(\theta )=F[Q(v_s)](0)(\theta )=Q[v_s](\theta ). \end{aligned}$$

Let \(r\in Int(X_+)\) with \(r(0)=r(L)\). In order to apply the results in [6] to \(\tilde{P}\), we need to verify that \( \tilde{P}\) satisfies the following assumptions:

(B1):

\({\mathcal {T}}_a[\tilde{P}[u]] =\tilde{P}[{\mathcal {T}}_a[u]],\quad \forall u\in {\mathcal {X}}_{r},\, a\in \mathbb {R}\).

(B2):

\(\tilde{P}:\, {\mathcal {X}}_{r} \rightarrow {\mathcal {X}}_{r}\) is continuous with respect to the compact open topology.

(B3):

\(\tilde{P}:\, {\mathcal {X}}_{r} \rightarrow {\mathcal {X}}_{r}\) is monotone (order preserving) in the sense that \(\tilde{P}[u] \ge \tilde{P}[w]\) whenever \(u \ge w\).

(B4):

\(\tilde{P}\) admits two fixed points \(0\) and \(r\) in \(\overline{X}_{r}\), and for any \(z\in \overline{X}_{r}\) with \(0\ll z\le r\), there holds \(\lim \limits _{n\rightarrow \infty }{\tilde{P}}^n[z]=r\).

(B5):

There exists \(k\in [0,1)\) such that for any \({\mathcal {U}}\subset {\mathcal {X}}_r, \, \alpha (\tilde{P}[{\mathcal {U}}](0))\le k\alpha ({\mathcal {U}}(0))\), where \(\alpha \) denotes the Kuratowski measure of noncompactness in \({\mathcal {X}}_r\).

Proposition 5.1

Let \(\beta \in \mathcal {C}\) is strongly positive and \(L\)-periodic. Assume that \(Q:{\mathcal {C}}_{\beta } \rightarrow {\mathcal {C}}_{\beta }\) satisfies assumptions (A1)–(A5). Then \(\tilde{P}\): \({\mathcal {X}}_{ \beta }\rightarrow {\mathcal {X}}_{\beta }\) satisfies assumptions (B1)–(B5).

Proof

For any \(c\in \mathbb {R}\), let \(u(\cdot )=v(\cdot +c), \forall v\in {\mathcal {X}}\). Then

$$\begin{aligned} T_{-c}\tilde{P}[v](s)&= \tilde{P}[v](s+c)\\&= Q[v_{s+c}]=Q[u_{s}]=\tilde{P}[u(\cdot )](s)\\&= \tilde{P}[T_{-c}v](s), \quad \forall v\in {\mathcal {X}},\ s\in \mathbb {R}, \end{aligned}$$

and hence, (B1) holds. (B2) can be verified by similar arguments to those in [20, Lemma 2.1], and (B3) directly follows from (A3). Clearly, \(0\) is the fixed point of \(\tilde{P}\) since \(Q(0)=0\). To verify (B4), we need to show that \(\beta |_{[0,L]}\) is the fixed point of \(\tilde{P}\). Note that \(\beta (x)\) is a constant function in \({\mathcal {X}}\) with \(x\in [0,L]\) we have

$$\begin{aligned} \beta _s(\cdot )=\beta (s+n_\cdot )(\theta _\cdot )=\beta (\theta _\cdot ),\quad \forall s \in \mathbb {R}. \end{aligned}$$

Therefore, \(\beta _s=\beta \) in \({\mathcal {C}}, \forall s\in \mathbb {R}\). Moreover,

$$\begin{aligned} \tilde{P}[\beta ](s)(\theta )=Q[ \beta _s](\theta )=Q[\beta ](\theta )=\beta (\theta ),\quad \forall \theta \in [0,L]. \end{aligned}$$

This implies that \(\tilde{P}[\beta ]=\beta \) in \({\mathcal {X}}\). Thus, \((B4)\) follows from \((A4)\). Now we prove (B5) holds. For any given \({\mathcal {U}}\subset {\mathcal {X}}_{\beta }\), it is easy to see that \(\tilde{P}({\mathcal {U}})(0)\) is uniformly bounded. By (A5), it follows for any \(\varepsilon >0\), there exists \(\delta >0\) such that

$$\begin{aligned} |Q(v)(x_1)-Q(v)(x_2)|<\varepsilon , \quad \forall v\in {\mathcal {C}}_\beta \end{aligned}$$

provided that \(x_1,x_2\in [0,L]\) with \(|x_1-x_2|<\delta \). So for any \(v\in {\mathcal {U}}\),

$$\begin{aligned} |\tilde{P}(v)(0)(\theta _1)-\tilde{P}(v)(0)(\theta _2)|=|Q(v_0)(\theta _1)-Q(v_0)(\theta _2)|<\varepsilon \end{aligned}$$

provided that \(\theta _1,\theta _2\in [0,L]\) with \(|\theta _1-\theta _2|<\delta \). This implies that \(\tilde{P}({\mathcal {U}})(0)\) is equicontinuous. By Arzelà–Ascoli theorem, it follows that \(\tilde{P}({\mathcal {U}})(0)\) is precompact in \({\mathcal {X}}_\beta \), and hence, \(\alpha (\tilde{P}({\mathcal {U}})(0))=0\). This proves (B5) with \(k=0\). \(\square \)

Let \(\omega \in \overline{X}_\beta \) with \(0\ll \omega \ll \beta \). Choose \(\phi \in {\mathcal {X}}_\beta \) such that the following properties hold:

(C1):

\(\phi (s)\) is nonincreasing in \(s\);

(C2):

\(\phi (s)\equiv 0\) for all \(s\ge 0\);

(C3):

\(\phi (-\infty )=\omega \).

Let \(c\) be a given real number. According to [31], we define an operator \(R_{c}\) by

$$\begin{aligned} R_c[a](s):=\max \{\phi (s),T_{-c}\tilde{P}[a](s)\}, \end{aligned}$$

and a sequence of functions \(a_n(c;s)\) by the recursion:

$$\begin{aligned} a_0(c;s)=\phi (s),\quad a_{n+1}(c;s)=R_{c}[a_n(c;\cdot )](s). \end{aligned}$$

As a consequence of similar arguments to those in [6, Lemmas 3.1–3.3], we have the following result.

Lemma 5.4

The following statements are valid:

  1. (1)

    For each \(s\in \mathbb {R}, \, a_n(c,s)\) converges to \(a(c;s)\) in \(X\), where \(a(c;s)\) is nonincreasing in both \(c\) and \(s\), and \(a(c;\cdot )\in {\mathcal {X}}_{\beta }\).

  2. (2)

    \(a(c,-\infty )= \beta \) and \(a(c,+\infty )\) is a fixed point of \(\tilde{P}\).

Following [6, 33], we define two numbers

$$\begin{aligned} c^*_+=\sup \{c:a(c,+\infty )=\beta \},\quad \overline{c}_+=\sup \{c:a(c,+\infty )>0\}. \end{aligned}$$
(5.13)

Clearly, \(c^*_+\le \overline{c}_+\) due to the monotonicity of \(a(c;\cdot )\) with respect to \(c\). For each \(t\ge 0\), let \(P_t\) and \(\tilde{P}_t\) be defined as in (5.10) and (5.12) with \(Q=Q_t\), respectively. By [6, Remark3.2], we have the following result.

Theorem 5.4

Let \(\{Q_t\}_{t\ge 0}\) be a continuous-time semifow on \({\mathcal {C}}_\beta \) with \(Q_t[0]=0,Q_t[\beta ]=\beta \) for all \(t\ge 0\) and \(\{\tilde{P}_t\}_{t\ge 0}\) be defined as in (5.12) for each \(t\ge 0\), and \(c^*_+\) and \(\overline{c}_+\) be denoted by (5.13) with \(\tilde{P}=\tilde{P}_1\). Suppose that \(Q_t\) satisfies (A1)–(A5) for each \(t>0\). Then the following statements are valid:

  1. (i)

    If \(\phi \in {\mathcal {C}}_{\beta }, \, 0\le \phi \le \omega \ll \beta \) for some \(\omega \in {\mathcal {C}}^{per}_{\beta }\), and \(\phi (x)=0, \forall x\ge H\), for some \(H\in \mathbb {R}\), then \(\lim _{t\rightarrow \infty ,x\ge ct}Q_t(\phi )=0\) for any \(c>\overline{c}_+\).

  2. (ii)

    If \(\phi \in {\mathcal {C}}_{\beta }\) and \(\phi (x)\ge \sigma , \, \forall x\le K\), for some \(\sigma \gg 0\) and \(K\in \mathbb {R}\), then \(\lim _{t\rightarrow \infty ,x\le ct}(Q_t(\phi )(x)-\beta (x))=0\) for any \(c<c^*_+\).

Proof

Since \(\{Q_t\}_{t\ge 0}\) is a continuous-time semifow on \({\mathcal {C}}_\beta \) with \(Q_t(0)=0\) and \(Q_t(\beta )=\beta \) for all \(t\ge 0\), it follows that \(\{\tilde{P}_t\}_{t\ge 0}\) is a continuous-time semiflow on \({\mathcal {X}}_{\beta }\) with \(\tilde{P}_t(0)=0\) and \(\tilde{P}_t(\beta )=\beta \) for all \(t\ge 0\). By Proposition 5.1, \(\tilde{P}_t\) satisfies (B1)–(B5). For any \(\phi \in {\mathcal {C}}_{\beta }, \, 0\le \phi \le \omega \ll \beta \) with \(\omega \in {\mathcal {C}}^{per}_{\beta }\), let

$$\begin{aligned} u(s)(\theta )=[\phi (n_s+L+\theta )-\phi (n_s+\theta )]\theta _s+\phi (n_s+\theta ). \end{aligned}$$

for \(s\in \mathbb {R}, \, s=n_s+\theta _s, \, n_s=L\left[ \displaystyle \frac{s}{L}\right] ,\ \theta _s\in [0,L), \, \theta \in [0,L]\). Then \(u\in {\mathcal {X}}_{{\beta }}\), and \(0\le u\le \omega \ll \beta \).

To prove statement \((i)\), we suppose that there exists some \(H\in \mathbb {R}\) such that \(\phi (x)=0, \, x\ge H\) and \(\phi (x)\not \equiv 0\) (otherwise, it is trivial). Thus, \(u(s)=0, \, s\ge H+L\). By [6, Remark 3.2], it follows that \(\lim _{t\rightarrow \infty ,s\ge ct}\tilde{P}_t(u)(s)=0\) in \(X\) for any \(c>\overline{c}_+\). On the other hand, we have

$$\begin{aligned} \tilde{P}_t[u](n_x)(\theta _x)&= Q_t[u_{n_x}](\theta _x)=Q_t[u(n_x+n_\cdot )(\theta _\cdot )](\theta _x),\\&= Q_t[\phi (n_x+\cdot )](\theta _x)=Q_t[\phi (\cdot )](x),\quad x\in \mathbb {R}, \end{aligned}$$

and for \(s\in L\mathbb {Z}\), \(\lim _{t\rightarrow \infty ,s\ge ct}\tilde{P}_t(u)(s)=0\) in \(X\) holds true for any \(c>\overline{c}_+\). Choose a \(c'\in (\overline{c}_+,c)\), we obtain

$$\begin{aligned} {\left| Q_t[\phi ](x)\right| }\le \left| \tilde{P}_{t}[u](n_x)\right| _{X},\quad \forall x\ge ct, \ t\ge \frac{L}{c-c^{\prime }}, \end{aligned}$$
(5.14)

and \(n_x\ge ct-L\ge c't\). Letting \(t\rightarrow \infty \) in (5.14), we have \(\lim _{t\rightarrow \infty ,x\ge ct}Q_t(\phi )=0\) for any \(c>\overline{c}_+\).

By similar arguments to the above, we can show that statement (ii) is also valid. \(\square \)

In view of the above theorem, we may regard \(\overline{c}_+\) and \(c^*_+\), respectively, as the fastest and slowest rightward spreading speeds for \(\{Q_t\}_{t\ge 0}\) on \({\mathcal {C}}_\beta \). If \(\overline{c}_+=c^*_+\), then we say that this system admits a single rightward spreading speed.

Next, we address the existence and non-existence of traveling waves in a periodic habitat for the continuous-time semiflow \(\{Q_t\}_{t\ge 0}\). Given a continuous-time semiflow \(\{Q_t\}_{t\ge 0}\) on \({\mathcal {C}}_\beta \), we say that \(V(x-ct,x)\) is an \(L\)-periodic rightward traveling wave of \(\{Q_t\}_{t\ge 0}\) if \(V(\cdot +a,\cdot )\in {\mathcal {C}}_\beta \), \(\forall a\in \mathbb {R}, \, Q_t[U](x)=V(x-ct,x), \, \forall t\ge 0\), and \(V(\xi ,x)\) is an \(L\)-periodic function in \(x\) for any fixed \(\xi \in \mathbb {R}\), where \(U(x):=V(x,x)\). Moreover, we say that \(V(\xi ,x)\) connects \(\beta \) to \(0\) if \(\lim _{\xi \rightarrow -\infty }|V(\xi ,x)-\beta (x)|=0\) and \(\lim _{\xi \rightarrow +\infty }|V(\xi ,x)|=0\) uniformly for \(x\in \mathbb {R}\).

Since we have only shown the weak compactness (B5) for \(\tilde{P}_t\), we cannot directly apply [6, Theorem 4.1] to \(\{\tilde{P}_t\}_{t\ge 0}\) on \({\mathcal {X}}_{\beta }\). However, \(\{P_t\}_{t\ge 0}\) on \({\mathcal {K}}_{\beta }\) has the compactness because any element in \({\mathcal {K}}_{\beta }\) is defined on the discrete domain. Following the proof of Case 1 in [21, Theorem 4.2] and the argument in [6, Theorem 3.1], we obtain the existence and non-existence of traveling waves for the discrete-time dynamical system \(\{P_1^n\}\) on \({\mathcal {K}}_{\beta }\). Thus, the existence and non-existence of traveling waves for the continuous-time dynamical system \(\{P_t\}_{t\ge 0}\) on \({\mathcal {K}}_{\beta }\) follows from the arguments in [21, Theorem 4.4]. By similar arguments to those in [21, Theorem 5.3], we can extend [6, Theorem 4.1] to the case of a periodic habitat so that the following result holds true.

Theorem 5.5

Let \(\{Q_t\}_{t\ge 0}\) be a continuous-time semifow on \({\mathcal {C}}_\beta \) with \(Q_t[0]=0,Q_t[\beta ]=\beta \) for all \(t\ge 0, \, \{\tilde{P}_t\}_{t\ge 0}\) be defined as in (5.12), and \(c^*_+\) and \(\overline{c}_+\) be denoted by (5.13) with \(\tilde{P}=\tilde{P}_1\). Suppose that \(Q_t\) satisfies (A1)–(A5) for each \(t>0\). Then the following statements are valid:

  1. (1)

    For any \(c\ge c^*_+\), there is an \(L\)-periodic traveling wave \(W(x-ct,x)\) connecting \(\beta \) to some equilibrium \(\beta _1\in \mathcal {C}^{per}_\beta \backslash \{\beta \}\) with \(W(\xi ,x )\) be continuous and nonincreasing in \(\xi \in \mathbb {R}\).

  2. (2)

    If, in addition, \(0\) is an isolated equilibrium of \(\{Q_t\}_{t\ge 0}\) in \({\mathcal {C}}^{per}_\beta \), then for any \(c\ge \overline{c}_+\), either of the following holds true:

    1. (i)

      there exists an \(L\)-periodic traveling wave \(W(x-ct,x)\) connecting \(\beta \) to \(0\) with \(W(\xi ,x )\) be continuous and nonincreasing in \(\xi \in \mathbb {R}\).

    2. (ii)

      \(\{Q_t\}_{t\ge 0}\) has two ordered equilibria \(\alpha _1\),\(\alpha _2 \in {\mathcal {C}}^{per}_\beta \backslash \{0,\beta \}\) such that there exist an \(L\)-periodic traveling wave \(W_1(x-ct,x)\) connecting \(\alpha _1\) and \(0\) and an \(L\)-periodic traveling wave \(W_2(x-ct,x)\) connecting \(\beta \) and \(\alpha _2\) with \(W_i(\xi ,x ), i=1,2\) be continuous and nonincreasing in \(\xi \in \mathbb {R}\).

  3. (3)

    For any \(c< c^*_+\), there is no \(L\)-periodic traveling wave connecting \(\beta \), and for any \(c<\overline{c}_+\), there is no \(L\)-periodic traveling wave connecting \(\beta \) to \(0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Zhao, XQ. Propagation Phenomena for A Reaction–Advection–Diffusion Competition Model in A Periodic Habitat. J Dyn Diff Equat 29, 41–66 (2017). https://doi.org/10.1007/s10884-015-9426-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-015-9426-1

Keywords

Navigation