Skip to main content
Log in

Phytohormones,Rhizobium mutants, and nodulation in legumes. IV. Auxin metabolites in pea root nodules

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

High specific activity [3H]indole-3-acetic acid (IAA) was applied directly to root nodules of intact pea plants. After 24 h, radioactivity was detected in all plant tissues. In nodule and root tissue, only 2–3% of3H remained as IAA, and analysis by thin layer chromatography suggested that indole-3-acetyl-L-aspartic acid (IAAsp) was a major metabolite. The occurrence of IAAsp in pea root and nodule tissue was confirmed unequivocally by gas chromatography-mass spectrometry (GC-MS). The following endogenous indole compounds were also unequivocally identified in pea root nodules by GC-MS: IAA, indole-3-pyruvic acid, indole-3-lactic acid, indole-3-propionic acid, indole-3-butyric acid, and indole-3-carboxylic acid. Evidence of the occurrence of indole-3-methanol was also obtained. With the exception of IAA and indole-3-propionic acid, these compounds have not previously been unequivocally identified in a higher plant tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderssen B, Sandberg G (1982) Identification of endogenous N-(3-indoleacetyl)aspartic acid in Scots pine (Pinus sylvestris L.) by combined gas chromatography-mass spectrometry, using high performance liquid chromatography for quantification. J Chromatog 238:151–156

    Article  Google Scholar 

  • Andreae WA, Good NE (1955) The formation of indoleacetylaspartic acid in pea seedlings. Plant Physiol 30:380–382

    Article  PubMed  CAS  Google Scholar 

  • Andreae WA, van Ysselstein MWH (1956) Studies on 3-indoleacetic acid metabolism. III. The uptake of 3-indoleacetic acid by pea epicotyls and its conversion to 3-indoleacetyl aspartic acid. Plant Physiol 31:235–240

    PubMed  CAS  Google Scholar 

  • Andreae WA, van Ysselstein MWH (1960) Studies on 3-indoleacetic acid metabolism. VI. 3-indoleacetic acid uptake and metabolism by pea roots and epicotyls. Plant Physiol 35:225–232

    PubMed  CAS  Google Scholar 

  • Atsumi S, Kuraishi S, Hayashi T (1976) An improvement of auxin extraction procedure and its application to cultured plant cells. Planta 129:245–247

    Article  CAS  Google Scholar 

  • Badenoch-Jones J, Summons RE, Entsch B, Rolfe BG, Parker CW, Letham DS (1982a) Mass spectrometric identification of indole compounds produced byRhizobium strains. Biomed Mass Spectrom 9:429–437

    Article  CAS  Google Scholar 

  • Badenoch-Jones J, Summons RE, Djordjevic MA, Shine J, Letham DS, Rolfe BG (1982b) Mass spectrometric quantification of indole-3-acetic acid inRhizobium culture supernatants: Relation to root hair curling and nodule initiation. Appl Environ Microbiol 44:275–280

    PubMed  CAS  Google Scholar 

  • Badenoch-Jones J, Rolfe BG, Letham DS (1983) Phytohormones,Rhizobium mutants and nodulation in legumes. III. Auxin metabolism in effective and ineffective pea root nodules. Plant Physiol 73:347–352

    PubMed  CAS  Google Scholar 

  • Batra MW, Edwards KL, Scott TK (1975) Auxin transport in roots: Its characteristics and relation to growth. In: Torrey JG, Clarkson DT (eds) The development and function of roots. Third Cabot Symposium. Academic Press, London, pp 299–325

    Google Scholar 

  • Bayer MH (1969) Gas chromatographic analysis of acidic indole auxins inNicotiana. Plant Physiol 44:267–271

    PubMed  CAS  Google Scholar 

  • Bentley JA, Farrar KR, Housley S, Smith GF, Taylor WC (1956) Some chemical and physiological properties of 3-indolylpyruvic acid. Biochem J 64:44–49

    PubMed  CAS  Google Scholar 

  • Blommaert KLJ (1964) Growth and inhibiting substances in relation to the rest period of the potato tuber. Nature 174:970–972

    Article  Google Scholar 

  • Bourbouloux A, Bonnemain J-L (1979) The different components of the movement and the areas of retention of labelled molecules after the application of [3H]indolyl-acetic acid to the apical bud ofVicia faba. Physiol Plant 47:260–268

    Article  CAS  Google Scholar 

  • Cohen JD (1982) Identification and quantitative analysis of indole-3-acetyl-L-aspartate from seeds ofGlycine max L. Plant Physiol 70:749–753

    PubMed  CAS  Google Scholar 

  • Djordjevic MA, Zurkowski W, Rolfe BG (1982) Plasmids and stability of symbiotic properties ofRhizobium trifolii. J Bacteriol 151:560–568

    PubMed  CAS  Google Scholar 

  • Dullaart J (1967) Quantitative estimation of indoleacetic acid and indolecarboxylic acid in nodules and roots ofLupinus luteus L. Acta Bot Neerl 16:222–230

    CAS  Google Scholar 

  • Dullaart J (1968) The indole acetic acid content of root nodules and roots ofCycas circinalis L. with regard to other root nodule systems. Acta Bot Neerl 17:496–498

    CAS  Google Scholar 

  • Dullaart J (1970) The auxin content of root nodules and roots ofAlnus glutinosa (L.) Vill. J Exp Bot 21:975–984

    Article  CAS  Google Scholar 

  • Elkinawy M (1982) Physiological significance of indoleacetic acid and factors determining its level in cotyledons ofLupinus albus during germination and growth. Physiol Plant 54:302–308

    Article  CAS  Google Scholar 

  • Gibson RA, Schneider EA, Wightman F (1972) Biosynthesis and metabolism of indol-3yl-acetic acid. II.In vivo experiments with14C-labelled precursors of IAA in tomato and barley shoots. J Exp Bot 23:381–399

    Article  CAS  Google Scholar 

  • Jepson JB (1958) Indolylacetamide: A Chromatographic artifact from the natural indoles, indolyl-acetylglucosiduronic acid and indolylpyruvic acid. Biochem J 69:22P

    Google Scholar 

  • Kaper JM, Veldstra H (1958) On the metabolism of tryptophan byAgrobacterium tumefaciens. Biochim Biophys Acta 30:401–420

    Article  PubMed  CAS  Google Scholar 

  • Kaper JM, Gebhard O, van den Berg C, Veldstra H (1963a) Studies on indolepyruvic acid. I. Synthesis and paper chromatography. Arch Biochem Biophys 103:469–474

    Article  PubMed  CAS  Google Scholar 

  • Kaper JM, Gebhard O, van den Berg C, Veldstra H (1963b) Studies on indolepyruvic acid. II. Ultraviolet spectrophotometry. Arch Biochem Biophys 103:475–487

    Article  PubMed  CAS  Google Scholar 

  • Kretovich VL, Alekseeva II, Tsivina NZ (1972) Content of β-indolylacetic in root nodules and roots of Lupine. Sov Plant Physiol 19:421–424

    Google Scholar 

  • Link JKK, Eggers V (1940) Avena coleoptile assay of ether extracts of nodules and roots of bean, soybean and pea. Bot Gaz 101:650–657

    Article  CAS  Google Scholar 

  • Magnus V, Iskrić S, Kveder S (1971) Indole-3-methanol: A metabolite of indole-3-acetic acid in pea seedlings. Planta 97:116–125

    Article  CAS  Google Scholar 

  • McCready CC (1968) The polarity of auxin movement in segments excised from petioles ofPhaseolus vulgaris. In: Wightman F, Setterfield G (eds) Biochemistry and physiology of plant growth substances. The Runge Press, Ltd., Ottawa, Canada, pp 1005–1023

    Google Scholar 

  • Moore TC and Shaner CA (1968) Synthesis of indoleacetic acid from tryptophan via indolepyruvic acid in cell-free extracts of pea seedlings. Arch Biochem Biophys 127:613–621

    Article  CAS  Google Scholar 

  • Pate JS (1958) Studies of the growth substances of legume nodules using paper chromatography. Aust J Biol Sci 11:516–528

    CAS  Google Scholar 

  • Schneider EA, Gibson RA, Wightman F (1972) Biosynthesis and metabolism of 3-indoleacetic acid. I. The native indoles of barley and tomato shoots. J Exp Bot 23:152–170

    Article  CAS  Google Scholar 

  • Schwarz K, Bitancourt AA (1960) Further evidence of tautomerism in chromatograms of indolyl-3-pyruvic acid. Biochem J 75:182–187

    PubMed  CAS  Google Scholar 

  • Segal LM, Wightman F (1982) Gas chromatographic and GC-MS evidence for the occurrence of 3-indolylpropionic acid and —indolylacetic acid in seedlings ofCucurbita pepo. Physiol Plant 56:367–370

    Article  CAS  Google Scholar 

  • Sembdner G, Gross D, Liebisch H-W, Schneider G (1980) Biosynthesis and metabolism of plant hormones. In: MacMillan J (ed) Encyclopedia of plant physiology. New Series, Vol. 9. Springer-Verlag, Berlin Heidelberg New York, pp 281–444

    Google Scholar 

  • Silver WS, Bendana FE, Powell RD (1966) Root nodule symbiosis. II. The relation of auxin to root geotropism in roots and root nodules of non-legumes. Physiol Plant 19:207–218

    Article  CAS  Google Scholar 

  • Srivastava BIS (1964) Investigations on the occurrence and biosynthesis of indole-pyruvic acid in plant tissues and bacteria. Plant Physiol 39:781–785

    PubMed  CAS  Google Scholar 

  • Stowe B, Thimann KV (1954) The paper chromatography of indole compounds and some indole-containing auxins of plant tissues. Arch Biochem Biophys 51:499–516

    Article  CAS  Google Scholar 

  • Stowe B, Vendrell M, Epstein E (1968) Separation and identification of indoles in maize and woad. In: Wightman F, Setterfield G (eds) Biochemistry and physiology of plant growth substances. The Runge Press, Ltd., Ottawa, Canada, pp 173–182

    Google Scholar 

  • Summons RE, Duke CC, Eichholzer JV, Entsch B, Letham DS, MacLeod JK, Parker CW (1979) Mass spectrometric analysis of cytokinins in plant tissues. II. Quantitation of cytokinins inZea mays kernels using deuterium labelled standards. Biomed Mass Spectrom 6:407–413

    Article  CAS  Google Scholar 

  • Thimann KV (1936) On the physiology of the formation of nodules on legume roots. Proc Natl Acad Sci 22:511–514

    Article  PubMed  CAS  Google Scholar 

  • Tsurumi S, Wada S (1980) Transport of shoot- and cotyledon-applied indole-3-acetic acid toVicia faba root. Plant Cell Physiol 21:803–816

    CAS  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root-nodule bacteria. IBM Handbook No. 15. Blackwell Scientific Publications, Oxford, p 145

    Google Scholar 

  • Vlitos AJ, Meudt W (1954) The role of auxin in plant flowering. III. Free indole acids in short-day plants grown under photoinductive and nonphotoinductive daylengths. Contrib Boyce Thompson Inst 17:413–417

    Google Scholar 

  • Wang TL, Wood EA, Brewin NJ (1982) Growth regulators,Rhizobium and nodulation in peas: Indole-3-acetic acid from the culture medium of nodulating and non-nodulating strains of R. leguminosarum. Planta 155:345–349

    Article  CAS  Google Scholar 

  • Wightman F (1962) Metabolism and biosynthesis of —indoleacetic acid and related indole compounds in plants. Can J Bot 40:689–718

    Article  CAS  Google Scholar 

  • Wightman F (1977) Gas chromatographic identification and quantitative estimation of natural auxins in developing plant organs. In: Pilet PE (ed) Plant growth regulation. Springer-Verlag, Berlin Heidelberg New York, pp 77–90

    Google Scholar 

  • Winter A, Thimann KV (1966) Bound indoleacetic acid inAvena coleoptiles. Plant Physiol 41:335–342

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badenoch-Jones, J., Summons, R.E., Rolfe, B.G. et al. Phytohormones,Rhizobium mutants, and nodulation in legumes. IV. Auxin metabolites in pea root nodules. J Plant Growth Regul 3, 23–39 (1984). https://doi.org/10.1007/BF02041989

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02041989

Keywords

Navigation