Skip to main content
Log in

An Apparatus for Production of Isotopically and Spin-Enriched Hydrogen for Induced Polarization Studies

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

An apparatus for the production of hydrogen for hydrogenation-induced polarization studies was developed. The apparatus provides hydrogen gas from a solid source, thereby simplifying the requirement for siting of the apparatus. The produced hydrogen can be either isotopically enriched (with deuterium) or spin-enriched (with parahydrogen). These specialty gases were produced at small predetermined quantities and ambient pressure. The properties of the hydrogen mixtures were characterized by gas-phase nuclear magnetic resonance. The T 1 of the hydrogen mixtures (3.7 ms) was not affected by para-enrichment. The line width of the hydrogen signal in the para-enriched mixture was 34% larger. The reaction of ethyl propiolate hydrogenation served to evaluate the performance in terms of the ability to create hyperpolarized states. In this reaction, a polarization of 11.2% was measured for protons. Consecutive alkene hydrogenations as well as hydrogenations of the catalyst ligand resulted in additional hyperpolarized signals which were systematically assigned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 2
Fig. 3
Fig. 4
Scheme 5

Similar content being viewed by others

References

  1. C.R. Bowers, D.P. Weitekamp, Phys. Rev. Lett. 57(21), 2645–2648 (1986)

    Article  ADS  Google Scholar 

  2. C.R. Bowers, D.P. Weitekamp, J. Am. Chem. Soc. 109(18), 5541–5542 (1987)

    Article  Google Scholar 

  3. T.C. Eisenschmid, R.U. Kirss, P.P. Deutsch, S.I. Hommeltoft, R. Eisenberg, J. Bargon, R.G. Lawler, A.L. Balch, J. Am. Chem. Soc. 109(26), 8089–8091 (1987)

    Article  Google Scholar 

  4. J. Natterer, J. Bargon, Prog. Nucl. Magn. Reson. Spectrosc. 31(4), 293–315 (1997)

    Article  Google Scholar 

  5. T. Jonischkeit, K. Woelk, Adv. Synth. Catal. 346, 960–969 (2004)

    Article  Google Scholar 

  6. S.B. Duckett, C.J. Sleigh, Prog. Nucl. Magn. Reson. Spectrosc. 34, 71–92 (1999)

    Article  Google Scholar 

  7. K. Golman, O. Axelsson, H. Johannesson, S. Mansson, C. Olofsson, J.S. Petersson, Magn. Reson. Med. 46(1), 1–5 (2001)

    Article  Google Scholar 

  8. P. Bhattacharya, K. Harris, A.P. Lin, M. Mansson, V.A. Norton, W.H. Perman, D.P. Weitekamp, B.D. Ross, Magn. Reson. Mater. Phys. Biol. Med. 18(5), 245–256 (2005)

    Google Scholar 

  9. P. Bhattacharya, E.Y. Chekmenev, W.H. Perman, K.C. Harris, A.P. Lin, V.A. Norton, C.T. Tan, B.D. Ross, D.P. Weitekamp, J. Magn. Reson. 186(1), 150–155 (2007)

    Article  ADS  Google Scholar 

  10. H. Johannesson, O. Axelsson, M. Karlsson, C. R. Physique 5(3), 315–324 (2004)

    Article  ADS  Google Scholar 

  11. K. Golman, R. in’t Zandt, M. Thaning, Proc. Natl. Acad. Sci. USA 103(30), 11270–11275 (2006)

    Article  ADS  Google Scholar 

  12. T.H. Witney, M.I. Kettunen, S.E. Day, D.E. Hu, A.A. Neves, F.A. Gallagher, S.M. Fulton, K.M. Brindle, Neoplasia 11(6), 574–582 (2009)

    Google Scholar 

  13. F.A. Gallagher, M.I. Kettunen, D.E. Hu, P.R. Jensen, R. in’t Zandt, M. Karlsson, A. Gisselsson, S.K. Nelson, T.H. Witney, S.E. Bohndiek, G. Hansson, T. Peitersen, M.H. Lerche, K.M. Brindle, Proc. Natl. Acad. Sci. USA 106(47), 19801–19806 (2009)

    Google Scholar 

  14. S. Aime, W. Dastru, R. Gobetto, A. Viale, Org. Biomol. Chem. 3(21), 3948–3954 (2005)

    Article  Google Scholar 

  15. L.S. Bouchard, K.V. Kovtunov, S.R. Burt, M.S. Anwar, I.V. Koptyug, R.Z. Sagdeev, A. Pines, Angew. Chem. Int. Ed. 46(22), 4064–4068 (2007)

    Article  Google Scholar 

  16. J.B. Hovener, E.Y. Chekmenev, K.C. Harris, W.H. Perman, T.T. Tran, B.D. Ross, P. Bhattacharya, Magn. Reson. Mater. Phys. Biol. Med. 22(2), 123–134 (2009)

    Google Scholar 

  17. J. Bargon, A. Limbacher, R.R. Rizi, Proc. Int. Soc. Magn. Reson. Med. 14, 3111 (2006)

    Google Scholar 

  18. M. Matsumoto, J.H. Espenson, J. Am. Chem. Soc. 127(32), 11447–11453 (2005)

    Article  Google Scholar 

  19. H.Z. Wang, D.Y.C. Leung, M.K.H. Leung, M. Ni, Renew. Sust. Energy Rev. 13(4), 845–853 (2009)

    Article  Google Scholar 

  20. L. Soler, A.M. Candela, J. Macanas, M. Munoz, J. Casado, J. Power Sources 192(1), 21–26 (2009)

    Article  Google Scholar 

  21. T. Jonischkeit, U. Bommerich, J. Stadler, K. Woelk, H.G. Niessen, J. Bargon, J. Chem. Phys. 124(20), 201109-1–201109-5 (2006)

    Article  ADS  Google Scholar 

  22. S.B. Duckett, C.L. Newell, R. Eisenberg, J. Am. Chem. Soc. 116(23), 10548–10556 (1994)

    Article  Google Scholar 

  23. X. Wang, L. Andrews, Rev. Sci. Instrum. 75(9), 3039–3044 (2004)

    Article  ADS  Google Scholar 

  24. M.G. Pravica, D.P. Weitekamp, Chem. Phys. Lett. 145, 255–258 (1988)

    Article  ADS  Google Scholar 

  25. L.T. Kuhn, J. Bargon, Top. Curr. Chem. 276, 25–68 (2007)

    Article  Google Scholar 

  26. M. Goldman, H. Johannesson, O. Axelsson, M. Karlsson, C. R. Chimie 9(3–4), 357–363 (2006)

    Google Scholar 

  27. C.E. Miller, M. Lipsicas, Phys. Rev. 176(1), 273–279 (1968)

    Article  ADS  Google Scholar 

  28. K. Golman, A. Oskar, H. Johanneson, European Patent Application EP 1 058 122 A2, 2000

  29. D. Canet, C. Aroulanda, P. Mutzenhardt, S. Aime, R. Gobetto, F. Reineri, Concepts Magn. Reson. Part A 28(5), 321–330 (2006)

    Google Scholar 

Download references

Acknowledgments

We thank Aaron K. Grant, Elena Vinogradova, and Robert E. Lenkinski for useful discussions during the course of this work. We thank Magnus Karlsson for helpful discussions on gas-phase NMR measurements. We thank Shimon Vega for discussions on orthodeuterium. This study has been supported in part by the DANA foundation, the Bi-National Science Foundation (BSF, grant number 2006118), the German Israel Foundation (GIF, grant number 2131-1586.5/2006), the Abisch-Frenkel Foundation, and the Center for Complexity Science (grant number GR2007-053). R.K.B thanks the generosity of the Tchorz fund, the Speijer inheritance fund, and the Goldin-Savad inheritance fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Katz-Brull.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gamliel, A., Allouche-Arnon, H., Nalbandian, R. et al. An Apparatus for Production of Isotopically and Spin-Enriched Hydrogen for Induced Polarization Studies. Appl Magn Reson 39, 329–345 (2010). https://doi.org/10.1007/s00723-010-0161-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-010-0161-9

Keywords

Navigation