Skip to main content
Log in

Symmetry-Preserving Discretization of Heat Transfer in a Complex Turbulent Flow

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

Convective and diffusive operators are discretized such that their symmetries are preserved. The resulting discretization inherits all symmetry-related properties of the continuous formulation. It is shown that a symmetry-preserving discretization is unconditionally stable and conservative. A fourth-order, symmetry-preserving discretization method is developed and tested for the numerical simulation of turbulent (flow and) heat transfer in a channel with surface-mounted cubes, where the temperature is treated as a passive scalar. The Reynolds number (based on the channel width and the mean bulk velocity) is Re=13,000. The results of the numerical simulation agree well with available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Verstappen R.W.C.P., Veldman A.E.P. (2003). Symmetry-preserving discretization of turbulent flow. J. Comp. Phys. 187:343–368

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Manteufel T.A., and White A.B. Jr. (1986). The numerical solution of second-order boundary value problems on nonuniform meshes. Math. Comp. 47: 511–535

    Article  MathSciNet  Google Scholar 

  3. Morinishi Y., Lund T.S., Vasilyev O.V., and Moin P. (1998). Fully conservative higher order finite difference schemes for incompressible flow. J. Comp. Phys. 143:90–124

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Vasilyev O.V. (2000). High order finite difference schemes on non-uniform meshes with good conservation properties. J. Comp. Phys. 157: 746–761

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Nicoud F. (2000). Conservative high-order finite-difference schemes for low-Mach number flows. J. Comp. Phys. 158:71–97

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Ducros F., Laporte F., Soulères T., Guinot V., Moinat P. and Caruelle B. (2000). High-order fluxes for conservative skew-symmetric-like schemes in structured meshes: application to compressible flows. J. Comp. Phys. 161:114–139

    Article  MATH  ADS  Google Scholar 

  7. Jameson A., Schmidt W., and Turkel E., Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time stepping. AIAA Paper 81-1259 (1981) 19pp.

  8. Furihata D. (1999). Finite difference schemes for \(\frac{\partial u}{\partial t} = \left(\frac{\partial}{\partial x}\right)^\alpha \frac{\delta G}{\delta u}\) that inherit energy conservation or dissipation property. J. Comp. Phys. 156:181–205

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Hyman J.M., Knapp R.J., and Scovel J.C. (1992). High order finite volume approximations of differential operators on nonuniform grids. Physica D 60:112–138

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Hanjalić K., and Obi S. (eds) (1997). Proceedings of the 6th ERCOFTAC/IAHR/COST Workshop on Refined Flow Modeling. Delft University of Technology, Delft, 129pp.

    Google Scholar 

  11. Craft T., (ed.), Proceedings of the 7th ERCOFTAC/IAHR/COST Workshop on Refined Flow Modeling. : University of Manchester Institute of Science and Technology (1998) 87pp.

  12. Hellsten A., and Rautaheimo P. (eds) (1999). Proceedings of the 8th ERCOFTAC/IAHR/COST Workshop on Refined Flow Modeling. Helsinki University of Technology, Helsinki, 96pp.

    Google Scholar 

  13. Mathey F., Fröhlich J. and Rodi W. (1999). Large-eddy simulation of the flow over a matrix of surface-mounted cubes. In: Biringen S. et al. (eds). Industrial and Environmental Applications of Direct and Large-Eddy Simulation Springer Lecture Notes in Physics. Vol. 529. Springer-Verlag, Berlin, pp. 153–163

    Chapter  Google Scholar 

  14. Meinders E.R., van der Meer Th.H., Hanjalić K. and Lasance C.J.M. (1997). Application of infrared thermography to the evaluation of local convective heat transfer on arrays of cubical protrusions. International J. Heat and Fluid Flow 18:152–159

    Article  Google Scholar 

  15. Meinders E.R. (1998). Experimental Study of Heat Transfer in Turbulent Flows over Wall-Mounted Cubes. Ph.D. thesis, Delft University of Technology, Delft, 146pp.

    Google Scholar 

  16. Foias C., Manley O., Rosa R., and Temam R. (2001). Navier-Stokes Equations and Turbulence. Cambridge University Press, Cambridge, 347pp.

    MATH  Google Scholar 

  17. Zhang F. (1999). Matrix Theory. Springer-Verlag, New-York, 277pp.

    MATH  Google Scholar 

  18. Harlow F.H., and Welsh J.E. (1965). Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. of Fluids 8:2182–2189

    Article  ADS  Google Scholar 

  19. Antonopoulos-Domis M. (1981). Large-eddy simulation of a passive scalar in isotropic turbulence. J. Fluid Mech. 104:55–79

    Article  MATH  ADS  Google Scholar 

  20. Verstappen R.W.C.P. and Veldman A.E.P. (1997). Direct numerical simulation of turbulence at lower costs. J. Engng. Math. 32:143–159

    Article  MATH  MathSciNet  Google Scholar 

  21. Kim J., Moin P., and Moser R. (1987). Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177:133–166

    Article  MATH  ADS  Google Scholar 

  22. Gilbert N., and Kleiser L., Turbulence model testing with the aid of direct numerical simulation results. In: Proceedings Turbulent Shear Flows 8, Paper 26-1, Munich: Technical University Munich (1991) pp. 26-1-1 – 26-1-6.

  23. Kuroda A., Kasagi N., and Hirata M. (1995). Direct numerical simulation of turbulent plane Couette-Poisseuille flows: effect of mean shear rate on the near-wall turbulence structures. In: Durst F. et al. (eds) Proceedings Turbulent Shear Flows 9. Springer-Verlag, Berlin, pp. 241–257

    Google Scholar 

  24. Kasagi N., Tomita Y., and Kuroda A. (1992). Direct numerical simulation of passive scalar field in a turbulent channel flow. ASME J. Heat Transfer 114:598–606

    Article  ADS  Google Scholar 

  25. Kader B.A. (1981). Temperature and concentration profiles in fully turbulent boundary layers. International J. Heat and Mass Transfer 24: 1541–1544

    Article  Google Scholar 

  26. Kreplin H.P., and Eckelmann H. (1979). Behavior of the three fluctuating velocity components in the wall region of a turbulent channel flow. Phys. Fluids 22:1233–1239

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. W. C. P. Verstappen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verstappen, R.W.C.P., Van Der Velde, R.M. Symmetry-Preserving Discretization of Heat Transfer in a Complex Turbulent Flow. J Eng Math 54, 299–318 (2006). https://doi.org/10.1007/s10665-006-9035-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-006-9035-4

Keywords

Navigation