Skip to main content
Log in

Adsorption properties of H2O2 trapped inside a boron phosphide nanotube

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The behavior of H2O2 adsorbed inside a [4,4] armchair boron phosphide nanotube (BPNT) was studied by using density functional calculations. Geometry optimizations were carried out at the B3LYP/6-31G* level of theory using the Gaussian 03 suite of programs. We present the nature of the H2O2 interactions inside the nanotube. The interaction between the guest species (H2O2) and the nanotube and the dipole moments of the different geometries are discussed. The results show that the binding energies and the dipole moments of the nanotube depend on the orientation and location of the H2O2 inside the tube. Among the parallel orientation (AT) and perpendicular orientations (PTA and PTP), the PTA and PTP geometries of the H2O2 are unstable whereas the AT-state geometries show stabilization of the guest species inside the BPNT. For AT orientations, the value of the dihedral angle of the H2O2 trapped inside the BPNT in the most stable conformation displays a notable change with respect to free H2O2. Also, with change of tube type, more efficient binding could not be achieved, and only the orientation and location of the H2O2 inside the tube play an important role in determining the binding energy. The polarization of the BPNT in the presence of the guest species in the PT state is higher than that of the AT state. Adsorption of H2O2 in the AT state slightly reduces the energy gap of the pristine BPNTs and slightly increases their electrical conductance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ijima S (1991) Nature 354:56

    Article  Google Scholar 

  2. Derycke V, Martel R, Appenzeller J, Avouris P (2002) Appl Phys Lett 80:2773

    Article  CAS  Google Scholar 

  3. Liu C, Fan YY, Liu M, Cong HT, Cheng HM, Dresselhaus MS (1999) Science 286:1127

    Article  CAS  Google Scholar 

  4. Zurek B, Autschbach J (2004) J Am Chem Soc 126:13079

    Article  CAS  Google Scholar 

  5. Nojeh A, Lakatos GW, Peng S, Cho K, Pease RFW (2003) Nano Lett 3:1187

    Article  CAS  Google Scholar 

  6. Hou S, Shen Z, Zhang J, Zhao X, Xue Z (2004) Chem Phys Lett 393:179

    Article  CAS  Google Scholar 

  7. Zhang M, Su ZM, Yan LK, Qiu YQ, Chen GH, Wang RS (2005) Chem Phys Lett 408:145

    Article  CAS  Google Scholar 

  8. Erkoc S (2001) J Mol Struct (Theochem) 542:89

    Article  CAS  Google Scholar 

  9. Mirzaei M (2009) Physica E 41:883

    Article  CAS  Google Scholar 

  10. Mirzaei M (2009) Z Phys Chem 223:815

    Article  CAS  Google Scholar 

  11. Gunn K, Yeonju K, Jisoon I (2005) Chem Phys Lett 415:279

    Article  Google Scholar 

  12. Vaitheeswaran S, Yin H, Rasaiah JC, Hummer G (2004) Proc Natl Acad Sci USA 101:17002

    Article  CAS  Google Scholar 

  13. Ramachandran CN, Sathyamurthy N (2005) Chem Phys Lett 410:348

    Article  CAS  Google Scholar 

  14. Shameema O, Ramachandran CN, Sathyamurthy N (2006) J Phys Chem A 110:2

    Article  CAS  Google Scholar 

  15. Koput J (1986) J Mol Spectrosc 115:438

    Article  CAS  Google Scholar 

  16. Redington RL, Oslon WB, Cross PC (1962) J Chem Phys 36:1311

    Article  CAS  Google Scholar 

  17. Khachkuruzov GA, Przhevalskii IN (1974) Opt Spectrosc 36:172

    Google Scholar 

  18. Flaud JM, Peyret CC, Johns JWC, Carli B (1989) J Chem Phys 91:1504

    Article  CAS  Google Scholar 

  19. Harding LB (1989) J Phys Chem 93:8004

    Article  CAS  Google Scholar 

  20. Aquilanti V, Maciel GS (2006) Origins Life Evol Biospheres 36:435

    CAS  Google Scholar 

  21. Song L, Liu M, Wu W, Zhang Q, Mo Y (2005) J Chem Theor Comp 1:394

    Article  CAS  Google Scholar 

  22. Maciel GS, Bitencourt ACP, Ragni M, Aquilanti V (2006) Chem Phys Lett 432:383

    Article  CAS  Google Scholar 

  23. Maciel GS, Bitencourt ACP, Ragni M, Aquilanti V (2007) J Phys Chem A 111:12604

    Article  CAS  Google Scholar 

  24. Maciel GS, Bitencourt ACP, Ragni M, Aquilanti V (2007) Int J Quantum Chem 107:2697

    Article  CAS  Google Scholar 

  25. Barreto PRP, Vilela AFA, Lombardi A, Maciel GS, Palazzetti F, Aquilanti V (2007) J Phys Chem A 111:12754

    Article  CAS  Google Scholar 

  26. Bitencourt ACP, Ragni M, Maciel GS, Aquilanti V, Prudente FV (2008) J Chem Phys 129:154316

    Article  Google Scholar 

  27. Elango M, Parthasarathi R, Subramanian V, Ramachandran CN, Sathyamurthy N (2006) J Phys Chem A 110:6294

    Article  CAS  Google Scholar 

  28. Williams CI, Whitehead MA, Pang L (1993) J Phys Chem 97:11652

    Article  CAS  Google Scholar 

  29. Ramachandran CN, Fazio DD, Sathyamurthy N, Aquilanti V (2009) Chem Phys Lett 473:146

    Article  CAS  Google Scholar 

  30. Baei MT, Moghimi M (2011) Fullerenes, Nanotubes, Carbon Nanostruct. doi:10.1080/1536383X.2010.542595 (in press)

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision B03. Gaussian Inc., Pittsburgh

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad T. Baei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baei, M.T., Moradi, A.V., Torabi, P. et al. Adsorption properties of H2O2 trapped inside a boron phosphide nanotube. Monatsh Chem 143, 37–41 (2012). https://doi.org/10.1007/s00706-011-0548-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-011-0548-9

Keywords

Navigation