Skip to main content
Log in

Factorization and N3LLp+NNLO predictions for the Higgs cross section with a jet veto

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We have recently derived a factorization formula for the Higgs-boson production cross section in the presence of a jet veto, which allows for a systematic resummation of large Sudakov logarithms of the form \( \alpha_s^n{\ln^m}\left( {{{{p_T^{\mathrm{veto}}}} \left/ {{{m_{\mathrm{H}}}}} \right.}} \right) \), along with the large virtual corrections known to affect also the total cross section. Here we determine the ingredients entering this formula at two-loop accuracy. Specifically, we compute the dependence on the jet-radius parameter R, which is encoded in the two-loop coefficient of the collinear anomaly, by means of a direct, fully analytic calculation in the framework of soft-collinear effective theory. We confirm the result obtained by Banfi et al. from a related calculation in QCD, and demonstrate that factorization-breaking, soft-collinear mixing effects do not arise at leading power in \( {{{p_T^{\mathrm{veto}}}} \left/ {{{m_{\mathrm{H}}}}} \right.} \), even for \( R=\mathcal{O}(1) \). In addition, we extract the two-loop collinear beam functions numerically. We present detailed numerical predictions for the jet-veto cross section with partial next-to-next-to-next-to-leading logarithmic accuracy, matched to the next-to-next-to-leading order cross section in fixed-order perturbation theory. The only missing ingredients at this level of accuracy are the three-loop anomaly coefficient and the four-loop cusp anomalous dimension, whose numerical effects we estimate to be small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the WW (*)ℓνℓν decay channel with the ATLAS detector using 25fb−1 of proton-proton collision data, ATLAS-CONF-2013-030, CERN, Geneva Switzerland (2013).

  2. ATLAS collaboration, Search for electroweak production of supersymmetric particles in final states with at least two hadronically decaying taus and missing transverse momentum with the ATLAS detector in proton-proton collisions at \( \sqrt{s}=8 \) TeV, ATLAS-CONF-2013-028, CERN, Geneva Switzerland (2013).

  3. CMS collaboration, Evidence for a particle decaying to W + W in the fully leptonic final state in a Standard Model Higgs boson search in pp collisions at the LHC, CMS-PAS-HIG-13-003, CERN, Geneva Switzerland (2013).

  4. C. Anastasiou, G. Dissertori and F. Stöckli, NNLO QCD predictions for the HWWℓνℓν signal at the LHC, JHEP 09 (2007) 018 [arXiv:0707.2373] [INSPIRE].

    Article  ADS  Google Scholar 

  5. I.W. Stewart and F.J. Tackmann, Theory uncertainties for Higgs and other searches using jet bins, Phys. Rev. D 85 (2012) 034011 [arXiv:1107.2117] [INSPIRE].

    ADS  Google Scholar 

  6. A. Banfi, G.P. Salam and G. Zanderighi, NLL+NNLO predictions for jet-veto efficiencies in Higgs-boson and Drell-Yan production, JHEP 06 (2012) 159 [arXiv:1203.5773] [INSPIRE].

    Article  ADS  Google Scholar 

  7. T. Becher and M. Neubert, Factorization and NNLL resummation for Higgs production with a jet veto, JHEP 07 (2012) 108 [arXiv:1205.3806] [INSPIRE].

    Article  ADS  Google Scholar 

  8. C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].

    ADS  Google Scholar 

  9. C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].

    ADS  Google Scholar 

  10. C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein and I.W. Stewart, Hard scattering factorization from effective field theory, Phys. Rev. D 66 (2002) 014017 [hep-ph/0202088] [INSPIRE].

    ADS  Google Scholar 

  11. M. Beneke, A. Chapovsky, M. Diehl and T. Feldmann, Soft collinear effective theory and heavy to light currents beyond leading power, Nucl. Phys. B 643 (2002) 431 [hep-ph/0206152] [INSPIRE].

    Article  ADS  Google Scholar 

  12. T. Becher and M. Neubert, Drell-Yan production at small q T , transverse parton distributions and the collinear anomaly, Eur. Phys. J. C 71 (2011) 1665 [arXiv:1007.4005] [INSPIRE].

    Article  ADS  Google Scholar 

  13. A. Banfi, P.F. Monni, G.P. Salam and G. Zanderighi, Higgs and Z-boson production with a jet veto, Phys. Rev. Lett. 109 (2012) 202001 [arXiv:1206.4998] [INSPIRE].

    Article  ADS  Google Scholar 

  14. F.J. Tackmann, J.R. Walsh and S. Zuberi, Resummation properties of jet vetoes at the LHC, Phys. Rev. D 86 (2012) 053011 [arXiv:1206.4312] [INSPIRE].

    ADS  Google Scholar 

  15. F.J. Tackmann, The Higgs cross section with a jet veto, talk presented at the X th workshop on Soft-Collinear Effective Theory, Duke University, Durham U.S.A. March 14–16 2013.

  16. G.P. Salam, Towards jetography, Eur. Phys. J. C 67 (2010) 637 [arXiv:0906.1833] [INSPIRE].

    Article  ADS  Google Scholar 

  17. S. Catani, Y.L. Dokshitzer, M. Seymour and B. Webber, Longitudinally invariant K t clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [INSPIRE].

    Article  ADS  Google Scholar 

  18. S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48 (1993) 3160 [hep-ph/9305266] [INSPIRE].

    ADS  Google Scholar 

  19. Y.L. Dokshitzer, G. Leder, S. Moretti and B. Webber, Better jet clustering algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].

    Article  ADS  Google Scholar 

  20. M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering, in the proceedings of the Workshop on Monte Carlo Generators for HERA Physics, DESY, Hamburg Germany (1999), pg. 270 [hep-ph/9907280] [INSPIRE].

  21. M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  ADS  Google Scholar 

  22. R. Kelley, J.R. Walsh and S. Zuberi, Abelian non-global logarithms from soft gluon clustering, JHEP 09 (2012) 117 [arXiv:1202.2361] [INSPIRE].

    Article  ADS  Google Scholar 

  23. R. Kelley, J.R. Walsh and S. Zuberi, Disentangling clustering effects in jet algorithms, arXiv:1203.2923 [INSPIRE].

  24. V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Renormalization-group improved prediction for Higgs production at hadron colliders, Eur. Phys. J. C 62 (2009) 333 [arXiv:0809.4283] [INSPIRE].

    Article  ADS  Google Scholar 

  25. M. Krämer, E. Laenen and M. Spira, Soft gluon radiation in Higgs boson production at the LHC, Nucl. Phys. B 511 (1998) 523 [hep-ph/9611272] [INSPIRE].

    Article  ADS  Google Scholar 

  26. K. Chetyrkin, B.A. Kniehl and M. Steinhauser, Hadronic Higgs decay to order \( \alpha_s^4 \), Phys. Rev. Lett. 79 (1997) 353 [hep-ph/9705240] [INSPIRE].

    Article  ADS  Google Scholar 

  27. R.V. Harlander, Virtual corrections to ggH to two loops in the heavy top limit, Phys. Lett. B 492 (2000) 74 [hep-ph/0007289] [INSPIRE].

    Article  ADS  Google Scholar 

  28. T. Becher and G. Bell, Analytic regularization in soft-collinear effective theory, Phys. Lett. B 713 (2012) 41 [arXiv:1112.3907] [INSPIRE].

    Article  ADS  Google Scholar 

  29. T. Becher, M. Neubert and D. Wilhelm, Electroweak gauge-boson production at small q T : infrared safety from the collinear anomaly, JHEP 02 (2012) 124 [arXiv:1109.6027] [INSPIRE].

    Article  ADS  Google Scholar 

  30. T. Becher and M. Neubert, On the structure of infrared singularities of gauge-theory amplitudes, JHEP 06 (2009) 081 [arXiv:0903.1126] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. T. Becher, M. Neubert and B.D. Pecjak, Factorization and momentum-space resummation in deep-inelastic scattering, JHEP 01 (2007) 076 [hep-ph/0607228] [INSPIRE].

    Article  ADS  Google Scholar 

  32. A.V. Manohar and I.W. Stewart, The zero-bin and mode factorization in quantum field theory, Phys. Rev. D 76 (2007) 074002 [hep-ph/0605001] [INSPIRE].

    ADS  Google Scholar 

  33. B. Jantzen, Foundation and generalization of the expansion by regions, JHEP 12 (2011) 076 [arXiv:1111.2589] [INSPIRE].

    Article  ADS  Google Scholar 

  34. R.J. Hill and M. Neubert, Spectator interactions in soft collinear effective theory, Nucl. Phys. B 657 (2003) 229 [hep-ph/0211018] [INSPIRE].

    Article  ADS  Google Scholar 

  35. T. Becher and M. Neubert, Toward a NNLO calculation of the \( \overline{B}\to {X_s}\gamma \) decay rate with a cut on photon energy. II. Two-loop result for the jet function, Phys. Lett. B 637 (2006) 251 [hep-ph/0603140] [INSPIRE].

    Article  ADS  Google Scholar 

  36. T. Becher and G. Bell, NNLL resummation for jet broadening, JHEP 11 (2012) 126 [arXiv:1210.0580] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. C. Anastasiou, K. Melnikov and F. Petriello, Fully differential Higgs boson production and the di-photon signal through next-to-next-to-leading order, Nucl. Phys. B 724 (2005) 197 [hep-ph/0501130] [INSPIRE].

    Article  ADS  Google Scholar 

  38. S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [INSPIRE].

    Article  ADS  Google Scholar 

  39. M. Grazzini, NNLO predictions for the Higgs boson signal in the HWWℓνℓν and HZZ → 4ℓ decay channels, JHEP 02 (2008) 043 [arXiv:0801.3232] [INSPIRE].

    Article  ADS  Google Scholar 

  40. A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    Article  ADS  Google Scholar 

  41. J. Campbell, K. Ellis and C. Williams, MCFMMonte Carlo for FeMtobarn processes webpage, http://mcfm.fnal.gov/.

  42. J.-Y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, The rapidity renormalization group, Phys. Rev. Lett. 108 (2012) 151601 [arXiv:1104.0881] [INSPIRE].

    Article  ADS  Google Scholar 

  43. J.-Y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, A formalism for the systematic treatment of rapidity logarithms in quantum field theory, JHEP 05 (2012) 084 [arXiv:1202.0814] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. T. Becher, M. Neubert and D. Wilhelm, Higgs-boson production at small transverse momentum, JHEP 05 (2013) 110 [arXiv:1212.2621] [INSPIRE].

    Article  ADS  Google Scholar 

  45. A. Banfi, P.F. Monni, G.P. Salam and G. Zanderighi, JetVHeto webpage, http://jetvheto.hepforge.org/.

  46. V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Origin of the large perturbative corrections to Higgs production at hadron colliders, Phys. Rev. D 79 (2009) 033013 [arXiv:0808.3008] [INSPIRE].

    ADS  Google Scholar 

  47. P. Baikov, K. Chetyrkin, A. Smirnov, V. Smirnov and M. Steinhauser, Quark and gluon form factors to three loops, Phys. Rev. Lett. 102 (2009) 212002 [arXiv:0902.3519] [INSPIRE].

    Article  ADS  Google Scholar 

  48. R. Lee, A. Smirnov and V. Smirnov, Analytic results for massless three-loop form factors, JHEP 04 (2010) 020 [arXiv:1001.2887] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. T. Gehrmann, E. Glover, T. Huber, N. Ikizlerli and C. Studerus, The quark and gluon form factors to three loops in QCD through to O(ϵ 2), JHEP 11 (2010) 102 [arXiv:1010.4478] [INSPIRE].

    Article  ADS  Google Scholar 

  50. V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Updated predictions for Higgs production at the Tevatron and the LHC, Phys. Lett. B 698 (2011) 271 [arXiv:1008.3162] [INSPIRE].

    Article  ADS  Google Scholar 

  51. V. Ahrens, T. Becher, M. Neubert and L.L. Yang, RGHiggsRenormalization-Group improved predictions for Higgs production webpage, http://rghiggs.hepforge.org/.

  52. D. de Florian and M. Grazzini, Higgs production at the LHC: updated cross sections at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 718 (2012) 117[arXiv:1206.4133] [INSPIRE].

    Article  ADS  Google Scholar 

  53. G. Soyez, G.P. Salam, J. Kim, S. Dutta and M. Cacciari, Pileup subtraction for jet shapes, Phys. Rev. Lett. 110 (2013) 162001 [arXiv:1211.2811] [INSPIRE].

    Article  ADS  Google Scholar 

  54. X. Liu and F. Petriello, Resummation of jet-veto logarithms in hadronic processes containing jets, Phys. Rev. D 87 (2013) 014018 [arXiv:1210.1906] [INSPIRE].

    ADS  Google Scholar 

  55. X. Liu and F. Petriello, Reducing theoretical uncertainties for exclusive Higgs plus one-jet production at the LHC, Phys. Rev. D 87 (2013) 094027 [arXiv:1303.4405] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Neubert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becher, T., Neubert, M. & Rothen, L. Factorization and N3LLp+NNLO predictions for the Higgs cross section with a jet veto. J. High Energ. Phys. 2013, 125 (2013). https://doi.org/10.1007/JHEP10(2013)125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2013)125

Keywords

Navigation