
Long-term complications are the most important
cause of mortality of diabetic patiens in western
countries and diabetic nephropathy has emerged as
a major determinant of end-stage renal failure [1].
Moreover, patients with diabetes mellitus have a
high probability of developing acute cardiovascular
disease, in particular myocardial infarction and cere-
brovascular stroke which are the cause of death in
nearly 80% of this population [2]. Although data
from the Diabetes Control and Complications Trial
establish that hyperglycaemia has a central role in di-
abetic complications, strict metabolic control can be
difficult to achieve. The search for new and ancillary
approaches to diabetic complications is therefore
warranted and understanding the distal pathway of
glucose toxicity assumes clinical and therapeutical
significance. Thus, evidence has been provided [3, 4]
that the alterations of the glycosaminoglycan
(GAG) structure and metabolism may be of major
importance for the development of diabetic compli-
cations. The aim of this article is to stress the hypoth-
esis that GAGs might play an important role in the
pathogenesis of late diabetic complications and that
their treatment may be useful in several of these com-
plications.

GAG structure and function

GAGs are highly glycosylated and sulphated glyco-
proteins, consisting of dimeric repeated units con-
taining an uronic acid (iduronic or glucuronic acid)

and an aminosugar (glucosamine or galattosamine)
[5]. These molecules are widely distributed in the
body and prominent in extracellular matrices [5].

Three major classes of GAGs have been de-
scribed: a predominant large chondroitin sulphate, a
small dermatan sulphate and a polydisperse heparan
sulphate (HS) [5]. GAGs are vital in maintaining the
structural integrity of the tissue and studies have
shown that basement membranes contain HS in the
form of a proteoglycan unique to that tissue [5]. HS
forms anionic sites in this matrix and are thought to
restrict the passage of proteins through the basement
membrane [5].

GAG metabolism and diabetes mellitus

In diabetic patients, the increased macromolecular
permeability within the glomeruli that precedes the
onset of established renal lesions and the increased
vascular permeability to albumin seem to be related
to structural alterations in the macromolecular path-
way, i. e. the extracellular matrix, between the endo-
thelial cells [4]. The nature of this alteration may be
related to the loss of negatively charged molecules
of extracellular matrix and of the endothelium,
among which HS is highly represented. A number of
reports indicate that HS metabolism is impaired in di-
abetes and this is responsible for the extracellular ma-
trix negative charge loss [4]. HS is a strongly nega-
tively charged molecule that is structurally similar to
heparin but its base polymer has a lower degree of
processing (sulphation, epimerization) (Fig.1). The
HS chain imparts a negative charge to the basement
membrane and determines the molecular charge
permselectivity of the glomerular basement mem-
brane [4]. The reduction in HS negative charges may
depend on either a decreased sulphation of the gly-
cosaminoglycan molecule or an absolute reduction
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in the heparan sulphate-proteoglycan (HS-PG). It
has been suggested that the first HS-PG change in di-
abetes might be an undersulphation of HS, followed
by an absolute, or most likely a relative decrease in
HS [6].

Abnormal GAGs and diabetic nephropathy

The altered GAG metabolism in the diabetic kidney,
and the abnormal GAG and extracellular matrix
composition of the glomerular basement membrane
may be important determinants of diabetic nephrop-
athy, glomerulosclerosis, and renal failure due to the
abnormal glomerular permselectivity to proteins and
albuminuria. Data support the hypothesis that in-
creased glomerular trafficking of proteins has detri-
mental effects on nephropathies, and in many prima-
ry glomerulopathies, proteinuria is certainly a risk
factor for the development of glomerulosclerosis and
renal failure [7]. However, the altered GAG or PG
composition or both may be an important factor in
the determination and the progression of diabetic
nephropathy not only because of the abnormal glo-
merular basement membrane. The qualitative and
quantitative changes in the PG composition of the re-
nal extracellular matrix could also deeply affect the
growth and synthetic behaviour of renal endothelial,
mesangial, and glomerular and tubular epithelial
cells, thus inducing glomerulosclerosis; indeed, the
cell/extracellular matrix interaction plays an impor-
tant role in regulating the adhesion, migration and
proliferation of these cells [8]. Moreover, extracellu-
lar matrix and cell-associated PGs may modulate the
activity of growth factors. In particular, it was sug-
gested that the cell surface and extracellular matrix
HS-PG may act together to regulate the bioavailabil-
ity of otherwise diffusible effector molecules to their
signal transducting receptor [8]. Note that a huge
number of growth factors and cytokines are associat-
ed with HS-PGs and many are, or may be, involved

in the pathogenesis of diabetic nephropathy [9]. Fi-
nally, it has recently been suggested that oxidative
stress is involved in the pathogenesis of diabetic com-
plications [10]. Further mesangial cells subjected to
oxidative stress have been shown to selectively re-
duce HS synthesis [11].

GAG treatment of diabetic nephropathy

The treatment of diabetic nephropathy with GAGs
was originally proposed on the basis of the some-
what simple idea that restoring the lacking anionic
charges and GAGs to the diabetic kidney could
cure the albuminuria and putatively return the above
described cell functional anomalies to normal [12]
(Fig.2). The observation of pathophysiological simi-
larities between diabetic nephropathy and the so-
called ªremnant kidneyº, i. e. reduced functioning
tissue after a renal lesion [13], was also considered.
In the classical model reproducing this kind of le-
sion, the 5/6 subtotal nephrectomized rat, heparin
and derived drugs were shown to be effective in
slowing down the progression to uraemia [14]. In
view of these considerations, the effect of heparin
and GAGs on diabetic nephropathy was studied in
the streptozotocin diabetic model. This approach re-
duced glomerular basement membrane thickening
[12] and anionic charge loss [12], as well as mesangial
area expansion [15], and prevented the onset of albu-
minuria [12, 16] and the disorder in charge permse-
lectivity [16]. Marshall et al. [15], however, were not
able to confirm a reduction of albumin excretion in
female streptozotocin diabetic Wistar rats on a twice
daily dose of 200 units heparin over a period of
6 months. They did, though, report that basement
membrane thickness, mesangial volume fraction and
absolute mesangial volume were lower in heparin-
treated diabetic animals compared with untreated
diabetic animals [15]. Recently these discrepancies
have been discussed extensively [17]. The difference
in the results may be mainly due to different quali-
ties and quantities of drugs in the different protocols
[17].

Heparin and related drugs have no effect on the
metabolic control of diabetes. Since heparin and
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GAGs have been demonstrated to modify the synthe-
sis of PGs and other matrix proteins in vascular
smooth muscle and endothelial cells by influencing
extracellular matrix composition [18, 19] they could
affect glomerular cell production of matrix/glomeru-
lar basement membrane constituents, and correct
the diabetic extracellular matrix abnormalities re-
sponsible for glomerular basement membrane thick-
ening and glomerulosclerosis. Indeed, in the strepto-
zotocin model, heparin improved sulphate glomeru-
lar uptake, a metabolic marker of the endogenous
GAG metabolism which is depressed in diabetes
[16] and reduced collagen gene over-expression and
the deposition of its protein [16]. In the streptozoto-
cin model, heparin down-regulates collagen over-ex-
pression by interfering with the transforming growth
factor (TGF)-b1 autocrine/paracrine loop, which is
known to be activated in the diabetic kidney and is
thought to play a very important role in the patho-
genesis of this complication [9]. Low molecular
weight dermatan sulphate, the GAG derivative that
prevents the onset of diabetic renal alterations in the
streptozotocin model [12], also inhibits protein-ki-

nase-C-dependent activation of the TGF-b1 gene in
mesangial cells in vitro [20].

In the light of these findings, studies were con-
ducted in diabetic patients. Recent reports described
favourable results on proteinuria in diabetic ne-
phropathy following treatment with different
GAGs. Treatment with a low molecular weight hep-
arin reduced albuminuria in both micro- and macro-
albuminuric Type I diabetic patients [21±22]. Danap-
aroid, a mixture of sulphated GAGs composed
mainly of HS, also lowered proteinuria in a small
double-blind, crossover study in Type I diabetic pati-
ents with albumin excretion rates higher than
300 mg/24 h [23]. A formulation composed of the
two GAGs that were active in preventing diabetic
nephropathy in the experimental model [12] was
also tested in patients. Indeed, sulodexide, a GAG
formulation composed of 80% fast-moving heparin
and 20% dermatan sulphate, was reported to reduce
albuminuria in Type I and Type II diabetic patients
[24, 25], and this effect lasted several weeks after its
withdrawal [26]. This decrease in albuminuria was
also documented in a cross-over study [27] and in
patients to whom sulodexide was given orally [24,
27].

GAGs, microalbuminuria, diabetic nephropathy and
cardiovascular risk

As mentioned above, atherosclerosis is the main
cause of death in diabetic patients and cardiovascular
complications are frequently associated with diabetic
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nephropathy. It is noteable that the urinary excretion
of albumin is significantly correlated with the inci-
dence of mortality for cardiovascular events, in both
Type I and Type II diabetic patients [3].

According to the ªSteno Hypothesisº, the in-
creased risk of cardiovascular disease associated
with nephropathy may be explained on the basis that
HS metabolism in diabetes mellitus is not only al-
tered within the glomerulus, but also within the capil-
lary walls and the intima of large vessels [28]. Studies
on muscle have demonstrated that the HS content of
the basement membrane in muscle capillaries is re-
duced in diabetic patients with nephropathy and,
noteably, is inversely correlated to the degree of albu-
minuria [29]. HS is also reduced in the intima of large
vessels [30].

The altered HS-PG metabolism in the vessel inti-
ma and luminal endothelial membrane may be a
consequence of endothelial dysfunction in microal-
buminuric diabetic patients. Reduced HS synthesis
by endothelial cells might cause thrombophilia in di-
abetes mellitus because, due to its negative charge,
HS regulates the development of pericellular throm-
botic phenomena at the level of the endothelial
membrane, by interacting with antithrombin III
[31]. This hypothesis is supported by studies which
found an increased ratio between fibrinogen and an-
tithrombin III, due to a decrease in antithrombin
III, in the aorta of diabetic rats [32] and the observa-
tion of increased levels of markers of thrombin acti-
vation in diabetic patients [33]. As recently suggest-
ed, this last condition may produce an increase in fi-
brinogen [34], a well recognized cardiovascular risk
factor also in diabetes [35]. The fall in endothelial
cell HS contents might also influence local fibrinoly-
sis. Endothelial cells synthesize specific HS and
chondroitin sulphate to which tissue plasminogen
activator (t-PA) can bind [36]. This t-PA binding ca-
pacity might be important in forming a t-PA storage
pool, from which t-PA is released and made locally
available under certain circumstances [36]. HS-
bound t-PA released from endothelial cells would
provide an additional mechanism for locally in-
creased fibrinolytic activity and render endothelial
cells resistant to fibrin deposition. Thus, the de-
rangement in this fibrinolytic mechanism could lead
to increased fibrin deposition on the vascular wall
in diabetes.

Perspectives

Although only small studies have been conducted,
the favourable effects of GAG treatment on albu-
minuria in diabetic nephropathy are encouraging.
Clearly, dose-finding and long-term studies are need-
ed to demonstrate that these drugs are capable of cur-
ing human diabetic nephropathy and not simply albu-

minuria. Interest, however, in GAGs is increasing,
since these molecules have shown a beneficial effect
on diabetic retinopathy [37]. Moreover, these drugs
might retard the natural development of diabetic
macroangiopathy and thrombosis. Indeed, the exis-
tence of common features (i. e. abnormal permeabili-
ty to albumin) and pathogenetic mechanisms (i. e. al-
tered HS metabolism, extracellular matrix deposi-
tion, overactivity of growth factors loops) between di-
abetic nephropathy and diabetic macroangiopathy
and the ability of GAGs to act favourably on specific
disorders of the vessel wall and endothelium (i. e.
those disorders which lead to thrombophilia) sug-
gests the possibility that these drugs might also be ef-
fective in preventing or curing or both not only dia-
betic nephropathy, but also diabetic macroangiopa-
thy.

An increasing number of studies are showing that
the administration of GAGs lowers fibrinogen levels,
the relevance of which as a cardiovascular risk factor
in diabetes has already been stressed [35]. In particu-
lar, the fibrinogen reducing activity of sulodexide
was demonstrated in hyperlipidaemic subjects [38]
and in pilot studies in diabetic patients [25, 39].
GAGs are also effective in stimulating fibrinolysis,
and sulodexide was shown to improve fibrinolysis in
diabetic patients [40]. Finally, heparin-like GAGs
may modulate the procoagulant properties of endo-
thelial cells through the increase of HS at the endo-
thelial membrane level [19]. That these GAG activi-
ties may have therapeutic relevance in cardiovascular
disease is supported by the reduction in total mortali-
ty, reinfarction rate and mural thrombus formation
observed in patients treated with sulodexide after
acute myocardial infarction [41].

Further studies of the structure-function relation-
ship of heparin and GAGs and their optimal dosage
may provide a unique opportunity to select new de-
rivatives with specific effects on diabetic nephropathy
and macroangiopathy, possibly and most importantly
without anticoagulation. Such a prospect might be
possible because some of the previously reported
GAG effects depend on their non-sulphated molecu-
lar back-bone or are reached at non-anticoagulant
dosages or both. Studies on the bioavailability of
orally dispensed GAGs would also be very impor-
tant. It has been demonstrated that after oral admin-
istration heparin and dermatan sulphate are ab-
sorbed [42±44] and, most importantly, maintain their
effects not only on coagulation, but on albuminuria,
as observed by Solini et al. [27] in diabetic patients
treated with sulodexide.
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