Skip to main content

Use of CFD for Thermal Coupling in Aeroengine Internal Air Systems Applications

  • Conference paper
Fluid Machinery and Fluid Mechanics

Abstract

With the rapid progress of computational fluid dynamics (CFD) and computer technology, CFD has been increasingly used for aero-engine component temperature predictions. This paper presents a review of the latest progress in this aspect with emphasis on internal air system applications. The thermal coupling methods discussed include the traditional finite element analysis (FEA), the conjugate heat transfer, FEA/CFD coupling procedure and other thermal coupling techniques. Special attention is made to identify the merits and disadvantages between the various methodologies. Discussion is further extended on the steady and transient thermal coupling applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alizadeh, S., Mabilat C., Jackson D. and Clarkson R., 2008, “Conjugate Heat transfer study of a biaxial rig: application to the lifing of HP turbine disc firtrees”, Proc. ASME Turbo Expo 2008, Paper no. GT2008-51297, pp. 1–13. June 9–13, 2008, Berlin Germany

    Google Scholar 

  • Alizadeh, S., Saunders, K., Lewis, L.V. and Provins, J., 2007, “The Use of CFD to Generate Heat Transfer Boundary Conditions for a Rotor-Stator Cavity in a Compressor Drum Thermal Model”, GT2007-28333, ASME Turbo Expo 2007, May 14–17, 2007, Montreal, Canada

    Google Scholar 

  • Benito, D., Dixon, J and Metherell, P. 2008, “3D Thermo-mechanical modeling method to predict compressor local tip running clearances”, Proc. ASME Turbo Expo 2008, Paper no. GT2008-50780, pp. 1–10. June 9–13, 2008, Berlin, Germany

    Google Scholar 

  • Bohn, D., Bonhoff, H., Schonenborn, H. and Wihelmi, H., 1995, “Validation of a Numerical Model for the Coupled Simulation of Fluid Flow and Adiabatic Walls with Application to Film-Cooled Turbine Blades”, VDI-Berichte 1186, pp. 259–272

    Google Scholar 

  • Bohn, D., Kruger, U. and Kusterer, K., 2001, “Conjugate Heat Transfer: An Advanced Computational Method for the Cooling Design of Modern Gas Turbine Blades and Vanes”, Heat Transfer in Gas Turbine, eds. Sunden B. and Faghri M., pp. 58–108, WIT Press, Southampton, UK

    Google Scholar 

  • Bohn, D., Ren, J. and Kusterer, K., 2003, “Conjugate Heat Transfer Analysis for Film Cooling Configurations with Different Hole Geometries”, ASME 2003-GT-38369

    Google Scholar 

  • Chew, J.W. and Hills, N.J., 2007, “CFD for Turbomachinery Internal Air Systems”, Philosophical transactions of the Royal Society (Series A), Aerospace CFD Theme Issue

    Google Scholar 

  • Chew, J. W.; Taylor, I. J.; Bonsell, J. J., 1996, “CFD developments for turbine blade heat transfer”, IMECHE CONFERENCE TRANSACTIONS — 1996; VOL 1; Pages: 51–64

    Google Scholar 

  • Heselhaus, A., Vogel, D.T. and Krain, H, 1992, “Coupling of 3D-Navier-Stokes External Flow Calculations and Internal 3D-Heat Conduction Calculations for Cooled Turbine Blades”, AGARD, p. 40.1–40.9

    Google Scholar 

  • Dixon, J. A., Verdicchio, J. A., Benito, D., Karl, A. and Tham, K. M., 2004, “Recent developments in gas Turbine component temperature prediction methods, using computational fluid dynamics and optimization tools, in conjunction with more conventional finite element analysis techniques”, Proc. Instn Mech. Engrs, Vol. 218, Part A; J. Power and Energy, pp. 241–255

    Article  Google Scholar 

  • Davison J.B., Ferguson S. W., Mendonca, F.G., Peck A. F. and Thompson, A., 2008, “Towards an automated simulation process in combined thermal, flow and stress in turbine blade cooling analysis”, Proc. ASME Turbo Expo 2008, Paper no. GT2008-51287, pp. 1–8. June 9–13, 2008, Berlin Germany

    Google Scholar 

  • Illingworth, J.B., Hills, N. J. and Barnes, C.J., 2005, “3D Fluid-Solid Heat Transfer Coupling of an Aero Engine Pre-Swirl System”, GT2005-68939, ASME Turbo Expo 2005, June 6–9, 2005, Reno-Tahoe, Navada, USA

    Google Scholar 

  • Kusterer, K., Bohn, D. Sugimoto, T. and Tanaka, R., 2004, “Conjugate Calculations for a Film-Cooled Blade under Different Operating Conditions”, ASME 2004-GT-53719

    Google Scholar 

  • Lewis, L. V. and Provins, J. I., 2004, “A Non-Coupled CFD-FE Procedure to Evaluate Windage and Heat Transfer in Rotor-Stator Cavities”, ASME GT2004-53246, ASME Turbo Expo 2004, June 14–17, 2004, Vienna, Austria

    Google Scholar 

  • Li, H. and Kassab, A. J., 1994, “A Coupled FVM/BEM Approach to Conjugate Heat Transfer in Turbine Blades”, AIAA paper 94-1981

    Google Scholar 

  • Mirzamoghadam, A.V., and Xiao, Z., 2002, “Flow and Heat Transfer in an Industrial Rotor-Stator Rim Sealing Cavity”, ASME Journal of Engineering for Gas Turbines and Power, Vol. 124, pp. 125–132, 2002

    Article  Google Scholar 

  • Okita, Y., 2006, “Transient thermal and flow field in a turbine disk rotor-stator system”, Proc. ASME Turbo Expo 2006, Paper no. GT2006-90033, pp. 1–11. May 8–11, 2006, Barcelona, Spain

    Google Scholar 

  • Okita, Y. and Yamawaki, S. 2002, “Conjugate Heat Transfer Analysis of Turbine Rotor-Stator Systems”, ASME 2002-GT-30615

    Google Scholar 

  • Rigby, D. L. and Lepicovsky, J., 2001, “Conjugate Heat Transfer Analysis of Internally Cooled Configurations”, ASME 2001-GT-0405

    Google Scholar 

  • Starke C. and Janke E., Hofer T. and Lengani D., 2008, “Comparison of a conventional thermal analysis of a turbine cascase to a full conjugate heat transfer computation”, Proc. ASME Turbo Expo 2008, Paper no. GT2008-51151, pp. 1–11. June 9–13, 2008, Berlin Germany

    Google Scholar 

  • Verdicchio, J.A., Chew, J.W., and Hills, N.J., 2001, “Coupled Fluid/Solid Heat Transfer Computation for Turbine Discs”, ASME paper 2001-GT-0123

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Tsinghua University Press, Beijing and Springer-Verlag GmbH Berlin Heidelberg

About this paper

Cite this paper

Sun, Z., Chew, J.W., Hills, N.J. (2009). Use of CFD for Thermal Coupling in Aeroengine Internal Air Systems Applications. In: Xu, J., Wu, Y., Zhang, Y., Zhang, J. (eds) Fluid Machinery and Fluid Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89749-1_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89749-1_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89748-4

  • Online ISBN: 978-3-540-89749-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics