Skip to main content

Chlor-Alkali Technologies

  • Chapter

Abstract

About 97 % of the chlorine and nearly 100% of the caustic soda in the world are produced electrolytically from sodium chloride, while the rest of the chlorine is manufactured by the electrolysis of KC1, HC1, chlorides of Ti and Mg, and by the chemical oxidation of chlorides [1]. The electrolytic technologies currently used are mercury, diaphragm, and ion-exchange membrane cells. Figures 5.1 and 3.10 show the distribution of these cell technologies in the world and on a regional basis [2]. Mercury cells had a world share of 45% in 1984 and declined to 18% in 2001 because of the health and environmental concerns associated with mercury. However, it is still the leading technology in Europe.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.V. Bommaraju, B. Lüke, G. Dammann, T.F. O’Brien, and M. Blackburn, Chlorine. Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, Inc., New York (2003).

    Google Scholar 

  2. H.J. Hartz and J. Marciniak, Krupp Uhde, Technology Partner for the Chlor-Alkali Industry. 11th Krupp Uhde Chlorine Symposium, Dortmund, Germany (2001).

    Google Scholar 

  3. G.W. Vinal, A. Volta. In CA. Hampel (ed.), Encyclopedia of Electrochemistry, Reinhold Publishing Co., New York (1964), p. 1154.

    Google Scholar 

  4. J.E. Colman. Electrolytic Production of Sodium Chlorate. In R. Alkire and T. Beck (eds.), Tutorial Lectures in Electrochemical Engineering and Technology, AlChE Symposium Series 204, vol. 77, American Institute of Chemical Engineers, New York (1981), p. 244.

    Google Scholar 

  5. T.A. Ross, Monopolar or Bipolar?-The Current Debate, Reprint from Process Industry J. Feb. 1990.

    Google Scholar 

  6. T. Navin, OxyTech Systems Inc., Private Communication (1998).

    Google Scholar 

  7. M. Quissek, Asea Brown Boveri Industrie AG, Private Communication (1998).

    Google Scholar 

  8. T.R. Beck, I. Rousar, and J. Thonstad, J. Light Metals 485 (1993).

    Google Scholar 

  9. U. Bossel, German Patent Application WO-94-EP2181 (1994).

    Google Scholar 

  10. A. Kaufman and J. Werth, European Patent Application: EP-85-306022 850823 (1985).

    Google Scholar 

  11. U.M. Yang, H. Wu, and J. Selman, J. Appl. Electrochem. 19, 247 (1989).

    Article  CAS  Google Scholar 

  12. H.N. Sieger, J. Electrochem. Soc. 133, 2002 (1986).

    Article  Google Scholar 

  13. Y. Yoshida, GS News Tech. Rep. 44, 28 (1985).

    CAS  Google Scholar 

  14. G. Codina, J.R. Perez, M. Lopez-Atalaya, J.L. Vazquez, and A. Aldaz, J. Power Sources 48, 293 (1994).

    Article  CAS  Google Scholar 

  15. M.A. Manzo, R.F. Gahn, O.D. Ganzalez-Somabria, R.L. Cataldo, and R.P. Gemeiner, Proc. Inter. Soc. Energy Corners. Eng. Conf. 22(22), 864 (1987), NASA Tech. Memo, Issue NASA-TM-89907, E-3600 (1987).

    Google Scholar 

  16. P. Grimes, R. Bellows, and P. Malachesky, Proc. Symp. Eng. Ind. Electrolytic Processes, PV 86-88, The Electrochemical Society, Pennington, NJ (1986) p. 142.

    Google Scholar 

  17. J.R. Driscoll, R. Pollard, J.J. Smith, and S. Szpak, Proc. Inter. Soc. Energy Corners. Eng. Conf. 20(2), 2.55–2.62 (1985).

    Google Scholar 

  18. K. Nozaki, H. Kaneko, A. Negishi, K. Kanari, and T. Ozawa, Proc. Inter. Soc. Energy Convers. Eng. Conf. 19(2), 844 (1984).

    Google Scholar 

  19. R.I. Cataldo, Proc. Inter. Soc. Energy Convers. Eng. Conf. 18(4), 1561 (1983).

    Google Scholar 

  20. R.J. Bellows, H. Einstein, P. Grimes, E. Kantner, K. Newby, and J.A. Shropshire, Proc. Inter. Soc. Energy Convers. Eng. Conf 15(2), 1465 (1980).

    Google Scholar 

  21. S. Sarangapani, J.A. Kosek, and A.B. LaConti, Proton Conducting Electrochemical Capacitors with Solid Polymer Electrolyte. In M.Z.A. Munshi (ed.), Handbook-Solid State Batteries and Capacitors, World Scientific, Singapore (1995), p. 601.

    Chapter  Google Scholar 

  22. Y. Kakihara, S. Mataga, and M. Murata, Japanese Patent JP 61001513 (1986).

    Google Scholar 

  23. M. Yoshitake, Y. Nakamura, and Z. Kamio, Japanese Patent JP 60181288 (1985).

    Google Scholar 

  24. E. Balko, M. Nicholas, and L.C. Mouthrop, FR 2491957 (1982).

    Google Scholar 

  25. T. Morokuma, H. Yoshida, A. Hiroyuki, and J. Akazawa, Japanese Patent JP 48042559 (1973).

    Google Scholar 

  26. G.O. Westerlund, Canadian Patent 892733 (1972).

    Google Scholar 

  27. R.E. White, C. Walton, H.S. Burney, and R.N. Beaver, J. Electrochem. Soc. 133, 485 (1986).

    Article  CAS  Google Scholar 

  28. B.J. Scheiner, D.L. Pool, R.E. Lindstrom, and G.E. McCleland, Prototype Commercial Electrooxidation Cell for the Recovery of Molybdenum and Rhenium from Molybdate Concentrates. Reno Metall. Res. Cent., Bur. Mines, Reno, Report Issue: BM-RI-8357 (1979).

    Google Scholar 

  29. R. Collini, PCT Int. Appl. WO 8707652 (1987).

    Google Scholar 

  30. G. Zhao, S. Duan, Q. Tian, and T. Wu, Metall Trans B. 21B, 783 (1990).

    Article  CAS  Google Scholar 

  31. T.R. Beck, I. Rousar, and I. Thonstad, Metall Trans B. 25B, 661 (1994).

    Article  CAS  Google Scholar 

  32. N. Feng, Z. Qiu, G. Kai, and H.K. Zjotheim, J Light Met. 379 (1990).

    Google Scholar 

  33. N. Hoy-Patterson, T. Aune, T. Vralstad, K. Andreassen, D. Qymo, T. Haugerod, and O. Skaane, Magnesium. In Ullmanns Encyclopedia of Industrial Chemistry, vol. A15, Wiley-VCH Verlag GmbH, Weinheim, Germany (1990), p. 559.

    Google Scholar 

  34. O.G. Sivillotti and A. Briand, U.S. Patent 3,396,094 (1968).

    Google Scholar 

  35. O.G. Sivillotti, U.S. Patent 4,055,474 (1977).

    Google Scholar 

  36. H. Ishizuka, U.S. Patents 4,495,037 (1985); 4,647,355 (1987).

    Google Scholar 

  37. W.G.B. Mandersloot and R.E. Hickes, Desalination 1, 178 (1966).

    Article  CAS  Google Scholar 

  38. C.J.H. King and D.E. Danly, Experimental Measurement of Current Leakage in a Commercial Scale Bipolar Cell Stack, Abstract #392, Electrochemical Society Meeting, Montreal (1982).

    Google Scholar 

  39. E.A. Kaminski and R.F. Savinell, J. Electrochem. Soc. 130, 1103 (1983).

    Article  CAS  Google Scholar 

  40. M. Zahn, RG. Grimes, and R.L Bellows, U.S. Patent 4,197,169 (1980).

    Google Scholar 

  41. RG. Grimes, M. Zahn, and R. Bellows, U.S. Patent 4,312,735 (1982).

    Google Scholar 

  42. RG. Grimes, U.S. Patent 4,377,445 (1983).

    Google Scholar 

  43. RG. Grimes, R.J. Bellows, and M. Zahn, Shunt Current Control in Electrochemical Systems-Theoretical Analysis. In R.E. White (ed.), Electrochemical Cell Design, Plenum Press, New York (1984), p. 259.

    Chapter  Google Scholar 

  44. V.B. Kogan and R.-R. Ousepyan, Khim-Prom. 8, 463 (1954).

    Google Scholar 

  45. A.S. Bogoslovskii, Tsvetnye Metally 29(4), 57 (1956).

    Google Scholar 

  46. O.S. Ksenzhek and N.D. Koshel, Soviet Electrochem. 7, 331 (1971).

    Google Scholar 

  47. V.A. Onishchuk, Soviet Electrochem. 8, 681 (1972).

    Google Scholar 

  48. B.R Nestewrov, G.A. Karnzelev, V.R Gerasimenko, and N.V. Koronin, Soviet Electrochem. 9, 1091 (1973).

    Google Scholar 

  49. W. Thiele, M. Schleiff, and H. Matschiner, Electrochim. Acta 26, 1005 (1981).

    Article  CAS  Google Scholar 

  50. G. Zhao, S. Duan, Q. Tian, and T. Wu, Metall. Trans. B. 21B, 784 (1990).

    Google Scholar 

  51. S.K. Rangarajan and V. Yegnanarayanan, Electrochim. Acta 42, 153 (1997).

    Article  CAS  Google Scholar 

  52. S.K. Rangarajan, V. Yegnanarayanan, and M. Muthukumar, Electrochim. Acta 44, 491 (1998).

    Article  CAS  Google Scholar 

  53. J. Yang, Q. Zhang, H. Wang, and Y Liu, Trans NFsoc. 5, 29 (1995).

    CAS  Google Scholar 

  54. I. Rousar, J. Electrochem. Soc. 116, 676 (1969).

    Article  CAS  Google Scholar 

  55. J.W. Holmes and R.E. White, A Finite Element Model of Bipolar Plate Cells. In R.E. White (ed.), Electrochemical Cell Design, Plenum Press, New York (1984), p. 311.

    Chapter  Google Scholar 

  56. G. Bonvin and Ch. Comninellis, J. Appl. Electrochem. 24, 469 (1994).

    Article  Google Scholar 

  57. J.C. Burnett and D.E. Danly, Current Bypass in Electrochemical Cell Assemblies. In M. Krumplett, E.Y Weissmann, and R.C. Alkire (eds), Electro-Organic Synthesis Technology, AIChE Symp. Series 185, vol. 75, American Institute of Chemical Engineers, New York (1979), p. 8.

    Google Scholar 

  58. P.P. Pirotskii and N.N. Shvetsov, Ismeri-Tel’naya Technika 12, 43 (1961).

    Google Scholar 

  59. A.T. Kuhn and J.S. Booth, J. Appl. Electrochem. 10, 233 (1980).

    Article  Google Scholar 

  60. I. Rousar and V. Cezner, J. Electrochem. Soc. 121, 648 (1974).

    Article  CAS  Google Scholar 

  61. French Patent 2,114,043 (1972).

    Google Scholar 

  62. Japanese Patent 7,342,559 (1973).

    Google Scholar 

  63. Japanese Patent 7,757,086 (1977).

    Google Scholar 

  64. German Patent 2,556,065(1976).

    Google Scholar 

  65. R.N. Beaver and G.E. Newman, PCT Int. Appl. WO 9404719 (1994).

    Google Scholar 

  66. C.L. Mantell, Electrochemical Engineering, 4th Edition, McGraw-Hill Book Company, Inc., New York (1960), p. 248.

    Google Scholar 

  67. R.B. MacMullin, Electrolysis of Brines in Mercury Cells. In J.S. Sconce (ed.), Chlorine: Its Manufacture, Properties and Uses, R.E. Kreiger Publishing Company, Huntington, New York (1972), p. 127.

    Google Scholar 

  68. J.E. Currey and G.G. Pumplin. Chlorine. In J.J. McKetta and W.A. Cunningham (eds), Encyclopedia of Chemical Processing and Design, vol. 7, Marcel Dekker Inc., New York (1978), p. 305.

    Google Scholar 

  69. H.A. Sommers, Electrochem. Technol. 5, 108 (1967).

    CAS  Google Scholar 

  70. Y Chin, Process Economics Program: Chlorine Report 61D, SRI International, Menlo Park, CA (1992).

    Google Scholar 

  71. P. Schmittinger, T. Florkiewicz, L.C. Curlin, B. Lüke, R. Scanelli, T. Navin, E. Zelfel, and R. Bartsch, Chlorine. In Ullmann’s Encyclopedia of Industrial Chemistry, 6th Edition, Wiley-VCH Verlag GmbH, Weinheim, Germany (1999), p. 1.

    Google Scholar 

  72. D. Francis, DeNora’s Cell Room Technology Enhancements to Reduce Mercury Emissions, paper produced at the Chlorine Institute Conference, New Orleans (2001).

    Google Scholar 

  73. Uhde: Alkali Chloride Electrolyse nach dem Quecksilberverfahren.

    Google Scholar 

  74. Krebskosmo, Chlor-Alkali-Anlage.

    Google Scholar 

  75. R.W. Ralston, U.S. Patent 4,004,989A (1977).

    Google Scholar 

  76. U.S. Patents 1,365,875 (1921); 2,282,085 (1924).

    Google Scholar 

  77. PJ. Kienholz, Bipolar Chlorine Cell Development. In Chlorine Bicentennial Symposium, The Electrochemical Society, Princeton, NJ (1974), p. 198.

    Google Scholar 

  78. R.N. Beaver and C.W. Becker, U.S. Patents 4,093,533 (1978); 4,142,951 (1979).

    Google Scholar 

  79. H.D. Dang, R.N. Beaver, F.W Spillers, and M.J. Hazelrigg, Jr., U.S. Patent 4,497,112 (1985).

    Google Scholar 

  80. V. DeNora, Chem-Ing.-Tech. 47, 141 (1975).

    Article  Google Scholar 

  81. Brochure from PPG Industries, Glanor V Type 1144 Electrolyzer (1976).

    Google Scholar 

  82. T.C. Jeffery and R.J. Scott, The Glanor® Electrolyzer-The New Look in Chlorine Production. In Diaphragm Cells for Chlorine Production, Proceedings. Symposium at The City University, London, Society of Chemical Industry (1977), p. 67.

    Google Scholar 

  83. Chlorine Institute, North American Chlor-Alkali Plants, Pamphlet #10; Chlor-Alkali Producers Outside North America, Pamphlet # 16, New York (1976).

    Google Scholar 

  84. K. Hass, Chem.-Ing-Tech. 47, 121 (1975).

    Article  Google Scholar 

  85. L.C. Curlin, T.V. Bommaraju, and C.B. Hansson, Chlorine and Sodium Hydroxide. In Kirk-Othmer Encyclopedia of Chemical Technology, 4th Edition, vol. 1, John Wiley & Sons, Inc., New York (1991), p. 938.

    Google Scholar 

  86. R. Romine and R. Matousek, New and Improved Diaphragm Cell Hardware Designs. Electrode Corporation Chlorine/Chlorate Seminar, ELTECH Systems Corporation, Chardon, OH (1998).

    Google Scholar 

  87. E.S. Kazimir, Monopolar Cathode Design Improvements and Other Diaphragm Cell Component Advances. Electrode Corporation Chlorine/Chlorate Seminar, ELTECH Systems Corporation, Chardon, OH (1999).

    Google Scholar 

  88. T. Florkiewicz, Diaphragm Cell Improvements, 44th Chlorine Institute Plant Managers Seminar, New Orleans (2001).

    Google Scholar 

  89. E. Pearson, Criteria for the Selection of Membrane Cell Technology. In C. Jackson (ed.), Modern Chlor-Alkali Technology, vol. 2, Ellis Horwood, Chichester (1983), p. 177.

    Google Scholar 

  90. H. Shiroki, Y. Noaki, M. Katayose, and A. Kashiwada, Improvement of Electrolyzer and Ion Exchange Membrane for High Efficiency Chlorine and Caustic Soda Production. In R.W. Curry (ed.), Modern Chlor-Alkali Technology, vol. 6, The Royal Society of Chemistry, Cambridge (1995), p. 222.

    Google Scholar 

  91. Y Noaki and S. Okamoto, U.S. Patent 5,225,060 (1993).

    Google Scholar 

  92. M. Yoshida and Y Tamura, U.S.Patent 4,557,816 (1985).

    Google Scholar 

  93. M. Seko, S. Ogawa, N. Ajiki, and M. Yoshida, U.S. Patent 4,111,789 (1978).

    Google Scholar 

  94. CME Chlorine Engineers Membrane Electrolyzer, Chlorine Engineers Corp. Ltd., Tokyo, Japan (1989).

    Google Scholar 

  95. A. Hironaga, M. Okura, S. Katayama, and Y Take, Development of the Advanced Bipolar Membrane Electrolyzer (BiTACTM), In R.W. Curry (ed.), Modern Chlor-Alkali Technology, vol. 6, The Royal Society of Chemistry, Cambridge (1995), p. 205.

    Google Scholar 

  96. S. Katayama and Y Take, US. Patent 5,314,591 (1994).

    Google Scholar 

  97. S. Katayama, US. Patent 5,484,514 (1996).

    Google Scholar 

  98. Brochure on ExL and Dense Pak Cells, OxyTech Systems Inc, Chardon, OH (1998).

    Google Scholar 

  99. CD. Schulz, ELTECH Systems Corp., Chardon, Personal Communication (2003).

    Google Scholar 

  100. FM-2I SP Series Membrane Electrolyzer, ICI PLC, Northwich, Cheshire, (1989).

    Google Scholar 

  101. S. Collings, Chlor-Alkali Membrane Electrolyzer. InJ. Moorhouse (ed.), Modern Chlor-Alkali Technology, vol. 8, Chap. 18, Society of Chemical Industry, London (2001), p. 225.

    Chapter  Google Scholar 

  102. INEOS Chlor brochure, Chlor-Alkali Electrolyzer Technology (2003).

    Google Scholar 

  103. M.A. Cook, INEOS Chlor Ltd., Personal Communication (2003).

    Google Scholar 

  104. Alkaline Chloride Electrolysis by the Membrane Process, Krupp Uhde GmbH, Dortmund, Germany (2001).

    Google Scholar 

  105. M. Hartmann, D. Bergner, and K. Hannessen, U.S. Patent 5,194,132 (1993).

    Google Scholar 

  106. T. Borucinski and K. Schneiders, A New Generation of the Krupp Uhde Single-Element Design. In S. Sealy (ed.), Modern Chlor-Alkali Technology, vol. 7, The Royal Society of Chemistry, Cambridge, UK (1998), p. 105.

    Google Scholar 

  107. R. Beckmann and B. Lüke, Know-How and Technology-Improving the Return on Investment for Conversions, Expansions and New Chlorine Plants. In J. Moorhouse (ed.), Modern Chlor-Alkali Technology, Society of Chemical Industry, London (2001), p. 196.

    Chapter  Google Scholar 

  108. G. Dammann, Krupp Uhde GmbH, Dortmund, Germany, Personal Communication (2003).

    Google Scholar 

  109. H.S. Burney, Past, Present, and Future of the Chlor-Alkali Industry. In H.S. Burney, N. Furuya, F. Hine, and K.-I. Ota (eds), Chlor-Alkali and Chlorate Technology: R.B. MacMullin Memorial Symposium, Proc. vol. 99–21, The Electrochemical Society Inc., Pennington, NJ (1999), p. 105.

    Google Scholar 

  110. Soda Handbook, Japan Soda Industry Association, Tokyo (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc

About this chapter

Cite this chapter

O’Brien, T.F., Bommaraju, T.V., Hine, F. (2005). Chlor-Alkali Technologies. In: Handbook of Chlor-Alkali Technology. Springer, Boston, MA. https://doi.org/10.1007/0-306-48624-5_5

Download citation

Publish with us

Policies and ethics