Skip to main content
Log in

A modified polyol process for growing Ag nanowires and nanoplates using 2-ethoxy ethanol

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A modified polyol process was proposed to prepare Ag nanowires in this study. The typical reductant, ethylene glycol, was replaced with 2-ethoxy ethanol in the presence of polyvinylpyrrolidone (PVP) to grow Ag nanowires and nanoplates. The growth of Ag nanowires was monitored by the UV–Visible spectrum, which depends on the geometry-dependent surface plasmon resonances of the Ag nanowires. The crystal phase of the Ag nanostructures was identified by X-ray diffraction. Transmission electron microscopy showed that the average dimensions of the Ag nanowires were lengths of approximately 2–10 μm and diameter of 80 nm. The PVP molecules played a key role in directing the growth of the Ag nanostructures along the (111) crystal plane, and the reduction rate of Ag+ at 25 °C when 2-ethoxy ethanol was used was faster than when ethylene glycol was used, which improved the growth of the Ag nanowires. When the AgNO3-to-PVP ratio was adjusted to 2, multiple twinned particles could be observed at an initial stage of the reaction, and a higher yield of the Ag nanowires was synthesized. When the PVP drop rate was slowed, more Ag nanowires were grown. Interestingly, when the AgNO3 and PVP molecules were initially premixed, Ag nanoplates were generated, rather than nanowires, at a higher temperature in this reduction system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Frank S, Poncharal P, Wang ZL, de Heer WA (1998) Science 280:1744

    Article  CAS  Google Scholar 

  2. Duan XF, Liber CM (2000) J Am Chem Soc 122:188

    Article  CAS  Google Scholar 

  3. Wu YY, Yan HQ, Huang M, Messer B, Song JH, Yang PD (2002) Chem Eur J 8:1261

    Google Scholar 

  4. Pan ZW, Dai ZR, Wang ZL (2001) Science 291:1947

    Article  CAS  Google Scholar 

  5. Duan XF, Huang Y, Cui Y, Wang JF, Liber CM (2001) Nature 409:66

    Article  CAS  Google Scholar 

  6. Huang HM, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang PD (2001) Science 292:1897

    Article  CAS  Google Scholar 

  7. Nayak BB, Behera D, Mishra BK (2011) J Mater Sci 46:3052. doi:10.1007/s10853-010-5183-z

    Article  CAS  Google Scholar 

  8. Yin Z, Wang B, Chen G, Zhan M (2011) J Mater Sci 46:2397. doi:10.1007/s10853-011-5264-7

    Article  CAS  Google Scholar 

  9. Hamidinezhad H, Wahab Y, Othaman Z (2011) J Mater Sci 46:5085. doi:10.1007/s10853-011-5435-6

    Article  CAS  Google Scholar 

  10. Wang FH, Tu YF, Sang JP, Huang SY, Zou XW (2010) J Mater Sci 45:3735. doi:10.1007/s10853-010-4422-7

    Article  CAS  Google Scholar 

  11. Yang J, Cui C, Yang W, Hu B, Sun J (2011) J Mater Sci 46:2379. doi:10.1007/s10853-010-5085-0

    Article  CAS  Google Scholar 

  12. Xue S, Cao C, Zhu H (2006) J Mater Sci 41:5598. doi:10.1007/s10853-006-0311-5

    Article  CAS  Google Scholar 

  13. Rousse C, Fricoteaux P (2011) J Mater Sci 46:6046. doi:10.1007/s10853-011-5566-9

    Article  CAS  Google Scholar 

  14. Xu J, Xu Y (2008) J Mater Sci 43:4163. doi:10.1007/s10853-006-1222-1

    Article  CAS  Google Scholar 

  15. Talapatra S, Tang X, Padi M, Kim T, Vajtai R, Sastry GVS, Shima M, Deevi SC, Ajayan PM (2009) J Mater Sci 44:2271. doi:10.1007/s10853-008-3015-1

    Article  CAS  Google Scholar 

  16. Ren Y, Wang J, Liu Q, Dai Y, Zhang B, Yan L (2011) J Mater Sci 46:7545. doi:10.1007/s10853-011-5727-x

    Article  CAS  Google Scholar 

  17. Chen C, Wang L, Li R, Jiang G, Yu H, Chen T (2007) J Mater Sci 42:3172. doi:10.1007/s10853-009-3422-y

    Article  CAS  Google Scholar 

  18. Xu C, Xu G, Wang G (2002) J Mater Sci 38:779. doi:10.1023/A:1021856930632

    Article  Google Scholar 

  19. Gandhi S, Hari Hara Subramani R, Ramakrishnan T, Sivabalan A, Dhanalakshmi V, Gopinathan Nair MR, Anbarasan R (2010) J Mater Sci 45:1688. doi:10.1007/s10853-009-4158-4

    Article  CAS  Google Scholar 

  20. Gao F, Lu Q, Meng X, Komarneni S (2008) J Mater Sci 43:2377. doi:10.1007/s10853-007-2039-2

    Article  CAS  Google Scholar 

  21. Sun L, Liu A, Tao X, Zhao Y (2011) J Mater Sci 46:839. doi:10.1007/s10853-010-4826-4

    Article  CAS  Google Scholar 

  22. Jiang GH, Wang L, Chen T, Yu HJ, Wang JJ (2005) J Mater Sci 40:1681. doi:10.1007/s10853-005-7519-7

    Article  CAS  Google Scholar 

  23. Haes J, Van Duyne RP (2002) J Am Chem Soc 124:10596

    Article  CAS  Google Scholar 

  24. Tao A, Kim F, Hess C, Goldberger J, He RR, Sun YG, Xia YN, Yang PD (2003) Nano Lett 3:1229

    Article  CAS  Google Scholar 

  25. Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (1999) Chem Rev 99:2957

    Article  CAS  Google Scholar 

  26. Kottmann JP, Martin OJF, Smith DR, Schultz S (2001) Phys Rev B 64:235402

    Article  Google Scholar 

  27. Zhang XY, Zhang LD, Lei Y, Zhao LX, Mao YQ (2001) J Mater Chem 11:1732

    Article  CAS  Google Scholar 

  28. Huang MH, Choudret A, Yang P (2000) Chem Commun 12:1063

    Article  Google Scholar 

  29. Jana NR, Gearheart L, Murphy CJ (2001) Chem Commun 7:617

    Article  Google Scholar 

  30. Xiong YJ, Xie Y, Wu CZ, Yang J, Li ZQ, Xu F (2003) Adv Mater 15:405

    Article  CAS  Google Scholar 

  31. Wang ZH, Chen XY, Liu JW, Zhang M, Qian YT (2004) Chem Lett 33:1160

    Article  CAS  Google Scholar 

  32. Sun Y, Yin Y, Mayers BT, Herricks T, Xia Y (2002) Chem Mater 14:4736

    Article  CAS  Google Scholar 

  33. Sun Y, Mayers B, Herricks T, Xia Y (2003) Nano Lett 3:955

    Article  CAS  Google Scholar 

  34. Sun Y, Gates B, Mayers B, Xia Y (2002) Nano Lett 2:165

    Article  CAS  Google Scholar 

  35. Giersig M, Pastoriza-Santos I, Liz-Marzan LM (2004) J Mater Chem 14:607

    Article  CAS  Google Scholar 

  36. Liz-Marzan LM, Lado-Tourino I (1996) Langmuir 12:3585

    Article  CAS  Google Scholar 

  37. Kerker MJ (1985) Colloid Interface Sci 105:297

    Article  CAS  Google Scholar 

  38. Sarkar D, Halas NJ (1997) Phys Rev E 56:1102

    Article  CAS  Google Scholar 

  39. Wang Z, Liu J, Chen X, Wan J, Qian Y (2005) Chem Eur J 11:160

    Article  Google Scholar 

  40. Wang ZL (2000) J Phys Chem B 104:1153

    Article  CAS  Google Scholar 

  41. Xiong Y, Washio I, Chen J, Cai H, Li ZY, Xia Y (2006) Langmuir 22:8563

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge the National Science Council of the Republic of China (NSC 100-2221-E-006-056-MY3, NSC 100-2622-E-006-029-CC2, NSC 101-3113-E-024-001-CC2 and NSC 101-2120-M-006-009) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuh-Yung Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, WM., Wang, CC. & Chen, CY. A modified polyol process for growing Ag nanowires and nanoplates using 2-ethoxy ethanol. J Mater Sci 48, 1042–1052 (2013). https://doi.org/10.1007/s10853-012-6837-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6837-9

Keywords

Navigation