Skip to main content
Log in

The state of water in the outer barrier of the isolated frog skin

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The flux of water across the outer barrier of the frog skin is generally regarded as the rate-limiting step in the movement of water across the whole membrane. This paper presents some evidence that, at room temperature, the flux of water across the outer barrier occurs through water in a non-liquid state. The organization of water in a non-liquid state lowers the diffusion coefficient of water through water by several orders of magnitude. The study employs a method recently developed in this laboratory which permits measurement of unidirectional fluxes at the outermost part of an epithelial membrane mounted as a flat sheet. Only above 25°C is the activation energy for the flow of tritiated water (4.3 kcal mole−1) similar to the one observed in free water (4.6 kcal mole−1). At temperatures around 15°C, the energy of activation is 8.5 kcal mole−1. At temperatures near 0°C, at which the frog lives only part of the year, the energy of activation is 16.7 kcal mole−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bray, G. A. 1960. Liquid scintillator for aqueous solutions.Analyt. Biochem. 1:279

    Article  CAS  Google Scholar 

  • Chapman, G., McLauglan, K. A. 1967. Oriented water in the sciatic nerve of rabbit.Nature 215:391.

    Article  PubMed  CAS  Google Scholar 

  • Cope, F. W. 1967. Evidence for complexing of Na+ in muscle, kidney and brain, and by actomyosin. The relation of cellular complexing of Na+ to water structure and to transport kinetics.J. Gen. Physiol. 50:1353.

    Article  PubMed  CAS  Google Scholar 

  • — 1969. Nuclear magnetic resonance evidence using D2O for structured water in muscle and brain.Biophys. J. 9:303.

    PubMed  CAS  Google Scholar 

  • Dainty, J., House, C. R. 1966. Unstirred layers in frog skin.J. Physiol. 182:66.

    PubMed  CAS  Google Scholar 

  • Fedyakin, N. N. 1961. Quoted by B. V. Derjaguin, 1965. Recent research into the propertie of water in thin films and in microcapillaries.Symp. Soc. Exp. Biol. 19:55.

    Google Scholar 

  • Finean, J. B. 1962. The nature and stability of the plasma membrane.Circulation 26:1151.

    CAS  Google Scholar 

  • Fogg, G. E. 1965. The state and movement of water in living organisms. Symposia of the Society for Experimental Biology. XIX. Cambridge University Press, Cambridge.

    Google Scholar 

  • Fritz, O. G., Swift, T. J. 1967. The state of water in polarized and depolarized frog nerves. A proton magnetic resonance study.Biophys. J. 7:675.

    CAS  PubMed  Google Scholar 

  • Hays, R. M. 1968. A new proposal for the action of vasopressin based on studies of a complex synthetic membrane.J. Gen. Physiol. 51:385.

    Article  PubMed  CAS  Google Scholar 

  • Hays, R. M., Franki, N. 1970. The role of water diffusion in the action of vasopressin.J. Membrane Biol. 2:263.

    Article  Google Scholar 

  • —, Leaf, A. 1962. The state of water in the isolated toad bladder in the presence and absence of vasopressin.J. Gen. Physiol. 45:933

    Article  PubMed  CAS  Google Scholar 

  • Helfferich, F. 1962. Ion Exchange. McGraw-Hill, New York.

    Google Scholar 

  • Hempling, H. G. 1960. Permeability of the Ehrlich ascites tumor cell to water.J. Gen. Physiol. 44:365.

    Article  PubMed  CAS  Google Scholar 

  • Hinke, J. A. M. 1959. Glass microelectrodes for measuring intracellular activities of sodium and potassium.Nature 184:1257.

    Article  PubMed  CAS  Google Scholar 

  • House, C. R., Jarvis, P. 1968. Effects of temperature on the radial exchange of labelled water inmaize roots.J. Exp. Bot. 19:31.

    Google Scholar 

  • Jacobs, M. H., Glassman, H. N., Parpart, A. K. 1935. Osmotic properties of the erythrocyte. VII. The temperature coefficients of certain hemolytic processes.J. Cell. Comp. Physiol. 7:197.

    Article  Google Scholar 

  • Kidder, G. W., Cereijido, M., Curran, P. F. 1964. Transient changes in electrical potential differences across frog skin.Amer. J. Physiol. 55:267

    Google Scholar 

  • Kuhn, W., Thürkauf, M. 1958. Isotopentrennung beim Gefrieren von Wasser und Diffusionskonstanten von D und O im Eis.Helv. Chim. Acta 41:938.

    Article  CAS  Google Scholar 

  • Leaf, A., Hays, R. M. 1962. Permeability of the isolated toad bladder to solutes and its modification by vasopressin.J. Gen. Physiol. 45:921.

    Article  PubMed  CAS  Google Scholar 

  • Ling, G. N. 1969. A new model for the living cell: A summary of the theory and recent experimental evidence in its support.Intern. Rev. Cytol. 26:1.

    Article  CAS  Google Scholar 

  • Lucke, B., McCutcheon, M. 1932. The living cell as an osmotic system and its permeability to water.Physiol. Rev. 12:68.

    CAS  Google Scholar 

  • Luzzati, V. 1968. X-ray diffraction studies of lipid-water systems.In: Biological Membranes. p. 71. D. Chapman, editor. Academic Press, New York.

    Google Scholar 

  • Machin, J. 1969. Passive water movement through skin of the toadBufo marinus in air and in water.Amer. J. Physiol. 216:1562

    PubMed  CAS  Google Scholar 

  • McRobbie, E. A. C., Ussing, H. H. 1961. Osmotic behaviour of the epithelial cells of frog skin.Acta Physiol. Scand. 53:348.

    Article  Google Scholar 

  • Nernst, W. 1904. Theorie der Reaktionsgeschwindigkeit in heterogenen Systemen.Z. Phys. Chem. 47:52.

    CAS  Google Scholar 

  • Nevis, A. H. 1958. Water transport in invertebrate peripheral nerve fivers.J. Gen. Physiol. 41:927.

    Article  PubMed  CAS  Google Scholar 

  • Noyes, A. A., Whithney, W. R. 1897. Über die Auflösungsgeschwindigkeit von festen Stoffen in ihren eigenen Lösungen.Z. Phys. Chem. 23:689.

    CAS  Google Scholar 

  • Reisin, I. L., Rotunno, C. A., Corchs, L., Kowalewski, V., Cereijido, M. 1970. The state of sodium in epithelial tissues as studied by nuclear magnetic resonance.Physiol. Chem. Phys. 2:171.

    CAS  Google Scholar 

  • Rotunno, C. A., Kowalewski, V., Cereijido, M. 1967. Nuclear spin resonance evidence for complexing of sodium in frog skin.Biochim. Biophys. Acta 135:170.

    Article  PubMed  CAS  Google Scholar 

  • —, Vilallonga, F., Fernández, M., Cereijido, M. 1970. The penetration of sodium into the epithelium of the frog skin.J. Gen. Physiol. 55:716.

    Article  PubMed  CAS  Google Scholar 

  • Schmitt, F. O., Bear, R. S., Ponder, E.: Optical properties of the red cell membrane.J. Cell. Comp. Physiol. 9:89.

  • Vieira, F. L., Sha'afi, R. I., Solomon, A. K. 1970. The state of water in human and dog red cell membranes.J. Gen. Physiol. 55:451.

    Article  PubMed  CAS  Google Scholar 

  • Wang, J. H., Robinson, C. V., Edelman, I. S. 1953. Self-diffusion and structure of liquid water. III. Measurement of the self-diffusion of liquid water with H2, H3 and O18 as tracers.J. Amer. Chem. Soc. 75:466.

    Article  Google Scholar 

  • Whipple, H. E. 1965. Forms of water in biologic systems.Ann. N. Y. Acad. Sci. 125:249.

    Google Scholar 

  • Widdas, W. F. 1951. Changing osmotic properties of foetal sheep erythrocytes and their comparison with those of maternal sheep erythrocytes.J. Physiol. 113:399.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grigera, J.R., Cereijido, M. The state of water in the outer barrier of the isolated frog skin. J. Membrain Biol. 4, 148–155 (1971). https://doi.org/10.1007/BF02431967

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02431967

Keywords

Navigation