Skip to main content

Abstract

The first three sections of this chapter discuss the processing and handUng of the products of electrolysis. Section 9.1, related to chlorine, comprises most of the chapter. Sections 9.2 and 9.3 then cover hydrogen and caustic soda or potash. Section 9.4 discusses applications of several byproducts that are sometimes found useful.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Materials of Construction for Use in Contact with Chlorine, GEST 79/82, 7th ed., Euro Chlor, Brussels (1995).

    Google Scholar 

  2. Choice of Materials of Construction for Use in Contact with Chlorine (Spreadsheet), GEST 79/82—Annex, 1st ed., Euro Chlor, Brussels (2000).

    Google Scholar 

  3. O. A. Hougen and K. M. Watson, Chemical Process Principles, Part One, John Wiley & Sons, Inc., New York (1952), p. 115.

    Google Scholar 

  4. H. Schäfer and W. Gann, Z. Anorg. Allg. Chem. 270, 304 (1952).

    Article  Google Scholar 

  5. P. C. Westen, The Safe Use of Steel and Titanium in Chlorine. In R. W. Curry (ed.), Modern Chlor-Alkali Technology, vol. 6, Royal Society of Chemistry, Cambridge (1995), p. 62.

    Google Scholar 

  6. K. Hannesen, Materials of Construction for Handling Chlorine, Chlorine Safety Seminar, Brussels (1990).

    Google Scholar 

  7. M. W. J. Hammink and P. C. Westen, Corrosion and Erosion of Steel in Liquid Chlorine at Different Conditions of Velocity, Water Content, and Temperature. In K. Wall (ed.), Modern Chlor-Alkali Technology, vol. 3, Ellis Horwood, Chichester (1986), p. 71.

    Google Scholar 

  8. B. G. Dixon, D. M. Longenecker, and I. R. Wilcox, Usage of FRP for Combating Corrosion in Caustic/Chlorine Plants, Paper No. 461-57, ICI Americas Inc., Wilmington, DE (1984).

    Google Scholar 

  9. D. Q. Kern, Process Heat Transfer, McGraw-Hill Book Co., New York (1950), pp. 828–833.

    Google Scholar 

  10. D. Q. Kern, Process Heat Transfer, McGraw-Hill Book Co., New York (1950), pp. 340 et seq.

    Google Scholar 

  11. J. R. Fair, Chem. Eng. 79(12), 91 (1972).

    CAS  Google Scholar 

  12. P. Harriott and H. F. Wiegandt, AIChE J. 10, 755 (1964).

    Article  CAS  Google Scholar 

  13. H. Z. Kister, Distillation Design, McGraw-Hill Book Co., New York (1992).

    Google Scholar 

  14. T. F. O’Brien and I. F. White, Process Engineering Aspects of Chlorine Cooling and Drying, In R. W. Curry (ed.), Modern Chlor-Alkali Technology, vol. 6, Royal Society of Chemistry, Cambridge (1995), p. 70.

    Google Scholar 

  15. D. Q. Kern, Process Heat Transfer, McGraw-Hill Book Co., New York (1950), p. 343.

    Google Scholar 

  16. J. P. Kerner, Alberts and Associates, Personal Communication (ca. 1987).

    Google Scholar 

  17. J. A. Walkier, Chlorine Safety. In T. C. Wellington (ed.), Modern Chlor-Alkali Technology, vol. 5, Elsevier Applied Science, London (1992), p. 233.

    Chapter  Google Scholar 

  18. P. C. Westen, How To Use Steel and Titanium Safely, Third Euro Chlor Technical Seminar, Paris (1993).

    Google Scholar 

  19. J. S. Grauman and B. Willey, Chem. Eng. 105(8), 106 (1998).

    CAS  Google Scholar 

  20. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry-A Comprehensive Text, 4th ed., John Wiley and Sons, Inc., New York (1980), p. 226.

    Google Scholar 

  21. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry-A Comprehensive Text, 4th ed., John Wiley and Sons, Inc., New York (1980), p. 546.

    Google Scholar 

  22. J. A. A. Ketelaar, Electrochem. Technol. 5(3–4), 143 (1967).

    CAS  Google Scholar 

  23. A. Bouzat and L. Azinières, Compt. Rend. 176, 253; 177, 1444 (1923).

    CAS  Google Scholar 

  24. K. W. Allen, J. Chem. Soc. 1959, 4131 (1959).

    Google Scholar 

  25. C. H. Greenewalt, Ind. Eng. Chem. 17, 522 (1925).

    Article  CAS  Google Scholar 

  26. R. E. Moore, United Engineers and Constructors, Inc., Personal Communication (1989).

    Google Scholar 

  27. Y. Tabata, T. Kodama, and T. Kotoyori, J. Hazard. Mater. 17(1), 47 (1987).

    Article  CAS  Google Scholar 

  28. Structured Ceramic Packing for Chlorine Drying Towers, Bulletin No. A-100, Koch-Glitsch, Inc., Wichita, KS (2000).

    Google Scholar 

  29. S. A. Ziebold, Chem. Eng. 107(5), 94 (2000).

    CAS  Google Scholar 

  30. P. S. Fabian, R. W. Cusack, P. M. Hennessey, and M. Neuman, Chem. Eng. 100(11), 148 (1993).

    CAS  Google Scholar 

  31. T. F. O’Brien and I. F. White, Process Engineering Considerations in Chlorine Compression and Liquefaction. In S. Sealey (ed.), Modern Chlor-Alkali Technology, vol. 7, Royal Society of Chemistry, Cambridge (1998), p. 202.

    Google Scholar 

  32. A. H. Church, Centrifugal Pumps and Blowers, John Wiley & Sons, Inc., New York (1944).

    Google Scholar 

  33. R. P. Lapina, Chem. Eng. 96(8), 122 (1989).

    CAS  Google Scholar 

  34. R. P. Lapina, Chem. Eng. 97(7), 110 (1990).

    CAS  Google Scholar 

  35. G. R. Evans and L. J. Istas, Coexisting with the Centrifugal Compressor, 12th Chlorine Institute Plant Managers Seminar, New York (1969).

    Google Scholar 

  36. Learning from Experience, Pamphlet 167, Edition 1, The Chlorine Institute, Inc., Alexandria, VA (2002), p. 6.

    Google Scholar 

  37. W. G. Hoppock, J. A. Silvaggio, Jr., and K. G. Van Bramer, Centrifugal Compressor Revamps, Proceedings, Rotating Machinery Users Council Meeting, Long Beach, CA (1990).

    Google Scholar 

  38. P. M. Mayo, Chlorine Compressors, 30th Chlorine Institute Plant Managers Seminar, Washington, DC (1987).

    Google Scholar 

  39. T. A. Weedon, Jr., Pressure Control in Chlorine Plants, Fifth Annual Electrode Corporation Chlorine/Chlorate Industry Seminar, Cleveland, OH (1989).

    Google Scholar 

  40. F. G. Davis and A. B. Corripio, Dynamic Simulation of Variable-speed Centrifugal Compressors. In Instrument Society of America, Instrumentation in the Chemical and Process Industries, vol. 10, Research Triangle Park, NC (1974), p. 15.

    Google Scholar 

  41. N. V. Sidgwick, The Chemical Elements and Their Compounds, Oxford University Press, London (1950), pp. 1146–1150.

    Google Scholar 

  42. L. Miessler and D. A. Tarr, Inorganic Chemistry, 2nd ed., Prentice Hall, Upper Saddle River, NJ (1998), p. 268.

    Google Scholar 

  43. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry-A Comprehensive Text, 4th ed., John Wiley & Sons, Inc., New York (1980), p. 562.

    Google Scholar 

  44. T. Moeller, Inorganic Chemistry-An Advanced Textbook, 2nd printing, John Wiley & Sons, Inc., New York (1965), pp. 446 et seq.

    Google Scholar 

  45. C.-P. Chen, T. V. Bommaraju, and P. C. Williams, U.S. Patent 5,639,422 (1997).

    Google Scholar 

  46. T. A. Liederbach, Unpublished Remarks, Seventh Annual Electrode Corporation Chlorine/Chlorate Industry Seminar, Cleveland, OH (1991).

    Google Scholar 

  47. HFSJG, Activity Report 2001, International Foundation High-Altitude Research Stations, http://www.ifjungo.ch/html/11.pdf. (2001).

  48. The Northern Hemisphere Stratosphere in the 2002/3 Winter, European Ozone Research Coordinating Unit, University of Cambridge (2003).

    Google Scholar 

  49. S. Hieger, Retrofitting a Chlorine Liquefaction System to R-134a, 39th Chlorine Institute Plant Managers Seminar, Washington, DC (1996).

    Google Scholar 

  50. A. Bhadsavle and W. W. Humm, A Utility Approach to Alternative Refrigerants, CFC Refrigerant Alternative Seminar, New Orleans, LA (1993).

    Google Scholar 

  51. D. O’Shaughnessey, Flammability of R134a, R22, and R123 in Chlorine, Chlorine Institute CFC Refrigerant Alternatives Seminar, New Orleans, LA (1993).

    Google Scholar 

  52. J. H. Boyette, The BOCOSITM Chlorine Condensing System, 39th Chlorine Institute Plant Managers Seminar, Washington, DC (1996).

    Google Scholar 

  53. W. W. Humm, FES, Inc., Personal Communication (1996).

    Google Scholar 

  54. Maximum Levels of Nitrogen Trichloride in Liquid Chlorine. GEST 76/55, 10th ed., Euro Chlor, Brussels (2001).

    Google Scholar 

  55. R. F. Strickland-Constable, General Thermodynamic Relationships, In H. W. Cremer and T. Davies (eds.), Chemical Engineering Practice, vol. 4, Butterworths Publications Ltd., London (1957), pp. 61–62.

    Google Scholar 

  56. B. G. Kyle, Chemical and Process Thermodynamics, 3rd ed., Prentice Hall PTR, Upper Saddle River, NJ (1999).

    Google Scholar 

  57. L. J. Updyke, Method for Calculating Water Distribution in a Chlorine Condensing System, 25th Chlorine Institute Plant Operations Seminar, Atlanta, GA (1982).

    Google Scholar 

  58. Soda Handbook, Japan Soda Industry Association, Tokyo (1998), p. 423.

    Google Scholar 

  59. R. Le Vine, Guidelines for Safe Storage and Handling of High Toxic Hazard Materials (prepared by team from Arthur D. Little Inc., led by P. A. Croce, from original draft), Center for Chemical Process Safety, New York, NY (1988).

    Google Scholar 

  60. S. M. Englund, Opportunities in the Design of Inherently Safer Chemical Plants. In Advances in Chemical Engineering, vol. 15, Academic Press, Inc., San Diego, CA (1990).

    Google Scholar 

  61. T. F O’Brien, Beyond Hazan-The Role of Plant Safety Surveys, 39th Chlorine Institute Plant Managers Seminar, Washington, DC (1996).

    Google Scholar 

  62. J. Haas, Chlorine Monitors, 30th Chlorine Institute Plant Managers Seminar, Washington, DC (1987).

    Google Scholar 

  63. R. Woods, Atmospheric Chlorine Storage, 23rd Chlorine Institute Plant Managers Seminar, New Orleans, LA (1980).

    Google Scholar 

  64. N. C. Harris and J. P. Shaw, European Chlorine Storage Practice, 23rd Chlorine Institute Plant Managers Seminar, New Orleans, LA (1980).

    Google Scholar 

  65. F. P. Lees, Loss Prevention in the Chemical Industries, Butterworths, London (1980).

    Google Scholar 

  66. S. M. Englund, Chem. Eng. Progr. 87(3), 85 (1991).

    CAS  Google Scholar 

  67. Process Piping, ASME B 31.3, an ANSI Standard, The American Society of Mechanical Engineers, New York, NY (1996).

    Google Scholar 

  68. E. L. Sokol, Liquid Chlorine Transfer with External Pumps from Top Outlet Storage Tanks, 23rd Chlorine Institute Plant Managers Seminar, New Orleans, LA (1980).

    Google Scholar 

  69. R. E. Means, Chlorine Transfer, 21st Chlorine Institute Plant Operations Seminar, Houston, TX (1978).

    Google Scholar 

  70. R. Tujague, Chlorine Unloading Systems, 40th Chlorine Institute Plant Operations Seminar, New Orleans, LA (1997).

    Google Scholar 

  71. J. H. Burelle and C. J. Bourgeois, Chlorine Tank Car Loading Systems-Occidental Chemical Taft, LA Facility, 40th Chlorine Institute Plant Operations Seminar, New Orleans, LA (1997).

    Google Scholar 

  72. Chlorine Tank Car Marking, Drawing No. 167, Issue 5, The Chlorine Institute, Inc., Washington, DC(2001).

    Google Scholar 

  73. J. W. Mason, Design Aspects of Loading and Unloading Systems Which Can Mitigate or Eliminate Accidental Chlorine Releases. In R. W. Curry (ed.), Modern Chlor-Alkali Technology, vol. 6, Royal Society of Chemistry, Cambridge (1995), p. 48.

    Google Scholar 

  74. Industrial Ventilation Manual: A Manual of Recommended Practices, 22nd ed., American Conference of Governmental Industrial Hygienists, Cincinnati, OH (1995).

    Google Scholar 

  75. R. Papp, Chlorine Handling and Safety in the European Situation. In C. Jackson (ed.), Modern ChlorAlkali Technology, vol. 2, Ellis Horwood, Chichester (1983), p. 376.

    Google Scholar 

  76. T. F. O’Brien, Common Factors in Hazard Analysis, 35th Chlorine Institute Plant Operations Seminar, New Orleans, LA (1992).

    Google Scholar 

  77. M. M. Silver, Chlorine Tailgas and Snift Disposal Systems, 25th Chlorine Institute Plant Operations Seminar, Atlanta, GA (1982).

    Google Scholar 

  78. T. F. O’Brien, The Use of Gas-Separation Membranes in Chlorine Processing. In J. Moorhouse (ed.), Modern Chlor-Alkali Technology, vol. 8, Blackwell Science, Oxford (2001), p. 90.

    Chapter  Google Scholar 

  79. E. Bartholome‘, Z Elektrochem. 54,3 (1950).

    Google Scholar 

  80. Remarks by N. C. Harris and J. A. Heilala, 2nd Chlorine Plant Operations Workshop, The Chlorine Institute, Inc., Washington, DC (1987).

    Google Scholar 

  81. R. L. Pigford, Course notes, University of Delaware, citing the work of Stephens and Morris (1958).

    Google Scholar 

  82. Crosby Style JQ Pressure Relief Valve, Catalog No. 306, Crosby Valve Inc., Wrentham, MA (1997).

    Google Scholar 

  83. E. H. Stitt, F. E. Hancock, and K. Kelly, New Process Options for Hypochlorite Destruction. In J. Moorhouse (ed.), Modern Chlor-Alkali Technology, vol. 8, Blackwell Science, Oxford (2001), p. 315.

    Chapter  Google Scholar 

  84. W D. McCollam, Chlorine Scrubbing Systems-A Discussion of CI Publication #89, 35th Chlorine Institute Plant Operations Seminar, New Orleans, LA (1992).

    Google Scholar 

  85. T. F. O’Brien, Emergency Vent Scrubbing Systems-Design; Operation; Hazard Analysis, Seventh Annual Electrode Corporation Chlorine/Chlorate Seminar, Cleveland, OH (1991).

    Google Scholar 

  86. H. M. Patel and T. B. Scarfe, Safety Aspects of Niachlor Membrane Cell Plant, 31st Chlorine Institute Plant Operations Seminar, New Orleans, LA (1988).

    Google Scholar 

  87. J. E. Vivian and R. P. Whitney, Chem. Eng. Prog. 43, 691 (1947).

    CAS  Google Scholar 

  88. T. F. O’Brien and I. F. White, Design and Operation of Emergency Chlorine Absorption Systems. In T. C. Wellington (ed.), Modern Chlor-Alkali Technology, vol. 5, Elsevier Applied Science, London (1992), p. 239.

    Chapter  Google Scholar 

  89. H. Hikita, S. Asai, and T. Takatsuka, Chem. Eng. J. 5, 77 (1973).

    Article  CAS  Google Scholar 

  90. T. K. Sherwood and R. L. Pigford, Absorption and Extraction, McGraw-Hill Book Co., New York (1952).

    Google Scholar 

  91. L. J. Updyke, Emergency Vent Scrubbers-Design Considerations, 5th Chlorine Plant Operations Workshop, Houston, TX (1990).

    Google Scholar 

  92. F. Yoshida and K. Akita, A.I.Ch.E. J. 11(1), 9 (1965).

    Article  CAS  Google Scholar 

  93. T. A. Makhneva and P. P. Gertsen, Zh. Prikl. Khim. 43(4), 766 (1970).

    Google Scholar 

  94. J. Boteler and D. Clucas, reprinted in Chemical Engineering Buyers Guide (2000), p. 10.

    Google Scholar 

  95. V. K. Gupta, Considerations in Design of Chlorine Expansion Chambers, in Proceedings, Oronzio de Nora Symposium on Chlorine Technology, Venice (1979), p. 369.

    Google Scholar 

  96. Explosive Properties of Gaseous Mixtures Containing Hydrogen and Chlorine, Member Information Report 121, Edition 1, The Chlorine Institute, Inc., Washington, DC (1977).

    Google Scholar 

  97. O. Suzuki and T. Fukunaga, J. Electrochem. Soc. (Japan) 24, 104 (1956).

    CAS  Google Scholar 

  98. J. Van Diest and R. DeGraff, Ind. Chem. Belg. 30(11), 1195 (1965).

    Google Scholar 

  99. V. N. Antonov, E. Frolov, A. I. Rozlovskii, and A. S. Maltseva, Khim. Prom. 3, 205 (1974).

    Google Scholar 

  100. E. J. Laubusch, Water Chlorination. In J. S. Sconce (ed.), Chlorine: Its Manufacture, Properties and Uses, Robert E. Krieger Publishing Co., Huntington, NY (1972), p. 465.

    Google Scholar 

  101. B. V. Tilak and C.-P. Chen, Chlor-alkali and Chlorate Technology, in Proceedings, R. B. MacMullin Memorial Symposium, H. S. Burney, N. Furuya, F. Hine, and K.-I. Ota (eds.), The Electrochemical Society, Inc., Pennington, NJ (1999), p. 8.

    Google Scholar 

  102. D. Hildebrand, Nitrogen Trichloride Analysis and Sampling, 39th Chlorine Institute Plant Managers Seminar, Washington, DC (1996).

    Google Scholar 

  103. J. Fairweather, Orica Yarraville Nitrogen Trichloride Incidents, 30 July 1998. The Chlorine Institute Nitrogen Trichloride Workshop, New Orleans, LA (1998).

    Google Scholar 

  104. C. R. Dillmore, Actual Plant Practice in the Use of Ultraviolet Light for Removal of Nitrogen Trichloride from Chlorine Gas, 7th Chlorine Institute Plant Operations Seminar, New York, NY (1962).

    Google Scholar 

  105. J. F. Knoop and A. Santavicca, The Chlorine Institute Nitrogen Trichloride Workshop, New Orleans, LA (1998).

    Google Scholar 

  106. R. E. Ross and J. L. Bowling, NCl3 Concentrations and Decomposition by Dry Compression, Member Information Report 21, The Chlorine Institute, Washington, DC (1988), p. 101.

    Google Scholar 

  107. V. A. Shushunov and L. Z. Pavlova, Zhur. Neorg. Khim. 2, 2272 (1957).

    CAS  Google Scholar 

  108. C. S. Robinson and E. R. Gilliland, Elements of Fractional Distillation, 4th ed., McGraw-Hill Book Co., New York, NY (1950), p. 110.

    Google Scholar 

  109. S. D. Argade, E. N. Balko, D. A. Kramer, and J. F. Louvar, Nitrogen Trichloride Control in Chlorine Manufacture, Electrochemical Society Meeting, Seattle, WA (1978).

    Google Scholar 

  110. F. Abraham and J. F. Knoop, Maximum Accumulation of Nitrogen Trichloride in a Continuous-Feed Chlorine Vaporizer, The Chlorine Institute Nitrogen Trichloride Workshop, New Orleans, LA (1998).

    Google Scholar 

  111. Ya. J. Apin, Acta Physiochim. URSS 13, 405 (1940).

    CAS  Google Scholar 

  112. R. F. Zeller, J. P. DeJac, B. B. Guildin, M. J. Korzeuk, and G. J. Garzon, Demonstrating Non-Ideal Solution Behavior of NCl3 in Liquid Chlorine and Its Application to Chlorine Vaporizers, Sixteenth Annual Chlorine/Chlorate Seminar, Cleveland, OH (1999).

    Google Scholar 

  113. Compressed Gas Association, Handbook of Compressed Gases, 3d ed., Van Nostrand Reinhold, New York, NY (1990).

    Book  Google Scholar 

  114. U. Herrlett, Chem. Eng. 109(5), 62 (2002).

    Google Scholar 

  115. I. H. Warren, Energy Saving in Chlorate Production with the Use of a Fuel Cell. In C. Jackson (ed.), Modern Chlor-Alkali Technology, vol. 2, Ellis Horwood Limited, Chichester (1983), p. 289.

    Google Scholar 

  116. N. P. Chopey, Newsfront; Chem. Eng. 108(7), 37 (2001).

    Google Scholar 

  117. E. N. Balko, SPE Hydrochloric Acid Electrolysis Cell: Performance, Cell Configuration, in Proceedings, Oronzio DeNora Symposium on Chlorine Technology, Venice (1979), p. 204.

    Google Scholar 

  118. V. H. Thomas and E. J. Rudd, Energy Savings Advances in the Chlor-alkali Industry. In C. Jackson (ed.), Modern Chlor-Alkali Technology, vol. 2, Ellis Horwood, Chichester (1983), p. 159.

    Google Scholar 

  119. P. Schmittinger, Chlorine-Principles and Industrial Practice, Wiley-VCH, Weinheim (2000), p. 46.

    Google Scholar 

  120. Type HGR for Mercury Removal, product bulletin, Calgon Carbon Corporation, Pittsburgh, PA (1993).

    Google Scholar 

  121. C. P. Dillon, Corrosion Control in the Chemical Process Industries, McGraw-Hill Book Co., New York, NY (1986), p. 120.

    Google Scholar 

  122. G. A. Nelson, Hydrocarbon Processing 44(5), 185 (1965).

    CAS  Google Scholar 

  123. I. F White, G. J. Dibble, J. E. Harker, and T. F. O’Brien, Safety Considerations in the Design of Chloralkali Plants. In K. Wall (ed.), Modern Chlor-Alkali Technology, vol. 3, Ellis Horwood, Chichester (1986), p. 97.

    Google Scholar 

  124. F. Bodurtha, Industrial Explosion Prevention and Protection, McGraw-Hill Book Co., New York (1980).

    Google Scholar 

  125. F. Hine and A. J. Acioli M., J. Appl. Electrochem. 22, 699 (1992).

    Article  CAS  Google Scholar 

  126. A. J. Acioli, E. F. Powell, and F. C. Viana, Production of 70% Caustic Soda Directly from Decomposer, an Effective Way to Save Energy. In T. C. Wellington (ed.), Modern Chlor-Alkali Technology, vol. 5, Elsevier Applied Science, London (1992), p. 199.

    Chapter  Google Scholar 

  127. R. Coin, Brine Purification, Sixteenth Annual Chlorine/Chlorate Seminar, Cleveland, OH (2000).

    Google Scholar 

  128. D. C. Brandt, The Economics of Producing High-Strength Caustic Soda in Membrane Cells, 32nd Chlorine Institute Plant Operations Seminar, Washington, DC (1989).

    Google Scholar 

  129. F. Hine and M. Okubo, Corrosion Eng. (Japan) 25, 509 (1976).

    Article  CAS  Google Scholar 

  130. R. K. Swandby, Chem. Eng. November 12, 1962, p. 186.

    Google Scholar 

  131. Corrosion Resistance of Nickel and Nickel-Containing Alloys in Caustic Soda and Other Alkalies, CEB-2, International Nickel Company, New York, NY (1973).

    Google Scholar 

  132. C. P. Dillon, Corrosion Control in the Chemical Process Industries, McGraw-Hill Book Co., New York, NY (1986), p. 113.

    Google Scholar 

  133. D. E. Jordan, Stress-Corrosion Cracking of Nickel-Base Alloy Weldments, International Institute of Welding Annual Assembly, Montreal (1990).

    Google Scholar 

  134. A. R. Mcllree and H. T. Michels, Corrosion 33(2), 60 (1977).

    Article  Google Scholar 

  135. C. M. Schillmoller, Alloy Selection for Caustic Soda Service, NiDI Technical Series No. 10019, Nickel Development Institute, Toronto (1988).

    Google Scholar 

  136. A. B. Misercola, R. P. Tracy, I. A. Franson, and R. J. Knoth, The Use of E-Brite 26-1® Ferritic Stainless Steel in Production of Caustic Soda, Electrochemical Society meeting, Washington, DC (1976).

    Google Scholar 

  137. J. E. Houston, Evaporator Technology Corporation, Personal Communication (1983).

    Google Scholar 

  138. B. M. Barkel, Accelerated Corrosion of Nickel Tubes in Caustic Evaporator Service, CORROSION/79, Paper No. 13, Atlanta, GA (1979).

    Google Scholar 

  139. M. Yasuda, F. Takeya, and F. Hine, Corrosion 39(10), 399 (1983).

    Article  CAS  Google Scholar 

  140. T. V. Bommaraju and P. J. Orosz, Caustic Evaporator Corrosion: Causes and Remedy. In T. C. Wellington (ed.), Modern Chlor-Alkali Technology, vol. 5, Elsevier Applied Science, London (1992), p. 307.

    Chapter  Google Scholar 

  141. T. V. Bommaraju, W. V. Hauck, and V. J. Lloyd, U.S. Patent 4,585,579 (1986).

    Google Scholar 

  142. J. R. Crum and W. G. Lipscomb, Performance of Nickel 200 and E-Brite 26-1 in First-Effect Caustic Environments. CORROSION/83, Paper No. 23 (1983).

    Google Scholar 

  143. R. Parkinson, Properties and Applications of Electroless Nickel, Technical paper 10081, Nickel Development Institute, Toronto (1997).

    Google Scholar 

  144. S. A. Watson, Electroless Nickel Coatings, Technical paper 10055, Nickel Development Institute, Toronto (1990).

    Google Scholar 

  145. P. Cutler, Nickel, Nickel Everywhere, Reprint Series No. 14,048, from Materials World, September 1998. Nickel Development Institute, Toronto (1998).

    Google Scholar 

  146. C. W. Funk and G. B. Barton, Caustic Stress Corrosion Cracking, CORROSION 77, Paper No. 54, National Association of Corrosion Engineers, Houston, TX (1977).

    Google Scholar 

  147. http://www.swenson-equip.com/fc-evap, Forced-Circulation Evaporator, Swenson Process Equipment Co., Harvey, IL (2002).

  148. J. D. Kumana, Chem. Eng. Progr. 86(5), 10 (1990).

    CAS  Google Scholar 

  149. A. Ward, Fouling of Evaporator Heat Exchangers-Causes and Cures, Fuel/Ethanol Workshop, Wichita, KS (1992).

    Google Scholar 

  150. General Electric Co., South African Patent 7,606,336 (1977).

    Google Scholar 

  151. D. Mannig and G. Scherer, Hydrogen Peroxide in the Chlor-Alkali Industry, 30th Chlorine Institute Plant Operations Seminar, Washington, DC (1987).

    Google Scholar 

  152. S. G. Osborne and S. Davids, U.S. Patent 2,823,177 (1958).

    Google Scholar 

  153. L. L. Benezra, D. W. Hill, and S.-P. Tsai, U.S. Patent 4,055,476 (1977).

    Google Scholar 

  154. P. Schmittinger (ed.), Chlorine-Principles and Industrial Practice, Wiley-VCH, Weinheim (2000), p. 125.

    Google Scholar 

  155. F. C. Standiford and W. L. Badger, Ind. Eng. Chem. 46(11), 2400 (1954).

    Article  CAS  Google Scholar 

  156. D. J. Pye, U.S. Patent 2,610,105 (1952).

    Google Scholar 

  157. A. von Antropoff and W. Sommer, Z phys. Chem. 123, 161 (1926).

    Google Scholar 

  158. W. Haltenberger, Jr., Ind. Eng. Chem. 31, 783 (1930).

    Article  Google Scholar 

  159. P. S. Nair, Chem. Eng. 110(1), 77 (2003).

    Google Scholar 

  160. M. Pasquariello, Chem. Eng. 107(9), 77 (2000).

    Google Scholar 

  161. M. E. Bishop, Chem. Eng. 109(5), 77 (2002).

    Google Scholar 

  162. W. Cathcart, Caustic Tank Car Lining, 30th Chlorine Institute Plant Operations Seminar, Washington, DC (1987).

    Google Scholar 

  163. T. F O’Brien, Considerations in the Conversion of Existing Chlor-alkali Plants to Membrane-cell Operation. In C. Jackson (ed.), Modern Chlor-Alkali Technology, vol. 2, Ellis Horwood, Chichester (1983), p. 190.

    Google Scholar 

  164. K. A. Stanley, Phased Conversion of a Diaphragm Plant to Membrane Technology. In S. Sealey (ed.), Modern Chlor-Alkali Technology, vol. 7, Royal Society of Chemistry, Cambridge (1998), p. 145.

    Google Scholar 

  165. http://www.swenson-equip.com/dtbxtaliz, Draft Tube Baffle Crysta0llizer, Swenson Process Equipment Co., Harvey, IL (2002).

  166. M. J. Niksa, Acid/Base Recovery from Sodium Sulfate, Fourth International Forum on Electro synthesis in the Chemical Industry, Fort Lauderdale, FL (1991).

    Google Scholar 

  167. R. B. MacMullin, Chem. Eng. Progr. 46(9), 440 (1950).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc

About this chapter

Cite this chapter

O’Brien, T.F., Bommaraju, T.V., Hine, F. (2005). Product Handling. In: Handbook of Chlor-Alkali Technology. Springer, Boston, MA. https://doi.org/10.1007/0-306-48624-5_9

Download citation

Publish with us

Policies and ethics