Skip to main content

Vertical advection from oxic or anoxic water from the main pycnocline as a cause of rapid extinction or rapid radiations

  • General Aspects
  • Conference paper
  • First Online:
Extinction Events in Earth History

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 30))

Abstract

The vast majority of oceanic biomass lives in the surface wind-mixed layer (0–100 m) of the ocean, trophically dependent on light or primary production based on photosynthesis. Waters from the main pycnocline (100–1000 m) or deeper naturally contain decay products from sinking organic matter as a function of the oxidation state of the waters. Such products, in proper concentrations, can inhibit photosynthetic growth or are toxic or debilitating to respirors. Usually, physical oceanographic processes of vertical circulation are slow or volumetrically small enough to permit “conditioning ”or mixing of toxicants of the deep waters with surface waters so that the deleterious effects of deep water are neutralized or localized. However, rapid global to regional scale vertical advection of deep waters into the surface mixed layer could create an ecologic crisis for various marine groups through a combination of: (1) direct toxicity; (2) reduction or modification of nutrient and food supplies through inhibition of photosynthesis; (3) chronic debilitation caused by contact with such toxic waters; or (4) increased predation by more adaptive or less effected taxa. Such events are not necessarily universally deleterious as they could offer new opportunities for taxa ecologically restricted under prior conditions. During cool climates with oxic deep waters, a crisis may be caused by upwelling of metals concentrated with depth and resulting in reduced primary productivity, as well as metal toxic and/or chronic reactions in higher groups. During warm climates with anoxic to dysaerobic waters in the pycnocline, a crisis may result from contact with anoxic waters with a maximum effect on respirors and a minimal to enhanced effect on phytoplankton. Upwelling may come from three redox zones: I- oxic; II- nitric; and III- sulfatic. Each zone would be the source of waters of differing chemistries that could be advected into the photic zone. The effect on specific taxa will be selective as a function of the depth and volume of source water, as different organisms have different tolerance limits or preadaptive capabilities. In the geologic record, significant upwelling events would be recorded initially as a general reduction in diversity, followed by mass extinctions in some groups and the possibility of rapid radiation in opportunistic groups. The ecologic requirements of both the extinct taxa and the newly enhanced taxa might be used to identify the type of any given major upwelling event.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, J. J., Okubo, A., Robbins, A. S. & Richards, F. A. (1982): A model for nitrite and nitrate distributions in oceanic oxygen minimum zones. — Deep-Sea Res., 29, 1113–1140.

    Article  Google Scholar 

  • Anderson, M. A. & Morel, F. M. M. (1978): Copper sensitivity of Gonyaulax tamarensis. — Limnol. Oceanogr., 23, 283–295.

    Google Scholar 

  • Anderson, M. A. & Morel, F. M. M. (1982): The influence of aqueous iron chemistry on the uptake of iron by the coastal diatom Thalassiosira weissflogii. — Limnol. Oceanogr., 27, 789–813.

    Google Scholar 

  • Anderton, R., Bridges, P. H., Leeder, M. R. & Sellwood, B. W. (1979): A Dynamic Stratigraphy of the British Isles. — George Allen and Unwin, London, 301 p.

    Google Scholar 

  • Apel, J. R. (1987): Principles of Ocean Physics. — International Geophysics Series, 38, Academic Press, London, 634 p.

    Google Scholar 

  • Barber, R. T., Dugdale, R. C., MacIsaac, J. J. & Smith, R. L. (1971): Variations in phytoplankton growth associated with the source and conditioning of upwelling water. — Investigacion Pesquera, 35, 171–193.

    Google Scholar 

  • Berry, W. B. N. & Boucot, A. J. (1970): Correlation of the North American Silurian rocks. — Geol. Soc. America Special Paper, 102, 289 p.

    Google Scholar 

  • Berry, W. B. N., Wilde, P. & Quinby-Hunt, M. S. (1987): The oceanic non-sulfidic oxygen minimum zone: a habitat for graptolites? — Bull. Geol. Soc. Denmark, 35, 103–114.

    Google Scholar 

  • Berry, W. B. N., Wilde, P. & Quinby-Hunt, M. S. (This volume): Late Ordovician graptolite mass mortality and subsequent early Silurian re-radiation.

    Google Scholar 

  • Bewers, J. M. & Yeats, P. A. (1977): Oceanic residence times of trace metals. — Nature, 268, 595–598.

    Article  PubMed  Google Scholar 

  • Boney, A. D. (1975): Phytoplankton. — Edward Arnold, London, 116 p.

    Google Scholar 

  • Brewer, P. G. & Spencer, D. W. (1974): Distribution of some trace metals in the Black Sea and Their Flux Between Dissolved and Particulate Phases. — In: Degens, E. T. & Ross, D. A. (eds.): The Black Sea — Geology, Chemistry, and Biology. — American Association of Petroleum, Tulsa, Oklahoma. Memoir, 20, 137–150.

    Google Scholar 

  • Brand, L. E., Sunda, W. G. & Guillard, R. R. L. (1983): Limitation of marine phytoplankton reproductive rates by zinc, manganese, and iron. — Limnol. Oceanogr., 28, 1182–1198.

    Google Scholar 

  • Brinton, E. (1962): Distribution of Pacific euphausiids. — Scripps Inst. Oceanogr. Bull., 8, 51–270.

    Google Scholar 

  • Brinton, E. (1980): Distribution of euphausiids in the eastern tropical Pacific. — Prog. Oceanogr., 8, 125–189.

    Article  Google Scholar 

  • Brongersma-Sanders, M. (1957): Mass mortality in the sea. — In: Hedgpeth, J. W. (ed.): Treatise on Marine Ecology and Paleoecology. — Geol. Soc. Am. Mem., 67, 941–1010.

    Google Scholar 

  • Bruland, K. W. (1980): Oceanographic distribution of cadmium, zinc, nickel, and copper in the north Pacific. — Earth Planet. Sci. Letts., 47, 176–198.

    Google Scholar 

  • Deuser, W.G. (1975): Reducing Environments. — In: Riley, J. P. & Skirrow, G. (eds.): Chemical Oceanography. — 2nd edition, Academic, New York, 3, 1–37.

    Google Scholar 

  • Dietrich, G. (1963): General Oceanography, 588 p. (Wiley-Interscience, New York).

    Google Scholar 

  • Edwards, D. & Feehan, J. (1980): Record of Cooksonia-type sporangia from late Wenlock strata in Ireland. — Nature, 287, 31–42.

    Google Scholar 

  • Eppley, R. W., Rogers, J. N. & McCarthy, J. J. (1969): Half saturation constants for uptake of nitrate and ammonium by phytoplankton. — Jour. Phycology, 5, 333–340.

    Google Scholar 

  • Foster, P. L. & Morel, F. M. M. (1982): Reversal of cadmium toxicity in a diatom: An interaction between cadmium activity and iron. — Limnol. Oceanogr., 27, 745–752.

    Google Scholar 

  • Goldberg, E. (1957): Biogeochemistry of trace metals. — In: Hedgpeth, J. W. (ed.): Paleoecology. — Geol. Soc. America Memoir, 67 (1), 345–357.

    Google Scholar 

  • Gordon, R. M., Martin, J. H. & Knauer, G. A. (1982): Iron in north-east Pacific waters. — Nature, 299, 611–612.

    Article  Google Scholar 

  • Hallam, A. (1967): An environmental study of the Upper Domerian and Lower Toarcian in Great Britain. — Trans. Royal Phil. Soc., London, part B, 252, 393–445.

    Google Scholar 

  • Hallam, A. (1975): Jurassic Environments. — Cambridge University Press, Cambridge, England, 269 p.

    Google Scholar 

  • Hallam, A. (1977): Jurassic bivalve biogeography. — Palaeobiology, 3, 58–73.

    Google Scholar 

  • Hallam, A. (1981): A revised sea-level curve for the Early Jurassic. — Jour. Geol. Soc. London., 138, 735–743.

    Google Scholar 

  • House, M. R. (1985): The ammonoid time-scale and ammonoid evolution. — In: Snelling, N. J. (ed.): The Chronology of the Geological Record. — Geol. Soc. Memoir, 10, Blackwell Scientific, Oxford, 273–283.

    Google Scholar 

  • Jackson, G. A. & Morgan, J. J. (1978): Trace metal-chelator interactions and phytoplankton growth in seawater media: Theoretical analysis and comparison with reported observations. — Limnol. Oceanogr., 23, 268–282.

    Google Scholar 

  • Jacobs, L., Emerson, S. & Huested, S. S. (1987): Trace metal geochemistry in the Cariaco Trench. — Deep-Sea Research, 34, 956–981.

    Article  Google Scholar 

  • Jenkyns, H. C. (1985): The Early Toarcian and Cenomanian-Turonian anoxic events in Europe: comparisons and contrasts. — Geol. Runds., 74, 505–518.

    Article  Google Scholar 

  • Kauffman, E. G. (1978): Benthic environments and paleoecology of the Posidonienschiefer (Toarcian). — Neues Jahrbuch für Geologie und Paläontologie, 157, 18–36.

    Google Scholar 

  • Kauffman, E. G. (1981): Ecological reappraisal of the German Posidienschiefer (Toarcian) and the stagnant basin model. — In: Gray, J., Boucot, A. J. & Berry, W. B. (eds.): Communities of the Past. — Hutchinson Ross, Stroudsberg, Pa., 311–381.

    Google Scholar 

  • Knauer, G. A. & Martin, J. H. (1983): Trace elements and primary production: Problems, effects and solutions. — In: Wong, C. S., Boyle, E., Bruland, K. W., Burton, J. D. & Goldberg, E. D. (eds.): Trace Metals in Sea Water. — Plenum Press, New York.

    Google Scholar 

  • Landing, W. M. & Bruland, K. W. (1980): Manganese in the North Pacific. — Earth Planet. Sci. Lett., 49, 45–56.

    Article  Google Scholar 

  • Martin, J. H. & Gordon, R. M. (1988): Northeast Pacific iron distributions in relation to phytoplankton productivity. — Deep-Sea Research, 35, 177–196.

    Article  Google Scholar 

  • Martin, J. H. & Knauer, G. A. (1984): VERTEX: Manganese transport through oxygen minima. — Earth Planet. Sci. Letts., 67, 35–47.

    Article  Google Scholar 

  • Morel, F. M. M. (1986): Trace metals-phytoplankton interactions: an overview. — In: Lasserre, P. & Martins, J. M. (eds.): Biogeochemical Processes at the Land-Sea Boundary. — 117–189; Elsevier, Amsterdam.

    Google Scholar 

  • Provasoli, I. (1963): Organic regulation of phytoplankton fertility. — In: Hill, N. H. (ed.): The Seas, 2, Wiley-Interscience, New York, 165–219.

    Google Scholar 

  • Quinby-Hunt, M. S. & Wilde, P. (1987): Modeling of Dissolved Elements in Sea Water. — Ocean Science and Engineering, 11, (3&4), 153–251.

    Google Scholar 

  • Redfield, A. C., Ketchum, B. H. & Richards, F. A. (1963): The influence of organisms on the composition of sea-water. — In: Hill, N. H. (ed.): The Seas, 2, Wiley-Interscience, New York, 26–77.

    Google Scholar 

  • Richards, F. A. (1965): Anoxic basins and fjords. — In: Riley, J. P. & Skirrow, G. (eds.): Chemical Oceanography, 1st edition, 1, Academic, New York, 611–625.

    Google Scholar 

  • Richards, R. B., Hutt, J. E. & Berry, W. B. N. (1977): Evolution of the Silurian and Devonian graptoloids. — Brit. Mus. (Nat. Hist.) Geology, 28, 120 p.

    Google Scholar 

  • Riegel, W., Loh, H., Maul, B. & Prauss, M. (1986): Effects and Causes in a Black Shale Event — the Toarcian Posidonia Shale of NW Germany. — In: Walliser, O. H. (ed.): Global Bio-Events. — Lecture Notes in Earth Sciences, 8, 267–278; Springer Verlag, Berlin.

    Google Scholar 

  • Sellwood, B. W. (1978): Triassic. — In: McKerrow, W. S. (ed.): The Ecology of Fossils. — MIT Press, Cambridge, Mass., 194–203.

    Google Scholar 

  • Sunda, W. G., Barber, R. T. & Huntsman, S. A. (1981): Phytoplankton growth in nutrient-rich seawater: Importance of copper-manganese cellular interactions. — Jour. Mar. Res., 39, 567–586.

    Google Scholar 

  • Sunda, W. G. & Guillard, R. R. L. (1976): The relationship between cupric ion activity and the toxicity of copper to phytoplankton. — Jour. Mar. Res., 34, 511–529.

    Google Scholar 

  • Sunda, W. G. & Huntsman, S. A. (1983): Effect of competitive interactions between manganese and copper on cellular manganese and growth in estuarine and oceanic species of the diatom Thalassiosira. — Limnol. Oceanogr., 28, 924–934.

    Google Scholar 

  • Terry, K. L. & Caperon, J. (1982): Phytoplankton assimilation of carbon, nitrogen, and phosphorus in response to enrichments with deep-ocean water. — Deep-Sea Research, 29, 1251–1258.

    Article  Google Scholar 

  • Thomas, W. H., Hollibaugh, J. T., Seibert, D. L. & Wallace, G. T. Jr. (1980): Toxicity of a mixture of ten metals to phytoplankton. — Marine Ecology, 2, 213–220.

    Google Scholar 

  • Vinogradov, A. P. (1953): The elemental composition of marine organisms. — Sears Foundation for Marine Research Memoir, 2, Yale University, New Haven, Conn., 647 p.

    Google Scholar 

  • Wilde, P. (1987): Model of Redox Zonation in the Late Precambrian-Early Paleozoic Ocean. — Am. Jour. Sci., 287, 442–459.

    Google Scholar 

  • Wilde, P. & Berry, W. B. N. (1982): Progressive Ventilation of the Oceans — Potential for Return to Anoxic Conditions in the Post-Paleozoic. — In: Schlanger, S. O. & Cita, M. B. (eds.): Nature and Origin of Cretaceous Carbon-Rich Facies. — Academic Press, 209–224; New York.

    Google Scholar 

  • Wilde, P. & Berry, W. B. N. (1984): Destabilization of the Oceanic Density Structure and its Significance to Marine “Extinction ”Events. — Palaeogeography, Palaeoclimatology, Palaeoecology, 48, 143–162.

    Google Scholar 

  • Wilde, P. & Berry, W. B. N. (1986): The role of oceanographic factors in the generation of global bioevents. — In: Walliser, O. H. (ed.): Global Bio-Events. — Lecture Notes in Earth Sciences, 8, 75–91; Springer-Verlag.

    Google Scholar 

  • Wilde, P., Berry, W. B. N., Quinby-Hunt, M. S., Rice, K., Orth, C. J. & Gilmore, J. S. (1986): Chemostratigraphic Analysis across a Jurassic Extinction Event in the Yorkshire Toarcian. Geological Society of America Abstracts, 18, 789.

    Google Scholar 

  • Ziegler, A. M., Rickards, R. B. & McKerrow, W. S. (1974): Correlation of the Silurian rocks of the British Isles. — Geol. Soc. America Special Paper, 154, 154 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Erle G. Kauffman Otto H. Walliser

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Wilde, P., Quinby-Hunt, M.S., Berry, W.B.N. (1990). Vertical advection from oxic or anoxic water from the main pycnocline as a cause of rapid extinction or rapid radiations. In: Kauffman, E.G., Walliser, O.H. (eds) Extinction Events in Earth History. Lecture Notes in Earth Sciences, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0011136

Download citation

  • DOI: https://doi.org/10.1007/BFb0011136

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52605-6

  • Online ISBN: 978-3-540-47071-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics