Skip to main content
Log in

Energy saving effect of pervaporation using oleyl alcohol liquid membrane in butanol purification

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The liquid membrane prepared with oleyl alcohol was used in pervaporation of dilute aqueous butanol solutions. The selectivity of this liquid membrane was found to be superior than that of silicone rubber membrane, and the separation factor for butanol was 180. Energy saving effect of pervaporation in butanol purification was investigated by comparing the energies required to purify a butanol solution of 0.5 wt.% in the following three separation systems; a conventional distillation system, a separation system combining pervaporation with distillation, and a pervaporation system using a hydrophobic membrane and a hydrohylic membrane in series. When the pervaporation using oleyl alcohol liquid membrane was employed as a pretreatment process of butanol purification, the energy requirement was found to be around one-tenth of that of conventional distillation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

E D MJ/kg:

Specific energy requirement of butanol purification by distillation

J kg/(m2 · h):

Total permeation flux

J B kg/(m2 · h):

Permeation flux of butanol

P 1, P 2 MPa:

Pressure at inlet and outlet of vacuum pump

Q kJ/h:

Energy transfer rate

Q C Q W kJ/h:

Energy consumption rate of condenser and vacuum pump

R J/K · mol:

Gas constant

t, T °C, K:

Temperature

W-g/h:

Mass flow rate of butanol/water binary mixture

(W) F1 ,-kg/h:

Mass flow rate of aqueous butanol solution

(W) F2 :

at inlet and outlet of permeation cell

W* kJ/mol:

Energy requirement of adiavatic expansion

X B :

Butanol mass fraction of aqueous butanol solution

(X B ) F :

Butanol mass fraction of aqueous butanol solution supplied into distillation column

(X B ) F1 :

Butanol mass fraction of aqueous butanol

(X B ) F2 :

solution at inlet and outlet of permeation cell

Y B :

Butanol mass fraction in permeate

α :

Separation factor of butanol

γ :

Adiavatic constant

References

  1. Schoutens, G. H.; Groot, J. W.; Hoebeek, J. B, W.: Application of isopropanol-butanol-ethanol mixtures as an engine fuel. Process Biochem. Feb. (1986) 30

  2. Kolot, F. B.: Immobilized cells for solvent production. Process Biochem. Feb. (1984) 7–13

  3. Essien, D.; Pyle, D. L.: Energy conservation in ethanol production by fermentation. Process Biochem. Aug. (1983) 31–37

  4. Murphy, T. K.; Blanch, H. W.; Wilke, C. R.: Water recycle in extractive fermentation. Process Biochem. Nov./Dec. (1982) 6–10

  5. Larsson, M.; Holst, O.; Mattiasson, B.: Butanol fermentation using a selective adsorption for product recovery. Preceeding of the third European congress on biotechnology. Vol. 2, pp 313–316. Munich, 1984

    Google Scholar 

  6. Dadgar, A. M.; Foutch, G. L.: The evaluation of solvents for the recovery of Clostridium fermentation products by liquid-liquid extraction. Proceeding of the 7th symposium on biotechnology for fuels and chemicals. Tennessee, 1985

  7. Ishii, S.; Taya, M.; Kobayashi, T.: Production of butanol by Clostridium acetobutylicum in extractive fermentation system. J. Chem. Eng. Japan. 18 (1985) 125–130

    Google Scholar 

  8. Groot, W. J.; Schoutens, G. H.; Beelen, P. N.; Van den Oever, C. E.; Kossen, N. W. F.: Increase of substrate conversion by pervaporation in the continuous butanol fermentation. Biotechnol. Lett. 6 (1984) 789–792

    Google Scholar 

  9. Ohya, H.; Matsumoto, K.; Negishi, Y.; Matsumoto, M.: Concentration of acetone and n-butanol its aqueous solutions by pervaporation using porous polypropylene hollow-fiber membrane. Membrane 11 (1986) 285–298

    Google Scholar 

  10. Garcia, A.; Iannotti, E. L.; Fischer, J. L.: Butanol fermentation liquor production and separation by reverse-osmosis. Biotechnol. Bioeng. 28 (1986) 785–791

    Google Scholar 

  11. Taya, M.; Ishii, S.; Kobayashi, T.: Monitoring and control for extractive fermentation of Clostridium acetobutylicum. J. Ferment. Technol. 63 (1985) 181–187

    Google Scholar 

  12. Matsumura, M.; Kataoka, H.: Separation of dilute aqueous butanol and acetons solutions by pervaporation through liquid membranes. To be published in Biotechnol. Bioeng.

  13. Kimura, S.; Nomura, T.: Pervaporation of organic substance water system with silicone rubber membrane. Membrane 8 (1983) 177–183

    Google Scholar 

  14. Huang, R. Y. M.; Jarvis, N. R.: Separation of liquid mixtures by using polymer membranes. II. Permeation of aqueous alcohol solutions through cellophane and poly(vinylalcohol). J. Appl. Polym. Sci. 14 (1970) 2341–2356

    Google Scholar 

  15. Ohya, H.: Feasibility of concentration of dilute aqueous ethanol solution by favorable-unfavorable membranes system. Membrane 9 (1984) 171–176

    Google Scholar 

  16. Perry, J. H.: Chemical engineers' handbook, 3rd edition, pp. 563–660. New York: McGraw-Hill 1950

    Google Scholar 

  17. Aptel, P.; Challard, N.; Cuny, J.; Neel, J.: Application of the pervaporation process to separate azeotropic mixture. J. Membrane Sci. 1 (1976) 271–287

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsumura, M., Kataoka, H., Sueki, M. et al. Energy saving effect of pervaporation using oleyl alcohol liquid membrane in butanol purification. Bioprocess Eng. 3, 93–100 (1988). https://doi.org/10.1007/BF00369334

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00369334

Keywords

Navigation