Skip to main content
Log in

Poisson boundaries of discrete groups of matrices

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

If μ is a probability measure on a countable group there is defined a notion of the Poisson boundary for μ which enables one to represent all bounded μ-harmonic functions on the group. It is shown that for discrete groups of matrices this boundary can be identified with the boundary of the corresponding Lie group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Avez,Entropie des groupes de type fini, C. R. Acad. Sci. Paris275A (1972), 1363–1366.

    MathSciNet  Google Scholar 

  2. G. Choquet et J. Deny,Sur l'équation de convolution μ=μ*σ, C. R. Acad. Sci. Paris250A (1960), 799–801.

    MathSciNet  Google Scholar 

  3. Y. Derriennic,Quelques applications du théorème ergodique sous-additif, Astérisque74 (1980), 183–210.

    MATH  MathSciNet  Google Scholar 

  4. E. B. Dynkin and M. B. Maljutov,Random walks on groups with a finite number of generators, Soviet Math. Dokl.2 (1961), 399–402.

    MATH  Google Scholar 

  5. H. Furstenberg,Random walks and discrete subgroups of Lie groups, Adv. Probab. Related Topics1 (1971), 3–63.

    Google Scholar 

  6. H. Furstenberg,Boundary theory and stochastic processes on homogeneous spaces, Proc. Symp. Pure Math.26 (1974), 193–209.

    Google Scholar 

  7. Y. Guivarc'h,Quelques propriétés asymptotiques des produits de matrices aléatoires, Lecture Notes in Math.774 (1980), 177–250.

    MathSciNet  Google Scholar 

  8. V. A. Kaimanovich and A. M. Vershik,Random walks on discrete group. Boundary and entropy, Ann. Prob.11 (1983), 457–490.

    MATH  MathSciNet  Google Scholar 

  9. F. Ledrappier,Une relation entre entropie, dimension et exposant pour certaines marches aléatoires, C. R. Acad. Sci. Paris296A (1983), 369–372.

    MathSciNet  Google Scholar 

  10. F. Ledrappier,Quelques propriétés des exposants caractéristiques, Lecture Notes in Math.1097 (1984), 305–396.

    MathSciNet  Google Scholar 

  11. G. A. Margulis,Discrete groups of motions of manifolds of non-positive curvature, Am. Math. Soc. Transl.109 (1977), 33–45.

    MATH  Google Scholar 

  12. M. S. Raghunathan,A proof of Oseledeĉ' multiplicative ergodic theorem, Isr. J. Math.32 (1979), 356.

    Article  MATH  MathSciNet  Google Scholar 

  13. D. Ruelle,Ergodic theory of differentiable dynamical systems, Publ. Math. IHES50 (1979), 27–58.

    MATH  MathSciNet  Google Scholar 

  14. C. Series,Martin boundaries of random walks on Fuchsian groups Isr. J. Math.44 (1983), 221–242.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ledrappier, F. Poisson boundaries of discrete groups of matrices. Israel J. Math. 50, 319–336 (1985). https://doi.org/10.1007/BF02759763

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02759763

Keywords

Navigation