Skip to main content

Abstract

In their design and construction, electrochemical plants differ from ordinary chemical plants in several ways:

  1. 1

    by the major importance of electrical supply and its conversion to direct current;

  2. 2

    by the fact that the electrolyzers and the fluids they contain are parts of electrical circuits;

  3. 3

    by the unique considerations that apply to the electrolysis area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.E. Bihary, Safety in Cellroom Design, 39th Chlorine Institute Plant Operations Seminar, Washington, DC (1996).

    Google Scholar 

  2. W.H. Davis, Open Cell Room Operations, 24th Chlorine Institute Plant Operations Seminar, Houston, TX(1981).

    Google Scholar 

  3. G. Oliva, The Return of DeNora to Diaphragm Cell Technology with Glanor®. In Proceedings, Oronzio de Nora Symposium on Chlorine Technology, Venice (1979), p. 279.

    Google Scholar 

  4. J.H. Nichols, Ventilation in Mercury Cell Rooms, 8th Chlorine Institute Plant Operations Seminar, New York, NY (1963).

    Google Scholar 

  5. J.A. Heilala, Controlling Mercury Exposure, 32nd Chlorine Institute Plant Operations Seminar, Houston, TX (1989).

    Google Scholar 

  6. G.F. Gissel, Waste Water Minimization at the Vulcan Port Edwards Chlor-Alkali Facility, 39th Chlorine Institute Plant Operations Seminar, Washington, DC (1996).

    Google Scholar 

  7. Standard for Electrical Safety in Electrolytic Cell Line Working Zones, Standard No. 463, Institute of Electrical and Electronics Engineers, New York, NY (1977).

    Google Scholar 

  8. Electrical Safety in Chlor-Alkali Cell Facilities, Pamphlet 139, Edition 3, The Chlorine Institute, Inc., Washington, DC (1998).

    Google Scholar 

  9. Gravity Ventilation Systems, http://www.westerncanwell.com, Western Canwell, Denison, TX (2002).

  10. D.L. Beeman, ed., Industrial Power Systems Handbook, McGraw-Hill Book Co., New York, NY (1955).

    Google Scholar 

  11. W.H. Dickinson, AIEE Trans. (App. Ind.), Part II 81, 132, July (1962).

    Google Scholar 

  12. J.M. Lucas, Personal Communication (2002).

    Google Scholar 

  13. M. Cameron, Trends in Power Factor Correction with Harmonic Filtering, http://www.udgroup.com, Universal Dynamics Ltd., Vancouver (2001).

    Google Scholar 

  14. Recommended Practice for Harmonic Control in Electrical Power Systems, IEEE 519, Institute of Electrical and Electronics Engineers, New York, NY (1992).

    Google Scholar 

  15. P.C. Buddingh, Even Harmonic Resonance-An Unusual Problem, IEEE Paper No. PCIC 2002-11 (2002).

    Google Scholar 

  16. A.G. Forster, IEEE Trans. Ind. Appl. 1A-11(6), 716 (1975).

    Article  Google Scholar 

  17. Y. Tominaga, T. Kanke, K. Takagai, and T. Miyazaki, Design, Installation and Operation of Ion-Exchange Membrane Chlor-Alkali Process. In N.M. Prout and J.S. Moorhouse (eds), Modern Chlor-Alkali Technology, vol. 4, Elsevier Applied Science, London (1990), p. 141.

    Chapter  Google Scholar 

  18. J.E. Harker, Catalytic International, Inc., Personal Communication (ca. 1978).

    Google Scholar 

  19. W.H. McAdams, Heat Transmission, 4th ed, McGraw-Hill Book Co., New York (1954), pp. 170–174.

    Google Scholar 

  20. L.J. Istas, Aluminum Intercell Bus: A Case History, 19th Chlorine Institute Plant Operations Seminar, Montreal (1976).

    Google Scholar 

  21. F. Hine, J. Electrochem. Soc. 117, 139 (1970).

    Article  Google Scholar 

  22. L.J. Updyke, Development of Energy Models for Chlorine Plants, 28th Chlorine Institute Plant Operations Seminar, Houston, TX (1985).

    Google Scholar 

  23. P.W. Masding and N.D. Browning, A Dynamic Model of a Mercury Chlorine Cell. In J. Moorhouse (ed.), Modern Chlor-Alkali Technology, vol. 8, Blackwell Science, Oxford (2001), p. 247.

    Chapter  Google Scholar 

  24. A. Ullman, Cost Saving in Chlorine Plants by Benefitting from the Unique Properties of Titanium. In J. Moorhouse (ed.), Modern Chlor-Alkali Technology, vol. 8, Blackwell Science, Oxford (2001), p. 282.

    Chapter  Google Scholar 

  25. Influence of Hot/Wet Chlorine on FRP Performance, Bulletin, Reichhold Chemicals, Inc., Research Triangle Park, NC (1986).

    Google Scholar 

  26. R.C. Talbot, FRP Usage in the Chlorine Industry, Bulletin No. 1704, Ashland Chemical Co., Columbus, OH (1988).

    Google Scholar 

  27. Standard Specification for Reinforced Plastic Laminates for Self-Supporting Structures for Use in a Chemical Environment, Standard C-582, American Society for Testing and Materials, Philadelphia, PA (1984).

    Google Scholar 

  28. W. Pechenik, Catalytic, Inc., Personal Communication (ca. 1980).

    Google Scholar 

  29. D.J. Sankey, M. Isaacs, and A. Gaines, Chem. Processing, p. 96, February issue (1981).

    Google Scholar 

  30. E. Conroy and M. Cameron, Advances in Anode Monitoring, http://www.udgroup.com, Universal Dynamics, Ltd., Vancouver (2001).

    Google Scholar 

  31. I.F. White, G. J. Dibble, J.E. Harker, and T.F. O’Brien, Safety Considerations in the Design of Chlor-Alkali Plants. In K. Wall (ed.), Modern Chlor-Alkali Technology, vol. 3, Ellis Horwood, Chichester (1986), p. 97.

    Google Scholar 

  32. NFPA 70E, Standard for the Electrical Safety Requirements for Employee Work Places, National Fire Protection Association, Quincy, MA (1995).

    Google Scholar 

  33. CF. Dalziel, IRE Trans. Med. Electron. PGME-5(7), 44 (1956).

    Google Scholar 

  34. Electromagnetic Fields in Chlorine Electrolyses: Effects on Health and Recommended Limits, Health 3, 1st ed, Euro Chlor, Brussels (2001).

    Google Scholar 

  35. J.L. Marsh, Health Effects of Occupational Exposure to Steady Magnetic Fields, University of Michigan Dissertation, Ann Arbor, MI (1980).

    Google Scholar 

  36. R. Park, Voodoo Science: The Road from Foolishness to Fraud, Oxford University Press, Oxford (2000), pp. 140 et seq.

    Google Scholar 

  37. R.F. Adams, Static Electromagnetic Fields in Chlor-Alkali Plants, 34th Chlorine Institute Plant Operations Seminar, Washington, DC (1991).

    Google Scholar 

  38. Interaction of Static and Extremely Low Frequency Electric and Magnetic Fields with Living Systems: Health Effects and Research Needs, World Health Organization, Geneva (1998).

    Google Scholar 

  39. International Commission on Non-Ionizing Radiation Protection (ICNIRP), Health Phys. 66(1), 100 (1994).

    Google Scholar 

  40. L. Bärregard, G. Sällsten, and B. Jarvholm, Brit. J. Ind. Med. 47, 99 (1990).

    Google Scholar 

  41. On the Limitation of Exposure of the General Public to Electromagnetic Fields, European Council Recommendation 519/CE, Brussels (1999).

    Google Scholar 

  42. International Commission on Non-Ionizing Radiation Protection (ICNIRP), Health Phys. 74(4), 494 (1998).

    Google Scholar 

  43. Board Statement on Restrictions on Human Exposure to Static and Time-Varying Electromagnetic Fields and Radiation, National Radiological Protection Board (UK), Chilton, Oxon (1999).

    Google Scholar 

  44. Emergency Response Planning Guidelines, American Industrial Hygiene Association, Akron, OH (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc

About this chapter

Cite this chapter

O’Brien, T.F., Bommaraju, T.V., Hine, F. (2005). Cell-Room Design. In: Handbook of Chlor-Alkali Technology. Springer, Boston, MA. https://doi.org/10.1007/0-306-48624-5_8

Download citation

Publish with us

Policies and ethics