Skip to main content
Log in

Acoustic radiation from a finite spherical source placed in fluid near a poroelastic sphere

  • Originals
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Summary

Acoustic radiation from a finite spherical source, vibrating with an arbitrary, axisymmetric, time-harmonic surface velocity distribution, while immersed at an arbitrary point near a poroelastic sphere in an unbounded ideal fluid medium is analyzed in an exact manner. The formulation utilizes the appropriate wave-field expansions, along with the translational addition theorems for spherical wave functions in combination with the Biot classic model for the description of poroelastic material behavior, to develop a closed-form solution in form of infinite series. The prime objective is to investigate the dynamic poroelasticity effects on acoustic radiation and its associated field quantities. The analytical results are illustrated with a numerical example, in which the spherical source, excited in vibrational modes of zero-th or first order, is positioned near a water-saturated sandstone sphere. The basic acoustic field quantities such as the modal acoustic radiation impedance load on the source, the radiated far-field pressure directivity pattern, and the radial acoustic intensity distribution are evaluated and discussed for representative values of the parameters characterizing the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karnovskii, M. I.: Interaction acoustical impedance of spherical radiators and resonators. CR (Dokl) Acad Sci URSS 32 (1941) 40–43

    Google Scholar 

  2. Ingard, U., Lamb, Jr. G. L.: Effect of a reflecting plane on the output of sound sources. J. Acoust. Soc. Am. 29 (1957) 743–744.

    Article  Google Scholar 

  3. New, R., Eisler, T. J.: Acoustic radiation from multiple spheres. J. Sound. Vib. 22 (1972) 1–17

    Article  MATH  Google Scholar 

  4. Ivanov, Y. A.: Diffraction of electromagnetic waves on two bodies. NASA Technical Translation F-597, National Aeronautics and Space Administration, Washington DC 1970

    Google Scholar 

  5. Thompson, Jr. W.: Radiation from a spherical acoustic source near a scattering sphere. J Acoust Soc Am 60 (1976) 781–787

    Article  Google Scholar 

  6. Thompson, Jr. W.: Acoustic coupling between two finite-sized spherical sources. J Acoust Soc Am 62 (1977) 8–11

    Article  Google Scholar 

  7. Thompson, Jr. W.: Acoustic coupling between a pulsating and an oscillating sphere. J Acoust Soc Am 74 (1983) 1050–1148

    Google Scholar 

  8. Thompson, Jr. W.: Acoustic radiation from a spherical source embedded eccentrically within a fluid sphere. J Acoust Soc Am 54 (1973) 1694–1707

    Article  Google Scholar 

  9. Lease, A., Thompson, Jr. W.: Use of translational addition theorems for spherical wave functions in nonaxisymmetric acoustic field problems. J Acoust Soc Am 90 (1991) 1155–1160

    Article  Google Scholar 

  10. Lease, A., Thompson, Jr. W.: Nonaxisymmetric acoustic radiation from a pair of sources embedded in a fluid sphere. J Acoust Soc Am 90 (1991) 1161–1166

    Article  Google Scholar 

  11. Hasheminejad, S. M., Azarpeyvand, M.: Eccentricity effects on acoustic radiation from a spherical source suspended within a thermoviscous fluid sphere. IEEE Trans Ultrason Ferroelect Freq Contr 50 (2003) 1444–1454

    Article  Google Scholar 

  12. Gassmann, F.: Uber die Elastizitat poröser Medien. Viereljahreschrift d. Naturforsch. Gesell. Zurich 96 (1951) 1–23

    MathSciNet  Google Scholar 

  13. Biot, M. A.: Mechanics of deformation and acoustic propagation in porous media. J Appl Phys 23 (1962) 1482–1498

    Article  MathSciNet  Google Scholar 

  14. Gurevich, B., Kelder, O., Smeulders, D. M. J.: Validation of the slow compressional wave in porous media: Comparison of experiments and numerical simulations. Transport Porous Media 36 (1999) 149–160

    Article  Google Scholar 

  15. Auriault, J. L., Geindreau, C., Royer, P., Block, J. F.: Proceedings of the 2nd Biot Conference on Poromechanics. Grenoble France 2002

  16. Pierce, A. D.: Acoustics: An introduction to its physical principles and applications. American Inst Physics, New York 1991

    Google Scholar 

  17. Abramowitz, M., Stegun, I. A.: Handbook of mathematical functions. National Bureau of Standards, Washington, DC 1964

    MATH  Google Scholar 

  18. Bourbie, T., Coussy, O., Zinszner, B. E.: Acoustics of porous media. Gulf Publishing, Houston 1987

    Google Scholar 

  19. Allard, J. F.: Propagation of sound in porous media: modelling sound absorbing materials. Elsevier Applied Science, London 1993

    Google Scholar 

  20. Johnson, D. L., Koplik, J., Dashen, R.: Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J Fluid Mech 76 (1987) 379–402

    Article  Google Scholar 

  21. Achenbach, J. D.: Wave propagation in elastic solids. North-Holland, New York 1976

    Google Scholar 

  22. Deresiewicz, H., Skalak, R.: On uniqueness in dynamic poroelasticity. Bull Seismol Soc Am 53 (1963) 783–788

    Google Scholar 

  23. Hasheminejad, S. M., Hosseini, H.: Radiation loading of a cylindrical source in a fluid-filled cylindrical cavity embedded within a fluid-saturated poroelastic medium. J Appl Mech 69 (2002) 675–683

    Article  Google Scholar 

  24. Junger, M. C., Feit, D.: Sound structures and their interaction, 2nd edn. MIT Press, Cambridge 1986

    Google Scholar 

  25. Johnson, D. L., Plona, T. J., Kojima, H.: Probing proous media with first and second sound, II: acoustic properties of water-saturated porous media. J Appl Phys 76 (1994) 115–125.

    Article  Google Scholar 

  26. Dukhin, A. S., Goetz, P. J., Simmons, D. H. M.: Ultrasound for characterizing colloids. Elsevier Health Sciences, London, pp 166–168 (2002)

    Google Scholar 

  27. Riebel, U.: Characterization of agglomerates and porous particles by ultrasonic spectrometry. Vortrag Partec, Nürnberg, Preprints 2, pp 545–559 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasheminejad, S.M., Mehdizadeh, S. Acoustic radiation from a finite spherical source placed in fluid near a poroelastic sphere. Arch. Appl. Mech. 74, 59–74 (2004). https://doi.org/10.1007/BF02637209

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02637209

Keywords

Navigation