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Abstract
Introduction Distinct physiological states arise from complex interactions among the various organs present in the human 
body. PET is a non-invasive modality with numerous successful applications in oncology, neurology, and cardiology. How-
ever, while PET imaging has been applied extensively in detecting focal lesions or diseases, its potential in detecting systemic 
abnormalities is seldom explored, mostly because total-body imaging was not possible until recently.
Methods In this context, the present study proposes a framework capable of constructing an individual metabolic abnormal-
ity network using a subject’s whole-body 18F-FDG SUV image and a normal control database. The developed framework 
was evaluated in the patients with lung cancer, the one discharged after suffering from Covid-19 disease, and the one that 
had gastrointestinal bleeding with the underlying cause unknown.
Results The framework could successfully capture the deviation of these patients from healthy subjects at the level of both 
system and organ. The strength of the altered network edges revealed the abnormal metabolic connection between organs. 
The overall deviation of the network nodes was observed to be highly correlated to the organ SUV measures. Therefore, the 
molecular connectivity of glucose metabolism was characterized at a single subject level.
Conclusion The proposed framework represents a significant step toward the use of PET imaging for identifying metabolic 
dysfunction from a systemic perspective. A better understanding of the underlying biological mechanisms and the physi-
ological interpretation of the interregional connections identified in the present study warrant further research.
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Abbreviations
PET  Positron emission tomography
SUV  Standardized uptake value
18F-FDG  18F-Fluorodeoxyglucose
DTI  Diffusion tensor imaging
MRI  Magnetic resonance imaging
fMRI  Functional magnetic resonance imaging

OSEM  Ordered subset expectation–maximization
CT  Computerized tomography
ROIs  Region of interests
SPM  Statistical parametric mapping
MNI  Montreal Neurological Institute
FWHM  Full width half maximum
CER  Cerebellum
CSF  Cerebrospinal fluid
WM  White matter
AAL2  Automated anatomical atlas 2
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Introduction

Human metabolic homeostasis relies on complex neuronal, 
vascular, and humoral mechanisms at the level of the 
whole body. Simultaneous non-linear interactions among 
organs form distinct physiological networks. Many sys-
temic diseases have an underlying disturbance in the inter-
organ physiological interaction networks [1]. The existing 
methods for detecting such a disturbance work mostly at 
the organ level and developing generalized methodologies 
capable of adequately quantifying the abnormalities at the 
system level remain a challenge so far. Most of the studies 
conducted to date on such topics have utilized non-imag-
ing tools. Thiele et al. [2] developed a metabolic network 
reconstruction approach in which organ-specific informa-
tion from the literature and omics data were used. The data 
sources in that study included 20 organs, 6 sex organs, 6 
blood cell types, and 13 biofluid compartments. Barajas-
Martínez et  al. [3] developed a physiological network 
based on anthropometric measurements, fasting blood 
tests, and other vital sign measurements. The authors con-
cluded that the specific structural properties of the network 
change across the human lifespan and could, therefore, 
serve as indicators of the health status. Cui et al. [4] recon-
structed the global mammal metabolic network for differ-
ent tissues and cell types, through which they attempted to 
connect organs with the inter-organ metabolite transport. 
In separate studies, Bashan et al. [5] and Bartsch et al. [6] 
developed a framework to probe the interactions among 
diverse body systems and identified a physiological net-
work that represented the interplay between network topol-
ogy and function.

Imaging approaches have been used mostly to investi-
gate the functional interactions related to brain dysfunc-
tion. Brain disorders, such as dementia, have their origin 
and the associated functional impairment not in distinct 
regions but rather in a network of connected regions [7]. 
Alterations in these inter-regional brain connectivity net-
works, if quantified, could reflect the status of various neu-
rological diseases. For instance, structural connectivity has 
been investigated using diffusion tensor imaging (DTI) [8, 
9], and functional connectivity has been investigated using 
functional magnetic resonance imaging (fMRI) [10–12]. 
DTI or fMRI connectivity patterns could, in principle, 
be determined on the subject level by correlating fiber 
connections or time-series signals. Metabolic connectiv-
ity deciphered using PET measurements, in contrast, is 
often derived using a population-based approach [13, 14]. 
The reason is that a routine PET scan usually performs 
static acquisition 60 min post injection, which measures 
the summed activity concentration in a certain period 
(typically 5–30 min). However, conventional methods 

cannot compute the connectivity (correlation) between 
the region without access to the real-time dynamic activ-
ity signal. Certain recent studies have suggested deriving 
the metabolic connectivity at the individual brain level 
based on relationships in the regional activities [15, 16]. 
On the other hand, few studies have investigated whole-
body metabolic connectivity using PET imaging. Horsager 
et al. [17] used three different radiotracers to investigate 
the alpha-synuclein interaction pathology between organs, 
and the findings supported their hypothesis regarding the 
existence of two subtypes of Parkinson’s disease (brain-
first top-down and body-first bottom-up types). Heiskanen 
et al. [21] utilized 18F-FDG PET to gain a system-level 
understanding of how exercise training affects the cross-
talk in the central metabolism. Dias et al. [18] compared 
whole-body FDG uptakes and glucose metabolic rates 
between the diabetes group and non-diabetes group. They 
successfully derived difference of organ crosstalk in these 
two groups hence conclude the impact of diabetes on glu-
cose homeostasis. Sundar et al. [20] compared the meta-
bolic rates at multiple organs between healthy male group 
and female group, based on group-averaged normative 
correlation analysis of the measured time-activity curves. 
Suchacki et al. [19] reported an approach to understanding 
murine bone metabolic interactions in vivo by analyzing 
the correlations of the 18F-FDG time-activity curves in 
bones.

In this context, the present study proposes a framework 
capable of constructing a network that would reveal the 
individual metabolic abnormality using a subject’s whole-
body SUV image and a normal control database. The analy-
sis does not require access to dynamic acquisition, and is 
not limited to scanners with long axial field-of-view such 
as uEXPLORER   but can also be applied on conventional 
scanners. The key concept underlying the proposed frame-
work is to model the individual differences based on the 
knowledge of normative modeling using a control database. 
The implementation of the proposed framework was dem-
onstrated and validated in different diseases.

Materials and methods

Subject demographics

Twenty-four scans of healthy subjects with no diseases avail-
able in the records were used in the proposed framework. 
Twelve additional scans were used for testing, among which 
ten scans were those of a lung cancer diagnosis, one scan 
was performed 30 days after discharge upon recovering from 
the Covid-19 disease, and the remaining scan was for the 
case of gastrointestinal bleeding with the underlying cause 
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unknown. The demographics of all subjects are presented 
in Table 1.

Data acquisition and processing

All scans were performed using a uEXPLORER PET/CT 
scanner (United Imaging Healthcare, Shanghai) in Henan 
Provincial People’s Hospital, China. The study protocols 
were approved by the local Ethics Committee. Written 
consent was obtained for each subject prior to scanning. 
The scan procedure and data formatting are as follows. 
First, a CT scan was performed for the attenuation correc-
tion. Next, a 60-min list-mode PET acquisition was initi-
ated with the bolus injection of 18F-FDG into the vein in 
the lower extremity. In order to obtain the SUV image, 
the scan data for the 50–60 min time interval were recon-
structed into a 192 × 192 × 80 matrix with a voxel size of 
3.125 × 3.125 × 2.866  mm3 using the 3-D Ordered Subset 
Expectation–Maximization (OSEM) algorithm with time-of-
flight information. The reconstruction was performed with 3 
iterations, 28 subsets, and 2 mm Gaussian post-smoothing. 
Attenuation correction and scatter correction were per-
formed using CT-based attenuation correction maps. Finally, 
the reconstructed activity image (in Bq/cc) was converted 

into an image with standard uptake values by normalizing 
it according to the injection dose and weight of the subject.

For each scan, a total of 18 regions of interest (ROIs) 
were delineated on a given SUV image (Fig. 1). Among 
these ROIs, 11 were sampled in organs, including the 
whole brain, left ventricle, lung, liver, pancreas, spleen, 
left/right kidney, muscle, spine, and blood, while seven 
sub-brain regions were further parcellated using Statisti-
cal Parametric Mapping (SPM12) described as follows. 
The planes that contained the brain in the reconstructed 
image were extracted as a new volume and then spatially 
normalized according to an 18F-FDG PET template in 
the Montreal Neurological Institute (MNI) space. The 
normalized image was smoothed using a Gaussian filter 
with 8-mm FWHM and subsequently parcellated into 
94 regions defined using the automated anatomical atlas 
(AAL2) [22]. In the present work, only brain stem, whole 
cerebellum (CER), cerebrospinal fluid (CSF), whole white 
matter (WM), caudate, putamen, and frontal cortex (SF) 
were selected for subsequent analysis. Next, network 
analysis was performed for the total 18 regions using the 
Brain Connectivity Toolbox [23]. The following statistical 
analyses were performed using the Statistics and Machine 
Learning Toolbox in Matlab R2018b.

Table 1  Summary of the 
demographics of included 
subjects

Subject Age (y/o) Gender Weight Inject dose (MBq)

Total controls
(N = 60)

51.4 ± 13.9 28F, 32M 68.3 ± 12.2 259 ± 48

Controls for refNET
(N = 24)

50.4 ± 13.3 12F, 12M 69.7 ± 11.6 264 ± 51

Lung cancer
(N = 10)

55.5 ± 8.4 2F, 8M 74.4 ± 11.8 297 ± 71

Covid-19 discharge
(N = 1)

49 M 75 301

Gut bleeding
(N = 1)

49 M 65 265

Fig. 1  The delineation of the 18 sampled regions comprising 11 organs and 7 sub-regions of the brain. The left kidney and the right kidney were 
treated as two separate ROIs. The one for the lung was on the left or right where the lesion resides and excluding the lesion
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Network construction

In order to construct the individual connectivity net-
work using a single scan, we adapted a recently devel-
oped approach designed for anatomical brain MRI [24]. 
According to this approach, individual differences may be 
modeled based on the knowledge of normative modeling 
at the group level [25]. We adapted this concept to PET 
imaging as an overall framework illustrated in Fig. 2. First, 
a reference metabolic network refNET was constructed 
using the scans from the control group (24 healthy sub-
jects) by performing the partial Pearson correlation analy-
sis between the SUVs of each region pair, considering 
age and gender as covariates. The network matrix nodes 
represented the regions, while the edges represented the 
strength of the connection between the nodes, which was 
essentially Pearson correlation coefficient. The refNET, 
therefore, represented the common characteristics of all 
controls. Next, the subject was added to investigate the 
control group, thereby forming a new group with 25 sub-
jects, which could again be constructed as a new structural 
covariance network matrix and was labeled as the per-
turbed network ptbNET. Further, the difference between 
the perturbed network ptbNET and the reference network 
refNET was calculated as the residual network resNET. 
A threshold of 30% was set to this network to eliminate the 

weak residual correlations after subtraction arising possi-
bly due to noise. The Z-score map of resNET (ZCC) could 
then be calculated as follows:

Here, N denotes the total number of subjects in the new 
group, while � and � are the mean and standard devia-
tion of resNET. It was demonstrated that the Z-score map 
of resNET followed a symmetrical distribution, implying 
that µ equals zero [25]. The ZCC matrix essentially repre-
sented the level of abnormality in the connectivity of the 
18 regions defined in Fig. 1. Each residual network and 
ZCC, therefore, contained 153 undirected edges connect-
ing all regions (18 × (18 − 1)/2 = 153). Each edge exhibited 
a level of variation in metabolism, which led to deviation 
from the normal value in the control group. Under nor-
mal conditions, the body network structure is stable and 
relevantly linked. However, when the metabolism homeo-
stasis is altered in a subject, the network links are altered 
in accordance. The connectivity map can then be plotted 
from the Z-score map for visualization as in Fig. 2. The 
degree of this alteration (abnormality) could be quantified 
by defining the strength of the abnormality (STR) at each 
node, as follows:

(1)ZCC =
resNET − �

σ
=

resNET

(1 − refNET2)∕(N − 1)
.

Fig. 2  The proposed framework for obtaining the individual meta-
bolic network from a patient scan. Reference network refNET is first 
constructed across all N controls, with each edge being the Pearson 
correlation coefficient between uptake values for each regional pair. 
Then, a new perturbed network ptbNET is constructed similarly by 

adding the patient to controls. The Z-score of the difference between 
the ptbNET and refNET can therefore be calculated as described by 
Eq. 1. The connectivity map can be plotted from the Z-score map for 
visualization
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Here, m represents the region index, M is the set, and M 
denotes the number of regions. ZCCmi is the correlation coef-
ficient of the Z-score map between region m and its neighbor 
i. The total number of neighboring nodes equals M − 1.

Data and statistical analysis

First, the overall consistency in the healthy control group 
was evaluated by measuring the within-group similarity, 
reproducibility, and the effect of the number of subjects. 
Next, the heterogeneity of the individual network in the 
patient group with lung cancer was determined. Subse-
quently, the measure from the individual-level network 
ZCC was compared to the one from the group-level analysis. 
Finally, the ability of the individual network to reveal the 
single-organ abnormality was evaluated by measuring the 
correlation between the SUV and the network strength STR 
defined in Eq. 2. The details regarding the implementation 
are provided below.

(1) Control group reproducibility

First, the individual network analysis was performed 
for each control subject. The similarity among the control 
group subjects was measured by averaging the correlation 
coefficients of the Z-scores between any pair of networks. 
Next, a resampling procedure was performed to test the 
reproducibility of subject selection. The concept was that 
the refNETs associated with two randomly selected groups 

(2)STRm =

∑
i∈M,i≠m �ZCCmi�

M− 1
.

of control subjects should not present a statistical differ-
ence. Accordingly, 24 samples were selected randomly from 
60 normal subjects as the control group, and this step was 
repeated 20 times. The refNET was then constructed from 
each randomly sampled group using the proposed frame-
work. The reproducibility among these refNETs was quanti-
fied by averaging the correlation coefficients of the Z-scores 
between any pair of networks. Finally, the sensitivity analy-
sis of the sample size was performed in the control group. 
The objective was to investigate the minimum number of 
subjects required to construct a control group. Accordingly, 
10, 15, 18, 20, 28, 32, and 40 samples (20 times each) were 
selected from the 60 available normal subjects as the control 
group. The new associated resNETs were computed for each 
patient in the lung cancer group and then compared with the 
resNETs generated from the 24 subjects.

(2) Lung cancer group heterogeneity

Individual-level network analysis was performed for each 
lung cancer patient. The strength of each network was then 
compared to that of the reference network. The similarity 
among these patient networks was calculated by measur-
ing the mean in-between subjects Pearson correlation coef-
ficients for the pairwise Z-scores across all 153 edges.

(3) Group-level vs. individual-level network analysis

The proposed individual-level analysis was compared 
with the conventional group-level analysis, as shown in 
Fig. 3. The group-level metabolic networks were constructed 
for both patient and healthy control groups. Each network 

Fig. 3  Illustration of the imple-
mentation of the group-level 
and individual-level analyses, 
and their comparison for the 
patient group with lung cancer
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was constructed by calculating the Pearson correlation for 
the regional pairs for all subjects in that group. The normal-
ized difference between the two group-level networks was 
considered the group-level difference network, defined as 
follows:

Here, the edge index is denoted by i, the patient’s group-
level network is patNET, and the healthy control’s group-
level network is refNET. Next, the mean of the Z-score at 
each edge across all patient resNETs generated using the 
proposed framework was calculated as the mean residual 
difference among the patients, as follows:

Here, j denotes the patient index and Np is the total num-
ber of patients. The Pearson correlation coefficient between 
Diff individual,i and group-level difference network Diffgroup,i 
could then be computed.

(4) Individual network vs. single-organ analysis

The individual connectivity networks for one subject 
discharged after recovering from the Covid-19 disease and 
another subject with gastrointestinal bleeding were con-
structed. The change in the SUV was quantified as follows:

Here, SUVm(subject) denotes the uptake of the m-th organ 
for the subject to be investigated and SUVm(control) denotes 
the average uptake of that organ in the control group. ΔSUV 
was then compared against the network strength at the organ, 
defined in Eq. 2, to reveal the capability of the proposed 
method to detect the abnormality at the organ level.

Results

Control group homogeneity

Similarity within a group was measured by averaging the 
correlation coefficients of the Z-scores between any pair 
of networks. The similarity coefficient for the controls 
was determined to be 0.921 ± 0.133, which indicated a low 
inter-subject variability. The resampling procedure results 
also revealed a high level of reproducibility, and the aver-
age correlation coefficient between any pair of networks 
was 0.884 ± 0.141, which indicated the robustness of the 
method against the choice of control subjects. Further, the 

(3)Diffgroup,i =
refNETi − patNETi

refNETi + patNETi

, i = 1… 153.

(4)Diff individual,i =

∑
j ZCCi,j

Np

, j ∈ Np.

(5)ΔSUVm = SUVm(subject) − SUVm(control).

sensitivity analysis of the sample size in the control group 
was performed. The average similarity relative to 24 samples 
was determined to be 0.52, 0.58, 0.79, 0.848, 0.87, 0.878, 
and 0.871 for the sample sizes 10, 15, 18, 20, 28, 32, and 
40, respectively, suggesting the robustness of the proposed 
network against the control sample size when the subject 
number was greater than 20.

Lung cancer group heterogeneity

The individual connectivity network for each lung cancer 
patient was investigated. An example of the individual-level 
network analysis is presented in Fig. 4. The strength of each 
patient’s individual network was significantly different from 
that of the reference network (P < 0.01; Bonferroni corrected 
for 153 edges). However, the similarity among the patient 
networks was low, with the mean in-between Pearson cor-
relation coefficient among the Z-scores maps determined to 
be 0.196 ± 0.182. Despite the evident organ-wide heteroge-
neity across individual patients, the connections involving 
the lung exhibited higher abnormality compared to the other 
connections (Fig. 4). In order to further demonstrate the dif-
ferences in the alteration degrees between the disease group 
and the control group, the summed strength at all nodes was 
computed for each individual network (Fig. 5). The average 
summed strength in the disease group was determined to 
be 6.3, while that in the control group was 2.1. This result 
indicated that the overall abnormalities or strengths of the 
altered edges might be more capable of separating the sub-
jects with potential disease from the healthy ones.

Individual‑level vs. group‑level network analysis

In order to understand the relationship between the proposed 
individual-level analysis and the conventional group-level 
analysis, group-level networks were constructed for both the 
control group and patient group. The group-level difference 
network Diffgroup and the mean individual-level network 
Diff individual were defined as illustrated in Fig. 3. The Pearson 
correlation coefficient between the mean individual-level 
difference network Diff individual and the group-level differ-
ence network Diffgroup was 0.78, which suggested that each 
subject contributed to the group-level difference. However, 
high heterogeneity existed among the subjects, as demon-
strated by the results for the lung cancer group.

Individual‑level network vs. single‑organ analysis

In the last analysis, individual connectivity networks were 
constructed for one subject discharged after recovering 
from the Covid-19 disease and one subject with gastroin-
testinal bleeding. As visible in Fig. 6, there was abnormal 
metabolic connectivity between the organs. In the case of 
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Fig. 4  The connectivity plots 
for (A) and (B) patients with 
lung cancer and (C) a healthy 
control subject. The darker line 
indicates stronger edge connec-
tions between the nodes. The 
intensity of the green color indi-
cates the strength at a particular 
node (dark green is stronger). 
Both connection degree and 
node strength exhibited differ-
ences between the patient and 
the control

Fig. 5  Summary boxplots of (A) the individual connectivity strength 
at lung for the control and disease groups and (B) the corresponding 
SUVs at lung (50–60  min). The connectivity strength of the indi-

vidual network appears to be more capable of separating the control 
group from the disease group
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the subject discharged after recovering from the Covid-
19 disease, the lung, as an abnormal hub, exhibited the 
strongest connection strength, particularly with the brain 
(Fig. 6A). This may suggest this individual has triggered 
massive inflammatory response in multiple organs even 
after weeks of discharge. In the case of the subject with 
gastrointestinal bleeding, the blood, and the spleen func-
tioned abnormally and had connections to the low uptake 
in the spine (Fig. 6B). An underlying abnormal condi-
tion related to hematopoiesis may be present for this indi-
vidual, as it is known that both bone marrow and spleen 
contribute to this process.

Furthermore, node strength was significantly correlated 
(R2 = 0.946 and R2 = 0.797; P < 0.05) to |ΔSUV| at the 
organs (Fig. 7), which reflected the level of deviation of the 
SUV from the average value in the control group. This result 
indicated that an individual network could reveal the organ-
level metabolic abnormality at a level comparable to the 
conventional uptake measures.

Discussion

The present study proposed a framework that applies net-
work principles for the analysis of whole-body PET data, 
thereby serving as a platform for identifying the metabolic 
dysfunctions at the system level, which is not possible to 
achieve using the existing analysis methods. It only requires 
whole-body SUV images that are either available from a 
multi-bed protocol on a scanner with regular axial FOV, or 
from a single-bed protocol on a long axial FOV scanner. The 
proposed framework is, in a way, complementary to the con-
ventional methods from the network perspective. Examples 
of the application of this proposed framework include inves-
tigating the inter-functional crosstalk between the brain and 
other damaged organs in various diseases, such as visceral 
pain, or assessing the systemic metabolic change after chem-
otherapy or immune therapy. The conventional assessments, 
on the other hand, would focus solely on the focal response 
in such cases. Moreover, the proposed framework enables 

Fig. 6  Metabolic connectivity plots for two abnormal subjects and a 
control. The images in the middle are the coronal SUV slices, and the 
plots on the two sides of these images are the network connections 
between the organs. In comparison to the control network, the net-

works of the abnormal subjects demonstrated denser connectivity and 
higher strength at the relevant nodes (corresponding to the abnormal 
uptake in the SUV image labelled with red arrows)
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performing an individual-level analysis for identifying the 
potential systemic metabolic abnormality, which is not pos-
sible using the conventional group-level approaches due to 
the large heterogeneity across the disease group. This het-
erogeneity could be due to the differential disease expression 
or systemic functional alteration.

It is noteworthy that the proposed method does not pro-
vide a real metabolic connectivity network for a scan. What 
the network provided is a perturbation network against the 
reference, which reflects the variation between the normal 
samples and disease samples at the system level. Although a 
control group is essential for the analysis, the required num-
ber of healthy subject scans is not excessively large. Another 
potential approach to derive the metabolic network at the 
subject level would be utilizing dynamic PET. For example, 
the time–activity curves of sub-brain regions were success-
fully correlated at the subject level [19, 26, 27]. However, 
the limitation of this approach is that regional kinetics carry 
information of non-specific tracer binding and delivery, 
which could hide the tracer-specific interaction with its tar-
gets [28, 29].

The present study is a preliminary step that has intro-
duced the concept of metabolic networks into the field of 
whole-body PET imaging. Therefore, certain limitations 
remain to be addressed. First, although it was confirmed 
that all the included scans were without visual artifacts, 
motion correction could nonetheless be required prior to 
network construction, although this requirement is often 
ignored in whole-body PET imaging [30]. Second, the 
delineation of the region sampled at each organ was per-
formed manually, except for the brain. Ideally, the deline-
ation should be performed automatically on the CT image, 
using a pre-trained neural network if possible [31]. Third, 
the data analysis to support the clinical diagnosis could be 
challenging because of the potential multiple pathologies 

present in a single patient. Similarly, low variability in the 
control group is a requirement when using the proposed 
framework. However, the physiological uptake difference 
is known to exist in healthy subjects. In addition, certain 
diseases or metabolic uptake abnormalities may remain 
undetected and are difficult to perceive in advance. This 
concern could be resolved by selecting a large number of 
control samples with distinct expression profiles, as this 
would increase the discriminatory power of the proposed 
framework [25]. Or at least, the distinct expression of the 
target disease in the controls has to be much less compared 
to that in the disease population, such as patients with lung 
cancer in the present study. Fourth, the connectivity pat-
tern might be age dependent or sex dependent. Therefore, 
individual networks constructed for different age groups 
could provide further insight. Finally, the sensitivity of 
the individual network analysis to the scan protocol was 
not validated. Although the scan duration of all the scans 
included in the present study was the same,  other scan/
reconstruction parameters could vary across different cent-
ers and vendors. For example, conventional scanners per-
form the whole-body scan in multiple bed positions, which 
cannot guarantee all organs scanned at the same time win-
dow. Total-body scanners can relieve this problem as it 
can capture the uptakes of all organs at same time points.

Although in the present study, the individual metabolic 
network was constructed using 18F-FDG SUV images, this 
approach is adaptable to the application of other functional 
parameters, such as net metabolic rate, blood flow, and 
phosphorylation rate, when a dynamic 18F-FDG scan is 
available. Similarly, it may also be applied to non 18F-FDG 
tracers, such as those that visualize the neurotransmitters 
[32, 33], to reveal the brain–organ interaction dysfunc-
tion at the subject level. Nonetheless, the biological inter-
pretation of the inter-regional connections, the dedicated 

Fig. 7  Correlation plots between the |ΔSUV| and the network strength presented in Fig. 6A,B at all sampled regions

3002 European Journal of Nuclear Medicine and Molecular Imaging  (2022) 49:2994–3004

1 3



applications using various radioligands, and the potential 
benefits of using which in personalized medicine warrant 
further research.

Conclusion

The present study proposes a framework capable of con-
structing an individual metabolic abnormality network using 
a subject’s whole-body SUV PET image. The derivation 
of the scan from the normal group was achieved at both 
system and organ levels. Furthermore, using the proposed 
framework, the individual molecular connectivity of glu-
cose metabolism was characterized. The proposed frame-
work would serve in complementation to the conventional 
methods from the network perspective, thereby being poten-
tially useful for systemic and other diseases. The complete 
potential of the proposed framework and the benefits of its 
application to specific clinical fields remain to be investi-
gated in future studies.

Funding This work is supported by the Scientific Instrument Innova-
tion Team of the Chinese Academy of Sciences (GJJSTD20180002), 
the Key Laboratory for Magnetic Resonance and Multimodality Imag-
ing of Guangdong Province (2020B1212060051).

Declarations 

Ethics approval This study was performed in line with the principles 
of the Declaration of Helsinki. All scans were approved by the Ethics 
Committee of Henan Provincial People’s Hospital and the People’s 
Hospital of Zhengzhou (IRB2020123).

Consent to participate Informed consent was obtained from all indi-
vidual participants in the study.

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Lo CC, Chiang AS. Toward whole-body connectomics. J Neuro-
sci. 2016;36(45):11375–83.

 2. Thiele I, Sahoo S, Heinken A, Hertel J, Heirendt L, Aurich 
MK, et al. Personalized whole-body models integrate metabo-
lism, physiology, and the gut microbiome. Mol Syst Biol. 
2020;16(5):1–24.

 3. Barajas-Martínez A, Easton JF, Rivera AL, Martínez-Tapia R, de 
la Cruz L, Robles-Cabrera A, et al. Metabolic physiological net-
works: the impact of age. Front Physiol. 2020;11(October):1–17.

 4. Cui X, Geffers L, Yan GEJ. A computational approach to esti-
mate interorgan metabolic transport in a mammal. PLoS One. 
2014;9(6):e100963.

 5. Bashan A, Bartsch RP, Kantelhardt JW, Havlin S, Ivanov PC. 
Network physiology reveals relations between network topology 
and physiological function. Nat Commun. 2012;3(702):1.

 6. Bartsch RP, Liu KKL, Bashan A, Ivanov PC. Network physi-
ology: how organ systems dynamically interact. PLoS One. 
2015;10(11):1–36. Available from: https:// doi. org/ 10. 1371/ journ 
al. pone. 01421 43.

 7. Grosch M, Lindner M, Bartenstein P, Brandt T, Dieterich M, Zie-
gler S, et al. Dynamic whole-brain metabolic connectivity during 
vestibular compensation in the rat. Neuroimage. 2021;226(August 
2020):117588. Available from:https:// doi. org/ 10. 1016/j. neuro 
image. 2020. 117588.

 8. Iturria-Medina Y, Canales-Rodríguez EJ, Melie-García L, Val-
dés-Hernández PA, Martínez-Montes E, Alemán-Gómez Y, et al. 
Characterizing brain anatomical connections using diffusion 
weighted MRI and graph theory. Neuroimage. 2007;36(3):645–60.

 9. Zalesky A, Fornito A. A DTI-derived measure of cortico-cor-
tical connectivity. IEEE Transactions on Medical Imaging. 
2009;28(7):1023–36.

 10. Greicius MD, Supekar K, Menon V, Dougherty RF. Resting-
state functional connectivity reflects structural connectivity in 
the default mode network. Cereb Cortex. 2009;19(1):72–8.

 11. Galvin JE, Price JL, Yan Z, Morris JC, Sheline YI. Resting bold 
fMRI differentiates dementia with Lewy bodies vs Alzheimer dis-
ease. Neurology. 2011;76(21):1797 LP – 1803. Available from: 
http://n. neuro logy. org/ conte nt/ 76/ 21/ 1797. abstr act

 12. Kenny ER, Blamire AM, Firbank MJ, O’Brien JT. Functional 
connectivity in cortical regions in dementia with Lewy bodies 
and Alzheimer’s disease. Brain. 2012;135(2):569–81.

 13. Huang S, Li J, Sun L, Ye J, Fleisher A, Wu T, et al. Learning brain 
connectivity of Alzheimer’s disease by sparse inverse covariance 
estimation. Neuroimage. 2010;50(3):935–49. Available from: 
https:// doi. org/ 10. 1016/j. neuro image. 2009. 12. 120.

 14. Grosch M, Beyer L, Lindner M, Kaiser L, Ahmadi SA, Stockbauer 
A, et al. Metabolic connectivity-based single subject classifica-
tion by multi-regional linear approximation in the rat. Neuroim-
age. 2021;235(April):118007. Available from: https:// doi. org/ 10. 
1016/j. neuro image. 2021. 118007.

 15. Wang M, Jiang J, Yan Z, Alberts I, Ge J, Zhang H, et al. Individual 
brain metabolic connectome indicator based on Kullback-Leibler 
Divergence Similarity Estimation predicts progression from mild 
cognitive impairment to Alzheimer’s dementia. Eur J Nucl Med 
Mol Imaging. 2020;47(12):2753–64.

 16. Huang SY, Hsu JL, Lin KJ, Hsiao IT. A novel individual meta-
bolic brain network for 18-FDG PET imaging. Front Neurosci. 
2020;14(May):1–11.

 17. Horsager J, Andersen KB, Knudsen K, Skjærbæk C, Fedor-
ova TD, Okkels N, et al. Brain-first versus body-first Parkin-
son’s disease: a multimodal imaging case-control study. Brain. 
2020;143(10):3077–88.

 18. Dias AH, Hansen AK, Munk OL, Gormsen LC. Normal values 
for 18F-FDG uptake in organs and tissues measured by dynamic 
whole body multiparametric FDG PET in 126 patients. EJN-
MMI Res. 2022;12(15). Available from: https:// doi. org/ 10. 1186/ 
s13550- 022- 00884-0.

3003European Journal of Nuclear Medicine and Molecular Imaging  (2022) 49:2994–3004

1 3

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1371/journal.pone.0142143.
https://doi.org/10.1371/journal.pone.0142143.
https://doi.org/10.1016/j.neuroimage.2020.117588.
https://doi.org/10.1016/j.neuroimage.2020.117588.
http://n.neurology.org/content/76/21/1797.abstract
https://doi.org/10.1016/j.neuroimage.2009.12.120.
https://doi.org/10.1016/j.neuroimage.2021.118007.
https://doi.org/10.1016/j.neuroimage.2021.118007.
https://doi.org/10.1186/s13550-022-00884-0.
https://doi.org/10.1186/s13550-022-00884-0.


 19. Suchacki KJ, Alcaide-Corral CJ, Nimale S, Macaskill MG, Stim-
son RH, Farquharson C, et al. A systems-level analysis of total-
body PET data reveals complex skeletal metabolism networks 
in vivo. Front Med. 2021;8(9):1–7.

 20. Shiyam SL, Badawi RD, Spencer BA, Li E, Cherry SR, Abdel-
hafez YG, et al. Enhance-PET: exploring the human functional 
connectome using total-body [18F] FDG-PET, European Journal 
of Nuclear Medicine and Molecular Imaging. Eur J Nucl Med Mol 
Imaging. 2021;48(1):S201.

 21. Heiskanen MA, Honkala SM, Hentilä J, Ojala R, Lautamäki R, 
Koskensalo K, et al. Systemic cross-talk between brain, gut, and 
peripheral tissues in glucose homeostasis: effects of exercise train-
ing (CROSSYS). Exercise training intervention in monozygotic 
twins discordant for body weight. BMC Sports Sci Med Rehabil. 
2021;13(1):1–19.

 22. Rolls ET, Joliot M, Tzourio-Mazoyer N. Implementation of a new 
parcellation of the orbitofrontal cortex in the automated anatomi-
cal labeling atlas. Neuroimage. 2015;122:1–5. Available from: 
https:// doi. org/ 10. 1016/j. neuro image. 2015. 07. 075.

 23. Rubinov M, Sporns O. Complex network measures of brain con-
nectivity: uses and interpretations. Neuroimage. 2010;52(3):1059–
69. Available from: https:// doi. org/ 10. 1016/j. neuro image. 2009. 10. 
003.

 24. Liu Z, Palaniyappan L, Wu X, Zhang K, Du J, Zhao Q, et al. 
Resolving heterogeneity in schizophrenia through a novel systems 
approach to brain structure: individualized structural covariance 
network analysis. Mol Psychiatry. 2021;26:7719–31.

 25. Marquand AF, Kia SM, Zabihi M, Wolfers T, Buitelaar JK, Beck-
mann CF. Conceptualizing mental disorders as deviations from 
normative functioning. Mol Psychiatry. 2019;24(10):1415–24. 
Available from: https:// doi. org/ 10. 1038/ s41380- 019- 0441-1.

 26. Passow S, Specht K, Adamsen TC, Biermann M, Brekke N, 
Craven AR, et al. Default-mode network functional connectiv-
ity is closely related to metabolic activity. Hum Brain Mapp. 
2015;36(6):2027–38.

 27. Tomasi DG, Shokri-Kojori E, Wiers CE, Kim SW, Demiral ŞB, 
Cabrera EA, et al. Dynamic brain glucose metabolism identifies 
anti-correlated cortical-cerebellar networks at rest. J Cereb Blood 
Flow Metab. 2017;37(12):3659–70.

 28. Sala A, Perani D. Brain molecular connectivity in neurodegenera-
tive diseases: recent advances and new perspectives using positron 
emission tomography. Front Neurosci. 2019;13(JUN):1–15.

 29. Veronese M, Moro L, Arcolin M, Dipasquale O, Rizzo G, Expert 
P, et al. Covariance statistics and network analysis of brain PET 
imaging studies. Sci Rep. 2019;9(1):1–15.

 30. Meikle SR, Sossi V, Roncali E, Cherry SR, Banati R, Mankoff D, 
et al. Quantitative PET in the 2020s: a roadmap. Phys Med Biol. 
2021;66(6):06RM01. Available from: https:// doi. org/ 10. 1088/ 
1361- 6560/ abd4f7.

 31. Hu P, Wu F, Peng J, Bao Y, Chen F, Kong D. Automatic abdomi-
nal multi-organ segmentation using deep convolutional neural 
network and time-implicit level sets. Int J Comput Assist Radiol 
Surg. 2017;12(3):399–411.

 32. Tuominen L, Nummenmaa L, Keltikangas-Järvinen L, Raitakari 
O, Hietala J. Mapping neurotransmitter networks with PET: an 
example on serotonin and opioid systems. Hum Brain Mapp. 
2014;35(5):1875–84.

 33. Pereira JB, Strandberg TO, Palmqvist S, Volpe G, Van Westen D, 
Westman E, et al. Amyloid network topology characterizes the 
progression of Alzheimer’s disease during the predementia stages. 
Cereb Cortex. 2018;28(1):340–9.

Publisher's note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

3004 European Journal of Nuclear Medicine and Molecular Imaging  (2022) 49:2994–3004

1 3

https://doi.org/10.1016/j.neuroimage.2015.07.075.
https://doi.org/10.1016/j.neuroimage.2009.10.003.
https://doi.org/10.1016/j.neuroimage.2009.10.003.
https://doi.org/10.1038/s41380-019-0441-1.
https://doi.org/10.1088/1361-6560/abd4f7.
https://doi.org/10.1088/1361-6560/abd4f7.

	Identifying the individual metabolic abnormities from a systemic perspective using whole-body PET imaging
	Abstract
	Introduction 
	Methods 
	Results 
	Conclusion 

	Introduction
	Materials and methods
	Subject demographics
	Data acquisition and processing
	Network construction
	Data and statistical analysis

	Results
	Control group homogeneity
	Lung cancer group heterogeneity
	Individual-level vs. group-level network analysis
	Individual-level network vs. single-organ analysis

	Discussion
	Conclusion
	References


