Skip to main content
Log in

Mercerized cellulose biocomposites: a study of influence of mercerization on cellulose supramolecular structure, water retention value and tensile properties

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this study the effect of the mercerization degree on the water retention value (WRV) and tensile properties of compression molded sulphite dissolving pulp was evaluated. The pulp was treated with 9, 10, or 11 % aqueous NaOH solution for 1 h before compression molding. To study the time dependence of mercerization the pulp was treated with 12 wt% aqueous NaOH for 1, 6 or 48 h. The cellulose I and II contents of the biocomposites were determined by solid state cross polarization/magic angle spinning carbon 13 nuclear magnetic resonance (CP/MAS 13C NMR) spectroscopy. By spectral fitting of the C6 and C1 region the cellulose I and II content, respectively, could be determined. Mercerization decreased the total crystallinity (sum of cellulose I and cellulose II content) and it was not possible to convert all cellulose I to cellulose II in the NaOH range investigated. Neither increased the conversion significantly with 12 wt% NaOH at longer treatment times. The slowdown of the cellulose I conversion was suggested as being the result from the formation of cellulose II as a consequence of coalescence of anti-parallel surfaces of neighboring fibrils (Blackwell et al. in Tappi 61:71–72, 1978; Revol and Goring in J Appl Polym Sci 26:1275–1282, 1981; Okano and Sarko in J Appl Polym Sci 30:325–332, 1985). Compression molding of the partially mercerized dissolving pulps yielded biocomposites with tensile properties that could be correlated to the decrease in cellulose I content in the pulps. Mercerization introduces cellulose II and disordered cellulose and lowered the total crystallinity reflected as higher water sensitivity (higher WRV values) and poorer stiffness of the mercerized biocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Atalla RH, Gast JC, Sindorf DW, Bartuska VJ, Maciel GE (1980) 13C NMR spectra of cellulose polymorphs. J Am Chem Soc 102:3249–3251

    Article  CAS  Google Scholar 

  • Blackwell J, Kolpak FJ, Gardner KH (1978) The structure of cellulose I and II. Tappi 61:71–72

    CAS  Google Scholar 

  • Ciolacu D, Pitol-Filho L, Ciolacu F (2012) Studies concerning the accessability of different allomorphic forms of cellulose. Cellulose 19:55–68

    Article  CAS  Google Scholar 

  • Dinand E, Vignon M, Chanzy H, Heux L (2002) Mercerization of primary wall cellulose and its implication for the conversion of cellulose I → cellulose II. Cellulose 9:7–18

    Article  CAS  Google Scholar 

  • Dudley RL, Fyfe CA, Stephenson PJ, Deslandes Y, Hamer GK, Marchessaul RH (1983) High-resolution 13C CP/MAS NMR spectra of solid cellulose oligomers and the structure of cellulose II. J Am Chem Soc 105:2469–2472

    Article  CAS  Google Scholar 

  • Fink HP, Walenta E, Philipp B (1999) Investigations of the time dependence of the conversion of cellulose to alkali cellulose by X-ray diffraction. Papier 53:25–31

    CAS  Google Scholar 

  • Gindl W, Keckes J (2005) All-cellulose nanocomposite. Polymer 46:10221–10225

    Article  CAS  Google Scholar 

  • Hine PJ, Ward IM, Olley RH, Bassett DC (1993) The hot compaction of high modulus melt-spun polyethylene fibres. J Mater Sci 28:316–324

    Article  CAS  Google Scholar 

  • Kono H, Numata Y, Erata E, Takai M (2004) 13C and 1H resonance assignment of mercerized cellulose II by two-dimensional MAS NMR spectroscopies. Macromolecules 37:5310–5316

    Article  CAS  Google Scholar 

  • Larsson PT, Wickholm K, Iversen T (1997) A CP/MAS 13C NMR investigation of molecular ordering in celluloses. Carbohydr Res 302:19–25

    Article  CAS  Google Scholar 

  • Lennholm H, Wallbäcks L, Iversen T (1995) Solid-state high-resolution 13C-NMR studies of regenerated cellulose samples with different crystallinities. Nord Pulp Pap Res J 10:46–50

    Article  CAS  Google Scholar 

  • Mansikkamäki P, Lahtinen M, Rissanen K (2005) Structural changes of cellulose crystallites induced by mercerization in different solvent systems; determined by powder X-ray diffraction method. Cellulose 12:233–242

    Article  Google Scholar 

  • McKenzie AW, Higgins HG (1958) The structure and properties of paper. Sven Papperstidn 61:893–901

    CAS  Google Scholar 

  • Nilsson H, Galland S, Larsson PT, Gamstedt EK, Nishino T, Berglund LA, Iversen T (2010) A non-solvent approach for high-stiffness all-cellulose biocomposites based on pure wood cellulose. Compos Sci Technol 70:1704–1712

    Article  CAS  Google Scholar 

  • Nilsson H, Galland S, Larsson PT, Gamstedt EK, Iversen T (2012) Compression molded wood pulp biocomposites—a study of hemicellulose influence on cellulose supramolecular structure and material properties. Cellulose. doi:https://doi.org/10.1007/s10570-012-9688-2

    Article  CAS  Google Scholar 

  • Nishino T, Arimoto N (2007) All-cellulose composite prepared by selective dissolving of fiber surface. Biomacromolecules 8:2712–2716

    Article  CAS  Google Scholar 

  • Nishino T, Matsuda I, Hirao K (1995) Elastic-modulus of the crystalline regions of cellulose polymorphs. J Polym Sci B Polym Phys 33:1647–1651

    Article  CAS  Google Scholar 

  • Nishino T, Takano K, Nakamae KJ (2004) All-cellulose composite. Macromolecules 37:7683–7687

    Article  CAS  Google Scholar 

  • O’Sullivan A (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207

    Article  Google Scholar 

  • Okano T, Sarko A (1985) Mercerization of cellulose II. Alkali-cellulose intermediates and a possible mercerization mechanism. J Appl Polym Sci 30:325–332

    Article  CAS  Google Scholar 

  • Peijs T (2003) Composites for recyclability. Materials Today April:30–35

    Article  Google Scholar 

  • Revol J-F and Goring DAI (1981) On the mechanism of the mercerization of cellulose in wood. J Appl Polym Sci 26:1275–1282

    Article  Google Scholar 

  • Sarko A (1978) What is the crystalline structure of cellulose? Tappi 61:59–61

    CAS  Google Scholar 

  • Soykeabkaew N, Arimoto N, Nishino T, Peijs T (2008) All-cellulose composites by surface selective dissolution of aligned lingo-cellulosic fibres. Compos Sci Technol 68:2201–2207

    Article  CAS  Google Scholar 

  • Soykeabkaew N, Nishino T, Peijs T (2009a) All-cellulose composites of regenerated cellulose fibres by surface selective dissolution. Compos A 40:321–328

    Article  Google Scholar 

  • Soykeabkaew N, Sian C, Gea S, Nishino T, Peijs T (2009b) All-cellulose nanocomposites by surface selective dissolution of bacterial cellulose. Cellulose 16:435–444

    Article  CAS  Google Scholar 

  • Vanderhart DL, Atalla RH (1984) Studies of microstructure in native cellulose using solid-state 13C NMR. Macromolecules 17:1465–1472

    Article  CAS  Google Scholar 

  • Zhou Q, Malm E, Nilsson H, Larsson PE, Iversen T, Berglund LA, Bulone V (2009) Nanostructured biocomposites based on bacterial cellulosic nanofibers compartmentalized by a soft hydroxyethylcellulose matrix coating. Soft Matter 5:1–8

    Google Scholar 

Download references

Acknowledgments

This work was supported by Research Institutes of Sweden (Rise). Domsjö Fabriker AB is acknowledged for gift of sulphite pulp.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Helena Halonen or Tommy Iversen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halonen, H., Larsson, P.T. & Iversen, T. Mercerized cellulose biocomposites: a study of influence of mercerization on cellulose supramolecular structure, water retention value and tensile properties. Cellulose 20, 57–65 (2013). https://doi.org/10.1007/s10570-012-9801-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9801-6

Keywords

Navigation