Skip to main content

Advertisement

Log in

Betaine Protects Against Rotenone-Induced Neurotoxicity in PC12 Cells

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Rotenone is an inhibitor of mitochondrial complex I-induced neurotoxicity in PC12 cells and has been widely studied to elucidate the pathogenesis of Parkinson’s disease. We investigated the neuroprotective effects of betaine on rotenone-induced neurotoxicity in PC12 cells. Betaine inhibited rotenone-induced apoptosis in a dose-dependent manner, with cell viability increasing from 50 % with rotenone treatment alone to 71 % with rotenone plus 100-μM betaine treatment. Flow cytometric analysis demonstrated cell death in the rotenone-treated cells to be over 50 %; the number of live cells increased with betaine pretreatment. Betaine pretreatment of PC12 cells attenuated rotenone-mediated mitochondrial dysfunction, including nuclear fragmentation, ATP depletion, mitochondrial membrane depolarization, caspase-3/7 activation, and reactive oxygen species production. Western blots demonstrated activation of caspase-3 and caspase-9, and their increased expression levels in rotenone-treated cells; betaine decreased caspase-3 and caspase-9 expression levels and suppressed their activation. Together, these results suggest that betaine may serve as a neuroprotective agent in the treatment of neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Batandier C, Fontaine E, Keriel C, Leverve XM (2002) Determination of mitochondrial reactive oxygen species: methodological aspects. J Cell Mol Med 6:175–187

    Article  PubMed  CAS  Google Scholar 

  • Bidulescu A, Chambless LE, Siega-Riz AM, Zeisel SH, Heiss G (2007) Usual choline and betaine dietary intake and incident coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) study. BMC Cardiovasc Disord 7:20

    Article  PubMed  Google Scholar 

  • Caserta MT, Bannon Y, Fernandez F, Giunta B, Schoenberg MR, Tan J (2009) Chapter 1 Normal brain aging: clinical, immunological, neuropsychological, and neuroimaging features. Int Rev Neurobiol 84:1–19

    Article  PubMed  Google Scholar 

  • Cave M, Deaciuc I, Mendez C, Song Z, Joshi-Barve S, Barve S, McClain C (2007) Nonalcoholic fatty liver disease: predisposing factors and the role of nutrition. J Nutr Biochem 18:184–195

    Article  PubMed  CAS  Google Scholar 

  • Craig SA (2004) Betaine in human nutrition. Am J Clin Nutr 80:539–549

    PubMed  CAS  Google Scholar 

  • Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909

    Article  PubMed  CAS  Google Scholar 

  • Du YP, Peng JS, Sun A, Tang ZH, Ling WH, Zhu HL (2009) Assessment of the effect of betaine on p16 and c-myc DNA methylation and mRNA expression in a chemical induced rat liver cancer model. BMC Cancer 9:261

    Article  PubMed  Google Scholar 

  • Fukae J, Mizuno Y, Hattori N (2007) Mitochondrial dysfunction in Parkinson’s disease. Mitochondrion 7:58–62

    Article  PubMed  CAS  Google Scholar 

  • Ganesan B, Anandan R (2009) Protective effect of betaine on changes in the levels of lysosomal enzyme activities in heart tissue in isoprenaline-induced myocardial infarction in Wistar rats. Cell Stress Chaperones 14:661–667

    Article  PubMed  CAS  Google Scholar 

  • Ganesan B, Anandan R, Lakshmanan PT (2011) Studies on the protective effects of betaine against oxidative damage during experimentally induced restraint stress in Wistar albino rats. Cell Stress Chaperones 16:641–652

    Article  PubMed  CAS  Google Scholar 

  • Ho YS, So KF, Chang RC (2010) Anti-aging herbal medicine–how and why can they be used in aging-associated neurodegenerative diseases? Ageing Res Rev 9:354–362

    Article  PubMed  Google Scholar 

  • Kanbak G, Inal M, Baycu C (2001) Ethanol-induced hepatotoxicity and protective effect of betaine. Cell Biochem Funct 19:281–285

    Article  PubMed  CAS  Google Scholar 

  • Keane PC, Kurzawa M, Blain PG, Morris CM (2011) Mitochondrial dysfunction in Parkinson’s disease. Parkinsons Dis 2011:716871

    PubMed  CAS  Google Scholar 

  • Kirkinezos IG, Moraes CT (2001) Reactive oxygen species and mitochondrial diseases. Semin Cell Dev Biol 12:449–457

    Article  PubMed  CAS  Google Scholar 

  • Martin LJ (2010) Mitochondrial and cell death mechanisms in neurodegenerative diseases. Pharmaceuticals (Basel) 3:839–915

    Article  CAS  Google Scholar 

  • Mehler MF, Gokhan S (2000) Mechanisms underlying neural cell death in neurodegenerative diseases: alterations of a developmentally-mediated cellular rheostat. Trends Neurosci 23:599–605

    Article  PubMed  CAS  Google Scholar 

  • Moran M, Rivera H, Sanchez-Arago M, Blazquez A, Merinero B, Ugalde C, Arenas J, Cuezva JM, Martin MA (2010) Mitochondrial bioenergetics and dynamics interplay in complex I-deficient fibroblasts. Biochim Biophys Acta 802:443–453

    Google Scholar 

  • Pettmann B, Henderson CE (1998) Neuronal cell death. Neuron 20:633–647

    Article  PubMed  CAS  Google Scholar 

  • Petty RD, Sutherland LA, Hunter EM, Cree IA (1995) Comparison of MTT and ATP based assays for the measurement of viable cell number. J Biolumin Chemilumin 10:29–34

    Article  PubMed  CAS  Google Scholar 

  • Ribe EM, Serrano-Saiz E, Akpan N, Troy CM (2008) Mechanisms of neuronal death in disease: defining the models and the players. Biochem J 415:165–182

    Article  PubMed  CAS  Google Scholar 

  • Riederer BM, Leuba G, Vernay A, Riederer IM (2011) The role of the ubiquitin proteasome system in Alzheimer’s disease. Exp Biol Med (Maywood) 236:268–276

    Article  CAS  Google Scholar 

  • Samantaray S, Knaryan VH, Guyton MK, Matzelle DD, Ray SK, Banik NL (2007) The parkinsonian neurotoxin rotenone activates calpain and caspase-3 leading to motoneuron degeneration in spinal cord of Lewis rats. Neuroscience 146:741–755

    Article  PubMed  CAS  Google Scholar 

  • Shin YG, Cho KH, Kim JM, Park MK, Park JH (1999) Determination of betaine in Lycium chinense fruits by liquid chromatography-electrospray ionization mass spectrometry. J Chromatogr A 857:331–335

    Article  PubMed  CAS  Google Scholar 

  • Tenenbaum L, Chtarto A, Lehtonen E, Blum D, Baekelandt V, Velu T, Brotchi J, Levivier M (2002) Neuroprotective gene therapy for Parkinson’s disease. Curr Gene Ther 2:451–483

    Article  PubMed  CAS  Google Scholar 

  • Velier JJ, Ellison JA, Kikly KK, Spera PA, Barone FC, Feuerstein GZ (1999) Caspase-8 and caspase-3 are expressed by different populations of cortical neurons undergoing delayed cell death after focal stroke in the rat. J Neurosci 19:5932–5941

    PubMed  CAS  Google Scholar 

  • Vila M, Ramonet D, Perier C (2008) Mitochondrial alterations in Parkinson’s disease: new clues. J Neurochem 107:317–328

    Article  PubMed  CAS  Google Scholar 

  • Wei HL, Jiafeng S, Ming C, Hongyan C, Linsen H (2008) Mechanisms of rotenone-induced neurotoxicity in PC 12 cells. Neural Regen Res 3:1281–1285

    Google Scholar 

  • Weir HJ, Murray TK, Kehoe PG, Love S, Verdin EM, O’Neill MJ, Lane JD, Balthasar N (2012) CNS SIRT3 expression is altered by reactive oxygen species and in Alzheimer’s disease. PLoS One 7:e48225

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the “Study of aging-control by energy metabolism based on oriental medicine (K12101)” funded by the “KM-Based Herbal Drug Research Group” of the Korea Institute of Oriental Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi-Young Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Im, AR., Kim, YH., Uddin, M.R. et al. Betaine Protects Against Rotenone-Induced Neurotoxicity in PC12 Cells. Cell Mol Neurobiol 33, 625–635 (2013). https://doi.org/10.1007/s10571-013-9921-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-013-9921-z

Keywords

Navigation