Skip to main content
Log in

Estimation of soil-to-plant transfer factors of radiocesium in 99 wild plant species grown in arable lands 1 year after the Fukushima 1 Nuclear Power Plant accident

  • JPR Symposium
  • Current status and future control of cesium contamination in plants and algae in Fukushima
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

One year after the deposition of radionuclides from the Fukushima 1 Nuclear Power Plant (A formal name is Fukushima Daiichi Nuclear Power Station) in March 2011, radiocesium (134Cs, 137Cs) concentrations ([Cs]) were comprehensively investigated in the wild plants of 99 species most of which were annual or summer green perennial herbs and started to grow from April 2012 at the heavily contaminated fields of paddy (three study sites) and upland (one study site) in Fukushima Prefecture. The survey was conducted three times (April, July and October) in the year. In each site, soils (soil cores of 5-cm depth) and plants (aerial shoots) were collected for determination of [Cs] on a dry weight basis, and then the transfer factor (TF) of radiocesium from soil to plant ([Cs]plant/[Cs]soil) was estimated in each species. The [Cs] values of both soils and plants largely varied. However, some species exhibited relatively high TF values (more than 0.4) (e.g., Athyrium yokoscense, Dryopteris tokyoensis, and Cyperus brevifolius), while others exhibited almost negligible values (less than 0.01) (e.g., Salix miyabeana, Humulus scandens, and Elymus tsukushiensis). In addition, judging from the 11 species grown in both paddy and upland fields, TF values were generally higher in the paddy fields. The estimation of phytoextraction efficiency of soil radiocesium by weed communities in the paddy fields suggests that the weed community is not a practical candidate for phytoremediation technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Chino M, Nakayama H, Nagai H, Terada H, Katata G, Yamazawa H (2011) Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi Nuclear Power Plant into the atmosphere. J Nucl Sci Technol 48:1129–1134

    Article  CAS  Google Scholar 

  • Endo S, Kajimoto T, Shizuma K (2013) Paddy-field contamination with 134Cs and 137Cs due to Fukushima Dai-ichi Nuclear Power Plant accident and soil-to-rice transfer coefficients. J Environ Radioact 116:59–64

    Article  CAS  PubMed  Google Scholar 

  • Haston E, Richardson JE, Stevens PF, Chase MW, Harris DJ (2009) The linear Angiosperm Phylogeny Group (LAPG) III: a linear sequence of the families in APG III. Bot J Linn Soc 161:128–131

    Article  Google Scholar 

  • Kanter U, Hauser A, Michalke B, Dräxl S, Schäffner AR (2010) Caesium and strontium accumulation in shoots of Arabidopsis thaliana: genetic and physiological aspects. J Exp Bot 61:3995–4009

    Article  CAS  PubMed  Google Scholar 

  • Kato H, Onda Y, Teramage M (2012) Depth distribution of 137Cs, 134Cs, and 131I in soil profile after Fukushima Dai-ichi Nuclear Power Plant Accident. J Environ Radioact 111:59–64

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi D, Nozomi N, Hisamatsu S, Yamagami M (2010) AtKUP/HAK/KT9, a K+ transporter from Arabidopsis thaliana, mediates Cs+ uptake in Escherichia coli. Biosci Biotechnol Biochem 74:203–205

    Article  CAS  PubMed  Google Scholar 

  • Lasat MM, Fuhrmann M, Ebbs SD, Cornish JE, Kochian LV (1998) Phytoremediation of a radiocesium-contaminated soil: evaluation of cesium-137 bioaccumulation in the shoots of three plant species. J Environ Qual 27:165–169

    Article  CAS  Google Scholar 

  • Mertens J, Vervaeke P, Meers E, Tack FMG (2006) Seasonal changes of metals in willow (Salix sp.) stands for phytoremediation on dredged sediment. Environ Sci Technol 40:1962–1968

    Article  CAS  PubMed  Google Scholar 

  • Nishizono H, Suzuki S, Ishii F (1987) Accumulation of heavy metals in the metal-tolerant fern, Athyrium yokoscense, growing on various environments. Plant Soil 102:65–70

    Article  CAS  Google Scholar 

  • Qi Z, Hampton CR, Shin R, Barkla BJ, White PJ, Schachtman DP (2008) The high affinity K+ transporter AtHAK5 plays a physiological role in planta at very low K+ concentrations and provides a caesium uptake pathway in Arabidopsis. J Exp Bot 59:595–607

    Article  CAS  PubMed  Google Scholar 

  • Smith AR, Pryer KM, Schuettpelz E, Korall P, Schneider H, Wolf PG (2006) A classification for extant ferns. Taxon 55:705–731

    Article  Google Scholar 

  • Van TK, Kang Y, Fukui T, Sakurai K, Iwasaki K, Aikawa Y, Phuong NM (2006) Arsenic and heavy metal acccumulation by Athyrium yokoscense from contaminated soils. Soil Sci Plant Nutr 52:701–710

    Article  CAS  Google Scholar 

  • Vandenhove H, Thirty Y, Gommers A, Goor F, Jossart JM, Holm E, Gäfvert T, Roed J, Grebenkov A, Timofeyev S (2001) Short rotation coppice for revaluation of contaminated land. J Environ Radioact 56:157–184

    Article  CAS  PubMed  Google Scholar 

  • Yonekura K, Murata J (2012) An enumeration of the vascular plants of Japan: a list of the Latin and Japanese names of the vascular plants indigenous and naturalized in Japan arranged in the order of phylogeny-based system. Hokuryukan, Tokyo

    Google Scholar 

  • Zhu YG, Smolders E (2000) Plant uptake of radiocaesium: a review of mechanisms, regulation and application. J Exp Bot 51:1635–1645

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to express the deepest appreciation to Iitate-mura officers and the landowners for permitting us the field survey. We are deeply grateful to Mr. Hiroshi Ohta (Fukushima Prefecture) and Mr. Hirotsuna Hoshi, Mr. Katsunori Takita, and Mr. Masataka Sasaki (Fukushima Agricultural Technology Center) for introducing us to Iitate-mura and giving us useful local information. We thank to Dr. Tetsuro Mimura (Kobe University) and to Dr. Mutsumi Yamagami (Institute for Environmental Sciences, Aomori, Japan) for their useful information and kind advices about the preparation of plant and soil samples. This study was supported by the Grant for “Strategies for the Efficient Operation of the Okayama University”, 2012–2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoko Yamamoto.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 251 kb)

Supplementary material 2 (DOCX 42 kb)

Appendix: List of the plant names with the author names, shown in text, tables and figures

Appendix: List of the plant names with the author names, shown in text, tables and figures

Alopecurus aequalis Sobol. var. amurensis (Kom.) Ohwi; Amaranthus retroflexus L.; Anthoxanthum odoratum L. subsp. odoratum; Arabidopsis thaliana (L.) Heynh.; Artemisia indica Willd. var. maximowiczii (Nakai) H. Hara; Arthraxon hispidus (Thunb.) Makino; Aster microcephalus (Miq.) Franch. et Sav. var. ovatus (Franch. et Sav.) Soejima et Mot. Ito; Athyrium yokoscense (Franch. et Sav.) H. Christ; B. juncea (L.) Czern.; Calystegia pubescens Lindl.; Cardamine scutata Thunb. var. scutata; Celastrus orbiculatus Thunb. var. orbiculatus; Conyza canadensis (L.) Cronquist; Cyperus brevifolius (Rottb.) Hassk. var. leiolepis (Franch. et Sav.) T. Koyama; Dactylis glomerata L.; Digitaria ciliaris (Retz.) Koeler; Dryopteris tokyoensis (Makino) C. Chr.; Echinochloa crus-galli (L.) P. Beauv. var. crus-galli; Elymus tsukushiensis Honda var. transiens (Hack.) Osada; Erigeron annuus (L.) Pers.; Erigeron philadelphicus L.; Houttuynia cordata Thunb.; Humulus scandens (Lour.) Merr.; Hypericum erectum Thunb. var. erectum; J. decipiens (Buchenau) Nakai; Mazus miquelii Makino; Miscanthus sinensis Andersson; Murdannia keisak (Hassk.) Hand.-Mazz.; Oenothera biennis L.; Onoclea sensibilis L. var. interrupta Maxim.; Oryza sativa L. cv. Koshihikari; Persicaria hydropiper (L.) Delarbre; Persicaria longiseta (Bruijn) Kitag.; Phaseolus acutifolius A. Gray; Plantago major L.; Poa pratensis L. subsp. pratensis var. pratensis; Pteridium aquilinum (L.) Kuhn subsp. japonicum (Nakai) Á. et D. Löve; Pueraria lobata (Willd.) Ohwi subsp. lobata; Rumex acetosa L.; Rumex obtusifolius L.; Salix caprea L.; Salix miyabeana Seemen subsp. miyabeana; Schedonorus arundinaceus (Schreb.) Dumort.; Scirpus wichurae Boeck.; Sedum bulbiferum Makino; Sedum sarmentosum Bunge; Setaria faberi R. A. W. Herrm.; Solidago altissima L.; Stellaria media (L.) Vill.; Trifolium pratense L.; T. repens L.; Vulpia myuros (L.) C. C. Gmel. var. myuros. See Table S1 for all the scientific names of plant materials analyzed in this study. The classification follows Smith et al. (2006) and Haston et al. (2009) with minor modification by Yonekura and Murata (2012).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamashita, J., Enomoto, T., Yamada, M. et al. Estimation of soil-to-plant transfer factors of radiocesium in 99 wild plant species grown in arable lands 1 year after the Fukushima 1 Nuclear Power Plant accident. J Plant Res 127, 11–22 (2014). https://doi.org/10.1007/s10265-013-0605-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-013-0605-z

Keywords

Navigation