Skip to main content

Deformation, Yield and Fracture of Amorphous Polymers: Relation to the Secondary Transitions

  • Chapter
  • First Online:
Intrinsic Molecular Mobility and Toughness of Polymers I

Part of the book series: Advances in Polymer Science ((POLYMER,volume 187))

Abstract

This paper deals with the mechanical properties (plastic deformation, micromechanism of deformation, fracture) of various amorphous polymers: poly(methyl methacrylate) and its maleimide and glutarimide copolymers, bisphenol A (and/or tetramethyl bisphenol A) polycarbonate, and aryl-aliphatic copolyamides. First, the required background on molecular characteristics, micromechanisms of deformation and fracture characterisation is recalled. Then, the results are discussed for each polymer series, considering information obtained on the motions involved in secondary transitions (mostly β transitions) analysed in a previous paper. The importance of the cooperative motions occurring in the high temperature part of the transition is unambiguously pointed out. Furthermore, in glutarimide copolymers, as well as in aryl-aliphatic copolyamides, it is shown that the dependence of toughness on the entanglement density fails and only the consideration of cooperative β transition motions can consistently account for the results. Finally, concerning the change of strain softening with increasing temperature, two opposite behaviours are observed for polymers in which β transitions result, on the one hand from side-group motions (strain softening decreases) and on the other hand from certain main-chain units (strain softening increases). Two different mechanisms have been proposed, based on a softening of the polymer medium by β transition motions associated with either an intramolecular cooperativity (in the first case), or an intermolecular cooperativity (in the second case) of these motions. Thus, combination of the results of the analysis of the relation of chemical structure to β transition motions with the present conclusions yields a molecular description of the whole set of behaviours involved in the mechanical properties of amorphous polymers, till fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Monnerie L, Lauprêtre F, Halary J-L (2005) Adv Polym Sci 187:35

    Google Scholar 

  2. Williams JG (1981) Stress analysis of polymers, 2nd edn. Wiley, New York

    Google Scholar 

  3. Ward IM (1983) Mechanical properties of solid polymers, 2nd edn. Wiley, New York

    Google Scholar 

  4. Kinloch AJ, Young RJ (1983) Fracture behaviour of polymers. Applied Science, London

    Google Scholar 

  5. Williams JG (1984) Fracture mechanics of polymers. Ellis Horwood, Chichester

    Google Scholar 

  6. Flory PJ (1989) Statistical mechanics of chain molecules. Hanser, New York

    Google Scholar 

  7. Wu S (1989) J Polym Sci Polym Phys 27:723

    Article  CAS  Google Scholar 

  8. Graessley WW (1971) J Polym Sci 54:5143

    CAS  Google Scholar 

  9. Robertson RE (1966) J Chem Phys 44:3950

    Google Scholar 

  10. Robertson RE (1968) Appl Polym Symp 7:201

    Google Scholar 

  11. Theodorou M, Jasse B, Monnerie L (1985) J Polym Sci Polym Phys 23:445

    CAS  Google Scholar 

  12. Xu Z, Jasse B, Monnerie L (1989) J Polym Sci Polym Phys 27:355

    Article  CAS  Google Scholar 

  13. Helfand E, Wasserman ZR, Weber TA (1980) Macromolecules 13:526

    Article  CAS  Google Scholar 

  14. Weber TA, Helfand E (1983) J Phys Chem 87:2881

    CAS  Google Scholar 

  15. Bahar I, Erman B, Monnerie L (1992) Macromolecules 25:6315

    CAS  Google Scholar 

  16. Lauterwasser BD, Kramer EJ (1979) Philos Mag A 39:469

    CAS  Google Scholar 

  17. Kausch H-H (ed)(1983) Crazing in polymers. Adv Polym Sci 52=53

    Google Scholar 

  18. Kausch H-H (ed)(1990) Crazing in polymers. Adv Polym Sci 91=92

    Google Scholar 

  19. Kramer EJ (1983) Adv Polym Sci 52=53:1

    Google Scholar 

  20. Kramer EJ, Berger LL (1990) Adv Polym Sci 91=92:1

    Google Scholar 

  21. Berger LL, Kramer EJ (1987) Macromolecules 20:1980

    Article  CAS  Google Scholar 

  22. McLeish TCB, Plummer CJG, Donald AM (1989) Polymer 30:1651

    Article  CAS  Google Scholar 

  23. Trassaert P, Schirrer R (1983) J Mater Sci 18:3004

    Article  CAS  Google Scholar 

  24. Donald AM, Kramer EJ (1981) J Mater Sci 16:2967

    CAS  Google Scholar 

  25. ISO 13586-1, Determination of fracture toughness for plastics, an LEFM approach.

    Google Scholar 

  26. Wu S (1992) Polym Eng Sci 32:823

    Article  CAS  Google Scholar 

  27. Brown HR (1991) Macromolecules 24:2752

    CAS  Google Scholar 

  28. Hui CY, Ruina A, Creton C, Kramer EJ (1992) Macromolecules 25:3948

    Article  CAS  Google Scholar 

  29. Sha Y, Hui CY, Ruina A, Kramer EJ (1995) Macromolecules 28:2450

    Article  CAS  Google Scholar 

  30. Kausch H-H (1987) Polymer fracture, 2nd edn. Springer, Heidelberg Berlin New York

    Google Scholar 

  31. Jud K, Kausch H-H, Williams JG (1981) J Mater Sci 16:204

    Article  CAS  Google Scholar 

  32. Tordjeman P, Tézé L, Halary J-L, Monnerie L (1997) Polym Eng Sci 37:1621

    Article  CAS  Google Scholar 

  33. Julien O (1995) PhD Thesis, Université Pierre et Marie Curie, Paris

    Google Scholar 

  34. Haussy J, Cavrot J-P, Escaig B, Lefebvre J-M (1980) J Polym Sci Polym Phys 18:311

    CAS  Google Scholar 

  35. Tézé L, Halary J-L, Monnerie L, Canova L (1999) Polymer 40:971

    Google Scholar 

  36. Rabinowitz S, Ward IM, Parry J SC (1970) J Mater Sci 5:29

    Article  CAS  Google Scholar 

  37. Tordjeman P (1992) PhD Thesis, Université Pierre et Marie Curie, Paris

    Google Scholar 

  38. Tordjeman P, Halary J-L, Monnerie L, Donald AM (1995) Polymer 36:1627

    Article  CAS  Google Scholar 

  39. Levett RJ, Donald AM (1994) In: Proceedings of 9th international conference on deformation, yield and fracture in polymers. 11–14 April 1994, Cambridge, UK :45

    Google Scholar 

  40. Marshall GP, Coutts LH, Williams JG (1974) J Mater Sci 9:1409

    Article  CAS  Google Scholar 

  41. Morgan GP, Ward IM (1977) Polymer 18:87

    Article  CAS  Google Scholar 

  42. Mizutani K (1987) J Mater Sci Lett 6:915

    Article  CAS  Google Scholar 

  43. Balzano M, Ravi-Chandar K (1991) J Mater Sci 26:1387

    Article  CAS  Google Scholar 

  44. Döll W, Könczöl L (1990) Adv Polym Sci 91=92:137

    Google Scholar 

  45. Schirrer R (1990) Adv Polym Sci 91=92:215

    Google Scholar 

  46. Schirrer R, Goett C (1981) J Mater Sci 16:2563

    Article  CAS  Google Scholar 

  47. Schirrer R, Goett C (1982) J Mater Sci Lett 1:355

    Article  CAS  Google Scholar 

  48. Lousteau B (2001) PhD Thesis, Université Pierre et Marie Curie, Paris

    Google Scholar 

  49. Bordes B (1999) PhD Thesis, Université Pierre et Marie Curie, Paris

    Google Scholar 

  50. Wu S (1989) J Polym Sci Polym Phys 27:723

    Article  CAS  Google Scholar 

  51. Plummer CJG, Kausch H-H, Tézé L, Halary J-L, Monnerie L (1996) Polymer 37:4299

    CAS  Google Scholar 

  52. Tézé L (1995) PhD Thesis, Université Pierre et Marie Curie, Paris

    Google Scholar 

  53. Brûlé B (1999) PhD Thesis, Université Pierre et Marie Curie, Paris

    Google Scholar 

  54. Christiansen AW, Baer E, Radcliffe SV (1971) Phil Mag 24:451

    CAS  Google Scholar 

  55. Bauwens-Crowet C, Bauwens J-C (1983) J Phys C 44:185

    Google Scholar 

  56. Wellinghoff ST, Baer E (1978) J Appl Polym Sci 22:2025

    Article  CAS  Google Scholar 

  57. Plummer CJG, Donald AM (1989) J Polym Sci Polym Phys 27:325

    Article  CAS  Google Scholar 

  58. Plummer CJG, Soles CL, Xiao C, Wu J, Kausch H-H, Yee AF (1995) Macromolecules 28:7157

    Article  CAS  Google Scholar 

  59. Pitman GL, Ward IM (1979) Polymer 20:895

    Article  CAS  Google Scholar 

  60. Brûlé B, Halary J-L, Monnerie L (2001) Polymer 42:9073

    Google Scholar 

  61. Brûlé B, Kausch H-H, Monnerie L, Plummer CJG, Halary J-L (2003) Polymer 44:1181

    Google Scholar 

  62. Brûlé B, Monnerie L, Halary J-L (2003) In: Blackman BRK, Pavan A, Williams JG (eds) Fracture of polymers, composites and adhesives II. Elsevier and ESIS

    Google Scholar 

  63. Halary J-L, Monnerie L (2003) In: Proceedings of the 12th international conference on deformation, yield and fracture of polymers. IOM communications ed: 25

    Google Scholar 

  64. Choe S, Brûlé B, Bisconti L, Halary J-L, Monnerie L (1999) J Polym Sci Polym Phys 37:1131

    Article  CAS  Google Scholar 

  65. Heijboer J (1968) J Polym Sci C 16:3755

    Google Scholar 

Download references

Acknowledgments

The authors are greatly indebted to the PhD students B. Brûlé, O. Julien, L. Tézé and P. Tordjeman, and to their colleagues P. Béguelin, L. Canova, S. Choe, A.M. Donald, A. Dubault and C.J.G. Plummer for their fruitful collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucien Monnerie .

Editor information

Hans-Henning Kausch

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Monnerie, L., Halary, J.L., Kausch, HH. Deformation, Yield and Fracture of Amorphous Polymers: Relation to the Secondary Transitions. In: Kausch, HH. (eds) Intrinsic Molecular Mobility and Toughness of Polymers I. Advances in Polymer Science, vol 187. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b136957

Download citation

Publish with us

Policies and ethics