Skip to main content

An alternative approach for image-plane control of robots

  • Conference paper
  • First Online:
The confluence of vision and control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 237))

Abstract

The article distinguishes between camera-space manipulation and visual servoing; it identifies application categories which particularly favor the former. Using a 2-dimensional, 2-degree-of-freedom example, a point of convergence between the two methods is identified. This is based upon an extension of visual servoing wherewith a Kalman Filter is used to estimate the ongoing visual-error signal from discrete-time, noisy, delayed and possibly intermittent visual input combined with continuous joint-rotation input. A working, nonholonomic, vision-based control system which applies a similar estimation strategy is introduced in order to illustrate and make plausible this extension, and to clarify the comparison. The comparison is discussed in terms of advantages/disadvantages accrued in the restoration of the two methods to their usual forms from their respective extensions or modifications as required to produce convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. K. Allen, A. Timcenko, B. Yoshimi, and P. Michelman. Real-time visual servoing. In Proc. IEEE International Conference on Robotics and Automation, pages 1850–1856, 1992.

    Google Scholar 

  2. P. K. Allen, A. Timcenko, B. Yoshimi, and P. Michelman. Hand-eye coordination for robotic tracking and grasping. In K. Hashimoto, editor, Visual Servoing, pages 33–69. World Scientific, 1993.

    Google Scholar 

  3. E. T. Baumgartner. An autonomous vision-based mobile robot. PhD thesis, University of Notre Dame, Notre Dame, IN, 1992.

    Google Scholar 

  4. E. T. Baumgartner, M. J. Seelinger, M. Fessler, A. Aldekamp, E. Gonzalez-Galvan, J. D. Yoder, and S. B. Skaar. Accurate 3-d robotic point positioning using camera-space manipulation. In T. J. Rudolph and L. W. Zachary, editors, Twenty-Fourth Midwestern Mechanics Conference, 1995.

    Google Scholar 

  5. E. T. Baumgartner and S. B. Skaar. An autonomous, vision-based mobile robot. IEEE Transactions on Automatic Control, 39(3):493–502, 1994.

    Article  MATH  Google Scholar 

  6. D. J. Bennet, D. Geiger, and J. M. Hollerbach. Autonomous robot calibration for hand-eye coordination. International Journal of Robotics Research, 10(5):550–559, 1991.

    Article  Google Scholar 

  7. R. Bernhardt and S. L. Albright. Robot Calibration. Chapman and Hall, London, 1993.

    Google Scholar 

  8. Z. Bien, W. Jang, and J. Park. Characterization and use of feature-jacobian matrix for visual servoing. In K. Hashimoto, editor, Visual Servoing, pages 317–363. World Scientific, 1993.

    Google Scholar 

  9. M. Brady, J. Hollerbach, T. Johnson, T. Lozano-Perez, and M. Mason. Robot Motion: Planning and Control. MIT Press, Cambridge, 1982.

    Google Scholar 

  10. A. Castano and S. A. Hutchinson. Visual compliance: task-directed visual servo control. IEEE Transactions on Robotics and Automation, 10(3):334–342, 1994.

    Article  Google Scholar 

  11. F. Chaumette, P. Rives, and B. Espiau. Classification and realization of the different vision based tasks. In K. Hashimoto, editor, Visual Servoing, pages 199–228. World Scientific, 1993.

    Google Scholar 

  12. W. Z. Chen, U. Korde, and S. B. Skaar. Position-control experiments using vision. International Journal of Robotics Research, 13(3):199–204, 1994.

    Article  Google Scholar 

  13. P. I. Corke. Video-rate robot visual servoing. In K. Hashimoto, editor, Visual Servoing, pages 257–284. World Scientific, 1993.

    Google Scholar 

  14. P. I. Corke. Visual control of robot manipulators — a review. In K. Hashimoto, editor, Visual Servoing, pages 1–32. World Scientific, 1993.

    Google Scholar 

  15. P. I. Corke and R. P. Paul. Video-rate visual servoing for robots. In V. Hayward and O. Khatib, editors, Experimental Robotics

    Google Scholar 

  16. L. J. Everett, M. Driels, and B. W. Mooring. Kinematic modelling for robot calibration. In Proc. IEEE International Conference on Robotics and Automation, pages 183–189, 1987.

    Google Scholar 

  17. J. T. Feddema, C. S. G. Lee, and O. R. Mitchell. Feature-based visual servoing of robotic systems. In K. Hashimoto, editor, Visual Servoing, pages 105–138. World Scientific, 1993.

    Google Scholar 

  18. J. T. Feddema and O. R. Mitchell. Vision-guided visual servoing with feature-based trajectory generation. IEEE Transactions on Robotics and Automation, 5(5):691–700, 1989.

    Article  Google Scholar 

  19. A. Gelb. Applied Optimal Estimation. MIT Press, Cambridge, 1974.

    Google Scholar 

  20. V. Genenbach, H.-H. Nagel, M. Tonka, and K. Schafer. Automatic dismantling integrating optical flow into a machine vision-controlled robot system. In Proc. IEEE International Conference on Robotics and Automation, pages 1320–1325, 1996.

    Google Scholar 

  21. E. Gonzalez-Galvan and S. B. Skaar. Servoable cameras for three-dimensional positioning with camera-space manipulation. In Proc. IASTED Robotics and Manufacturing, pages 260–265, 1995.

    Google Scholar 

  22. E. J. Gonzalez-Galvan, M. Seelinger, J. D. Yoder, E. Baumgartner, and S. B. Skaar. Control of construction robots using camera-space manipulation. In L. A. Demsetz, editor, Robotics for Challenging Environments, pages 57–63, 1996.

    Google Scholar 

  23. E. J. Gonzalez-Galvan and S. B. Skaar. Efficient camera-space manipulation using moments. In Proc. IEEE International Conference on Robotics and Automation, pages 3407–3412, 1996.

    Google Scholar 

  24. E. J. Gonzalez-Galvan, S. B. Skaar, U. A. Korde, and W. Z. Chen. Application of a precision enhancing measure in 3-d rigid-body positioning using camera-space manipulation. International Journal of Robotics Research, 16(2):240–257, 1997.

    Article  Google Scholar 

  25. K. Hashimoto. Visual Servoing. World Scientific, Singapore, 1993.

    Google Scholar 

  26. B. Horn. Robot Vision. MIT Press, Cambridge, 1986.

    Google Scholar 

  27. S. Hutchinson, G. Hager, and P. Corke. A tutorial on visual servo control. IEEE Transactions on Robotics and Automation, 12(5):651–670, 1996.

    Article  Google Scholar 

  28. W. Jang, K. Kim, M. Chung, and Z. Bien. Concepts of augmented image space and transformed feature space for efficient visual servoing of an ‘eye-in-hand robot'. Robotica, 9:203–212, 1991.

    Article  Google Scholar 

  29. U. A. Korde, E. Gonzalez-Galvan, and S. B. Skaar. Three-dimensional camera-space manipulation using servoable cameras. In Proc. SPIE Intelligent Robots and Computer Vision, pages 658–667, 1992.

    Google Scholar 

  30. F. L. Lewis. Optimal Estimation With An Introduction To Stochastic Control Theory. John Wiley & Sons, New York, 1986.

    MATH  Google Scholar 

  31. S. Maybank and O. D. Faugeras. A theory of self-calibration of a moving camera. International Journal of Computer Vision, 8(2):123–151, 1990.

    Article  Google Scholar 

  32. R. K. Miller, D. G. Stewart, H. Brockman, and S. B. Skaar. A camera space control system for an automated forklift. IEEE Transactions on Robotics and Automation, 10(5):710–716, 1994.

    Article  Google Scholar 

  33. B. W. Mooring, Z. S. Roth, and M. Driels. Fundamentals of Manipulator Calibration. John Wiley and Sons, New York, 1991.

    Google Scholar 

  34. B. Nelson, N. P. Papanikolopoulos, and P. K. Khosla. Visual servoing for robotic assembly. In K. Hashimoto, editor, Visual Servoing, pages 139–164. World Scientific, 1993.

    Google Scholar 

  35. N. Papanikolopoulos, P. K. Khosla, and T. Kanade. Vision and control techniques for robotic visual tracking. In Proc. IEEE International Conference on Robotics and Automation, pages 857–864, 1991.

    Google Scholar 

  36. G. V. Puskorius and L. A. Feldkamp. Global calibration of a robot/vision system. In Proc. IEEE International Conference on Robotics and Automation, pages 190–195, 1987.

    Google Scholar 

  37. P. Rives, F. Chaumette, and B. Espiau. Poistioning of a robot with respect to an object, tracking it and estimating its velocity by visual servoing. In V. Hayward and O. Khatib, editors, Experimental Robotics, pages 412–428. Springer Verlag, 1989.

    Google Scholar 

  38. A. A. Rizzi and D. E. Koditschek. An active visual estimator for dextrous manipulation. IEEE Transactions on Robotics and Automation, 12(5):697–713, 1996.

    Article  Google Scholar 

  39. A. C. Sanderson and L. E. Weiss. Image-based visual servo control using relational graph error signals. In Proc. IEEE, pages 1074–1077, 1980.

    Google Scholar 

  40. P. S. Schenker and et al. Mars lander robotics and machine vision capabilities for in situ planetary science. In Proc. IEEE Intelligent Robotics and Computer Vision XIV, volume 2588, pages 351–353, 1995.

    Google Scholar 

  41. M. J. Seelinger, E. Gonzalez-Galvan, S. B. Skaar, and M. Robinson. Point-and-click objective specification for a remote semiautonomous robot system. In P. S. Schenker and G. T. McKee, editors, Proc. SPIE Sensor Fusion and Distributed Robotic Agents, volume 2905, pages 206–217, 1996.

    Google Scholar 

  42. M. J. Seelinger, M. Robinson, Z. Dieck, and S. B. Skaar. A vision-guided, semi-autonomous system applied to a robotic coating application. In P. S. Schenker and G. T. McKee, editors, Proc. SPIE Sensor Fusion and Decentralized Control in Autonomous Robotic Systems, volume 3209, pages 133–144, 1997.

    Google Scholar 

  43. R. Sharma and S. Hutchinson. Motion perceptibility and its application to active vision-based servo control. IEEE Transactions on Robotics and Automation, 13(4):607–617, 1997.

    Article  Google Scholar 

  44. S. B. Skaar. An adaptive vision-based manipulator control scheme. In Proc. AIAA Guidance, Navagation and Control Conference, pages 608–614, 1986.

    Google Scholar 

  45. S. B. Skaar, W. H. Brockman, and R. Hanson. Camera space manipulation. International Journal of Robotics Research, 6(4):20–32, Winter 1987.

    Article  Google Scholar 

  46. S. B. Skaar, W. H. Brockman, and W. S. Jang. Three dimensional camera space manipulation. International Journal of Robotics Research, 9(4):22–39, 1990.

    Article  Google Scholar 

  47. S. B. Skaar, W. Z. Chen, and R. K. Miller. High resolution camera space manipulation. In Proc. ASME Design Automation Conference, pages 608–614, 1991.

    Google Scholar 

  48. S. B. Skaar and E. Gonzalez-Galvan. Versatile and precise manipulation using vision. In S. B. Skaar and C. F. Ruoff, editors, Teleoperation and Robotics in Space, pages 241–279. AIAA, Washington, D.C., 1994.

    Google Scholar 

  49. S. B. Skaar, I. Yalda-Mooshabad, and W. H. Brockman. Nonholonomic camera-space manipulation. IEEE Transactions on Robotics and Automation, 8(4):464–479, 1992.

    Article  Google Scholar 

  50. K. Tani, M. Abe, and T. Ohno. High precision manipulator with visual sense. In Proc. ISIR, pages 561–568, 1977.

    Google Scholar 

  51. K. Toyama, G. Hager, and J. Wang. Servomatic: A modular system for robust positioning using stereo visual servoing. In Proc. IEEE International Conference on Robotics and Automation, pages 2636–2642, 1996.

    Google Scholar 

  52. H. Trivedi. A semi-analytic method for estimating stereo camera geometry from matched points. Image and Vision Computing, 9:227–236, 1991.

    MathSciNet  Google Scholar 

  53. R. Y. Tsai. A versatile camera calibration technique for high accuracy 3d machine vision metrology using off-the-shelf tv cameras and lenses. IEEE Transactions on Robotics and Automation, 3(4):323–344, 1987.

    Google Scholar 

  54. J. Weng, P. Cohen, and M. Herniou. Camera calibration with distortion models and accuracy evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(10):965–980, 1992.

    Article  Google Scholar 

  55. W. J. Wilson. Visual servo control of robots using kalman filter estimates of robot pose relative to work-pieces. In K. Hashimoto, editor, Visual Servoing, pages 71–104. World Scientific, 1993.

    Google Scholar 

  56. P. Wunsch and G. Hirzinger. Real-time visual tracking of 3-d objects with dynamic handling of occlusion. In Proc. IEEE International Conference on Robotics and Automation, pages 2868–2873, 1997.

    Google Scholar 

  57. D. B. Zhang, L. V. Gool, and A. Oosterlinck. Stochastic predictive control of robot tracking systems with dynamic visual feedback. In Proc. IEEE International Conference on Robotics and Automation, pages 610–615, 1990.

    Google Scholar 

  58. H. Zhuang and Z. S. Roth. Camera-Aided Robot Calibration. CRC Press, Boca Raton, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

David J. Kriegman PhD Gregory D. Hager PhD A. Stephen Morse PhD

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag

About this paper

Cite this paper

Seelinger, M., Skaar, S.B., Robinson, M. (1998). An alternative approach for image-plane control of robots. In: Kriegman, D.J., Hager, G.D., Morse, A.S. (eds) The confluence of vision and control. Lecture Notes in Control and Information Sciences, vol 237. Springer, London. https://doi.org/10.1007/BFb0109662

Download citation

  • DOI: https://doi.org/10.1007/BFb0109662

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-025-5

  • Online ISBN: 978-1-84628-528-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics