Skip to main content
Log in

Spinal projections from the presumptive midbrain locomotor region in the mouse

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The mesencephalic locomotor region (MLR) plays an important role in the control of locomotion, but there is ongoing debate about the anatomy of its connections with the spinal cord. In this study, we have examined the spinal projections of the mouse precuneiform nucleus (PrCnF), which lies within the boundaries of the presumptive MLR. We used both retrograde and anterograde labeling techniques. Small clusters of labeled neurons were seen in the medial portion of the PrCnF following fluoro-gold injections in the upper cervical spinal cord. Fewer labeled neurons were seen in the PrCnF after upper thoracic injections. Following the injection of anterograde tracer (biotinylated dextran amine) into the PrCnF, labeled fibers were clearly observed in the spinal cord. These fibers traveled in the ventral and lateral funiculi, and terminated mainly in the medial portions of laminae 7, 8, and 9, as well as area 10, with an ipsilateral predominance. Our observations indicate that projections from the PrCnF to the spinal cord may provide an anatomical substrate for the role of the MLR in locomotion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

3Sp:

Lamina 3 of the spinal gray

4Sp:

Lamina 4 of the spinal gray

5SpL:

Lamina 5 of the spinal gray, lateral part

5SpM:

Lamina 5 of the spinal gray, medial part

6SpL:

Lamina 6 of the spinal gray, lateral part

6SpM:

Lamina 6 of the spinal gray, medial part

7Sp:

Lamina 7 of the spinal gray

8Sp:

Lamina 8 of the spinal gray

10Sp:

Area 10 of the spinal gray

Aq:

Aqueduct

Ax9:

Axial muscle motoneurons of lamina 9

BDA:

Biotinylated dextran amine

Bi9:

Biceps motoneurons of lamina 9

CC:

Central canal

CeCv:

Central cervical nucleus

CEx9:

Crural extensor motoneurons of lamina 9

CFl9:

Crural flexor motoneurons of lamina 9

CnF:

Cuneiform nucleus

DAB:

3,3′-Diaminobenzidine

De9:

Deltoid muscle motoneurons of lamina 9

FEx9:

Forearm extensor motoneurons of lamina 9

FFl9:

Forearm flexor motoneurons of lamina 9

Gl9:

Gluteal motoneurons of lamina 9

Hm9:

Hamstring motoneurons of lamina 9

IB:

Internal basilar nucleus

ICl:

Intercalated nucleus

ICo9:

Intercostals muscle motoneurons of lamina 9

IH9:

Infrahyoid muscle motoneurons of lamina 9

IML:

Intermediolateral column

IMM:

Intermediomedial column

KF:

Kolliker-fuse nucleus

LatC:

Lateral cervical nucleus

LD9:

Latissimus dorsi motoneurons of lamina 9

LPAG:

Lateral periaqueductal gray

LSp:

Lateral spinal nucleus

M5:

Motor trigeminal nucleus

MLR:

Mesencephalic locomotor region

mRt:

Mesencephalic reticular formation

PAG:

Paeriaqueductal gray

PB:

Phosphate buffer

Pec9:

Pectoral muscle motoneurons of lamina 9

Ph9:

Phrenic motoneurons of lamina 9

PL:

Paralemniscal nucleus

Pn:

Pontine nuclei

PnO:

Oral part of pontine reticular nucleus

PrCnF:

Precuneiform nucleus

PTg:

Peduncular tegmental nucleus

Rh9:

Rhomboid muscle motoneurons of lamina 9

RtTg:

Reticulotegmental nucleus of the pons

SC:

Superior colliculus

SI9:

Supraspinatus and infraspinatus motoneurons of lamina 9

Sr9:

Serratus anterior motoneurons in lamina 9

SubCV:

Ventral part of the subcoeruleus nucleus

Tr9:

Triceps motoneurons of lamina 9

TzSM9:

Trap/sternom motoneurons of lamina 9

VLPAG:

Ventrolateral periaqueductal gray

WGA-HRP:

Wheat germ agglutinin-horseradish peroxidase

References

  • Allen LF, Inglis WL, Winn P (1996) Is the cuneiform nucleus a critical component of the mesencephalic locomotor region? An examination of the effects of excitotoxic lesions of the cuneiform nucleus on spontaneous and nucleus accumbens induced locomotion. Brain Res Bull 41:201–210

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Carpenter MB (1961) Fiber projections of superior colliculus in cat. J Comp Neurol 116:157–177

    Article  PubMed  CAS  Google Scholar 

  • Atsuta Y, Garcia-Rill E, Skinner RD (1990) Characteristics of electrically induced locomotion in rat in vitro brain stem-spinal cord preparation. J Neurophysiol 64:727–735

    PubMed  CAS  Google Scholar 

  • Basbaum AI, Fields HL (1979) The origin of descending pathways in the dorsolateral funiculus of the spinal cord of the cat and rat: further studies on the anatomy of pain modulation. J Comp Neurol 187:513–531

    Article  PubMed  CAS  Google Scholar 

  • Bernau NA, Puzdrowski RL, Leonard RB (1991) Identification of the midbrain locomotor region and its relation to descending locomotor pathways in the Atlantic stingray, Dasyatis sabina. Brain Res 557:83–94

    Article  PubMed  CAS  Google Scholar 

  • Bertrand S, Cazalets JR (2002) The respective contribution of lumbar segments to the generation of locomotion in the isolated spinal cord of newborn rat. Eur J Neurosci 16:1741–1750

    Article  PubMed  CAS  Google Scholar 

  • Björkeland M, Boivie J (1984) The termination of spinomesencephalic fibers in cat. An experimental anatomical study. Anat Embryol 170(3):265–277

    Article  PubMed  Google Scholar 

  • Bonnot A, Morin D (1998) Hemisegmental localisation of rhythmic networks in the lumbosacral spinal cord of neonate mouse. Brain Res 793:136–148

    Article  PubMed  CAS  Google Scholar 

  • Bonnot A, Whelan PJ, Mentis GZ, O’Donovan MJ (2002) Locomotor-like activity generated by the neonatal mouse spinal cord. Brain Res Brain Res Rev 40:141–151

    Article  PubMed  Google Scholar 

  • Bracci E, Ballerini L, Nistri A (1996) Localization of rhythmogenic networks responsible for spontaneous bursts induced by strychnine and bicuculline in the rat isolated spinal cord. J Neurosci 16:7063–7076

    PubMed  CAS  Google Scholar 

  • Castiglioni AJ, Gallaway MC, Coulter JD (1978) Spinal projections from midbrain in monkey. J Comp Neurol 178:329–345

    Article  PubMed  CAS  Google Scholar 

  • Cazalets JR, Borde M, Clarac F (1995) Localization and organization of the central pattern generator for hindlimb locomotion in newborn rat. J Neurosci 15:4943–4951

    PubMed  CAS  Google Scholar 

  • Christie KJ, Whelan PJ (2005) Monoaminergic establishment of rostrocaudal gradients of rhythmicity in the neonatal mouse spinal cord. J Neurophysiol 94:1554–1564

    Article  PubMed  Google Scholar 

  • Cina C, Hochman S (2000) Diffuse distribution of sulforhodamine-labeled neurons during serotonin-evoked locomotion in the neonatal rat thoracolumbar spinal cord. J Comp Neurol 423:590–602

    Article  PubMed  CAS  Google Scholar 

  • Coles SK, Iles JF, Nicolopoulos-Stournaras S (1989) The mesencephalic centre controlling locomotion in the rat. Neurosci 28:149–157

    Article  CAS  Google Scholar 

  • Cowie RJ, Holstege G (1992) Dorsal mesencephalic projections to pons, medulla, and spinal cord in the cat: limbic and non-limbic components. J Comp Neurol 319:536–559

    Article  PubMed  CAS  Google Scholar 

  • Cowley KC, Zaporozhets E, Schmidt BJ (2010) Propriospinal transmission of the locomotor command signal in the neonatal rat. Ann N Y Acad Sci 1198:42–53

    Article  PubMed  Google Scholar 

  • Craig AD (1995) Distribution of brainstem projections from spinal lamina I neurons in the cat and the monkey. J Comp Neurol 361:225–248

    Article  PubMed  CAS  Google Scholar 

  • Dai X, Noga BR, Douglas JR, Jordan LM (2005) Localization of spinal neurons activated during locomotion using the c-fos immunohistochemical method. J Neurophysiol 93:3442–3452

    Article  PubMed  CAS  Google Scholar 

  • Degtyarenko AM, Simon ES, Burke RE (1998) Locomotor modulation of disynaptic EPSPs from the mesencephalic locomotor region in cat motoneurons. J Neurophysiol 80:3284–3296

    PubMed  CAS  Google Scholar 

  • Franklin KBJ, Paxinos G (2008) The mouse brain in stereotaxic coordinates, 3rd edn. Elsevier Academic Press, San Diego

    Google Scholar 

  • Garcia-Rill E, Skinner RD, Gilmore S, Owing R (1983) Connections of the mesencephalic locomotor region (MLR) II. Afferents and efferents. Brain Res Bull 10:63–71

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Rill E (1983) Connections of the mesencephalic locomotor region (MLR) III. Intracellular recordings. Brain Res Bull 10:73–81

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Rill E, Skinner RD, Fitzgerald JA (1985) Chemical activation of the mesencephalic locomotor region. Brain Res 330:43–54

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Rill E, Houser CR, Skinner RD, Smith W, Woodward DJ (1987) Locomotion-inducing sites in the vicinity of the pedunculopontine nucleus. Brain Res Bull 18:731–738

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Rill E, Skinner RD (1987) The mesencephalic locomotor region. II. Projections to reticulospinal neurons. Brain Res 411:13–20

    Article  PubMed  CAS  Google Scholar 

  • Graham J (1977) Autoradiographic study of efferent connections of superior colliculus in cat. J Comp Neurol 173:629–654

    Article  PubMed  CAS  Google Scholar 

  • Grillner S, Zangger P (1979) On the central generation of locomotion in the low spinal cat. Exp Brain Res 34:241–261

    Article  PubMed  CAS  Google Scholar 

  • Harting JK (1977) Descending pathways from the superior collicullus: an autoradiographic analysis in the rhesus monkey (Macaca mulatta). J Comp Neurol 173:583–612

    Article  PubMed  CAS  Google Scholar 

  • Hylden JL, Anton F, Nahin RL (1989) Spinal lamina I projection neurons in the rat: collateral innervation of parabrachial area and thalamus. Neuroscience 28:27–37

    Article  PubMed  CAS  Google Scholar 

  • Juvin L, Simmers J, Morin D (2005) Propriospinal circuitry underlying interlimb coordination in mammalian quadrupedal locomotion. J Neurosci 25:6025–6035

    Article  PubMed  CAS  Google Scholar 

  • Kjaerulff O, Barajon I, Kiehn O (1994) Sulphorhodamine-labeled cells in the neonatal rat spinal cord following chemically induced locomotor activity in vitro. J Physiol 478:265–273

    PubMed  Google Scholar 

  • Kjaerulff O, Kiehn O (1996) Distribution of networks generating and coordinating locomotor activity in the neonatal rat spinal cord in vitro: a lesion study. J Neurosci 16:5777–5794

    PubMed  CAS  Google Scholar 

  • Kuypers HG, Maisky VA (1975) Retrograde axonal transport of horseradish peroxidase from spinal cord to brain stem cell groups in the cat. Neurosci Lett 1:9–14

    Article  PubMed  CAS  Google Scholar 

  • Liang HZ, Paxinos G, Watson C (2011) Projections from the brain to the spinal cord in the mouse. Brain Struct Funct 215:159–186

    Article  PubMed  Google Scholar 

  • Magnuson DS, Lovett R, Coffee C, Gray R, Han Y, Zhang YP, Burke DA (2005) Functional consequences of lumbar spinal cord contusion injuries in the adult rat. J Neurotrauma 22:529–543

    Article  PubMed  Google Scholar 

  • Martin GF (1969) Efferent tectal pathways of opossum (Didelphis Virginiana). J Comp Neurol 135:209–224

    Article  PubMed  CAS  Google Scholar 

  • Masson RL, Sparkes ML, Ritz LA (1991) Descending projections to the rat sacrocaudal spinal cord. J Comp Neurol 307:120–130

    Article  PubMed  Google Scholar 

  • Miller KE, Douglas VD, Richards AB, Chandler MJ, Foreman RD (1998) Propriospinal neurons in the C1–C2 spinal segments project to the L5–S1 segments of the rat spinal cord. Brain Res Bull 47:43–47

    Article  PubMed  CAS  Google Scholar 

  • Mouton LJ, Holstege G (1994) The periaqueductal gray in the cat projects to lamina VIII and the medial part of lamina VII throughout the length of the spinal cord. Exp Brain Res 101:253–264

    Article  PubMed  CAS  Google Scholar 

  • Noga BR, Kriellaars DJ, Brownstone RM, Jordan LM (2003) Mechanism for activation of locomotor centers in the spinal cord by stimulation of the mesencephalic locomotor region. J Neurophysiol 90:1464–1478

    Article  PubMed  Google Scholar 

  • Nudo RJ, Masterton RB (1988) Descending pathways to the spinal-cord—a comparative study of 22 mammals. J Comp Neurol 277:53–79

    Article  PubMed  CAS  Google Scholar 

  • Nyberg-Hansen R (1964) The location and termination of tectospinal fibers in the cat. Exp Neurol 9:212–227

    Article  PubMed  CAS  Google Scholar 

  • Panneton WM, Watson BJ (1991) Stereotaxic atlas of the brainstem of the muskrat, Ondatra zibethicus. Brain Res Bull 26:479–509

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Elsevier Academic Press, San Diego

    Google Scholar 

  • Paxinos G, Watson C, Carrive P, Kirkcaldie M, Ashwell KWS (2009a) Chemoarchitectonic atlas of the rat brain, 2nd edn. Elsevier Academic Press, San Diego

    Google Scholar 

  • Paxinos G, Huang XF, Petrides M, Toga AW (2009b) The rhesus monkey brain in stereotaxic coordinates, 2nd edn. Elsevier Academic Press, San Diego

    Google Scholar 

  • Satoda T, Matsumoto H, Zhou L, Rose PK, Richmond FJ (2002) Mesencephalic projections to the first cervical segment in the cat. Exp Brain Res 144:397–413

    Article  PubMed  CAS  Google Scholar 

  • Skinner RD, Garcia-Rill E (1984) The mesencephalic locomotor region (MLR) in the rat. Brain Res 323:385–389

    Article  PubMed  CAS  Google Scholar 

  • Swanson LW (1998) Brain maps: structure of the rat brain, 2nd edn. Academic Press, New York

    Google Scholar 

  • Tresch MC, Kiehn O (1999) Coding of locomotor phase in populations of neurons in rostral and caudal segments of the neonatal rat lumbar spinal cord. J Neurophysiol 82:3563–3574

    PubMed  CAS  Google Scholar 

  • VanderHorst VG, Ulfhake B (2006) The organization of the brainstem and spinal cord of the mouse: relationships between monoaminergic, cholinergic, and spinal projection systems. J Chem Neuroanat 31:2–36

    Article  PubMed  CAS  Google Scholar 

  • Watson C, Paxinos G (2010) Chemoarchitectonic atlas of the mouse brain. Elsevier Academic Press, San Diego

    Google Scholar 

  • Watson C, Paxinos G, Kayalioglu G, Heise C (2009) Atlas of the mouse spinal cord. In: Watson C, Paxinos G, Kayalioglu G (eds) The spinal cord. Elsevier Academic Press, San Diego, pp 308–379

    Chapter  Google Scholar 

  • Yasui Y, Ono K, Tsumori T, Yokota S, Kishi T (1998) Tectal projections to the parvicellular reticular formation and the upper cervical spinal cord in the rat, with special reference to axon collateral innervation. Brain Res 804:149–154

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr Yuhong Fu, Dr Yue Qi, Dr Erika Gyengesi and Mr Peter Zhao for their suggestions and technical support, and Dr Zoltan Rusznak for the manuscript corrections. This work was supported by The Christopher & Dana Reeve foundation and an NHMRC Australia Fellowship grant to Professor George Paxinos (466028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Watson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, H., Paxinos, G. & Watson, C. Spinal projections from the presumptive midbrain locomotor region in the mouse. Brain Struct Funct 217, 211–219 (2012). https://doi.org/10.1007/s00429-011-0337-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-011-0337-6

Keywords

Navigation