Skip to main content

Shock pressures in igneous processes: Implications for K/T events

  • General Aspects
  • Conference paper
  • First Online:
Extinction Events in Earth History

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 30))

Abstract

The seismicity initiating the May 18, 1980 catastrophic eruption at Mt. St. Helens indicates an explosion occurred at depth generating an average pressure of about 500 kbar. Such pressures fall off with distance from the magma chamber although jointing, fractures, etc. may act as stress concentrators to extend the radius of formation of shocked minerals as far as a kilometer. Shocked minerals are not to be expected from the magma itself as high temperatures would anneal such features but temperatures fall away rapidly enough from the chamber wall to allow retention even of such possible exotics as stishovite. The subsequent kinetics of the failure of the north slope support these pressures as do thermodynamic considerations and nucleation kinetics of CO2 exsolution from magmatic melt. Confining pressures (e.g., overburden head) are not a limiting factor. Unconfined detonations in open air yield pressures to several megabars although some recent arguments asserted to be volcanological would indicate open air bursts greater than one bar to be impossible. Further, it has been indicated that pressure estimates from ballistic considerations have been too high and large phenocryst content in the discharge material argues against high pressure explosions. In the first instance, sonic choking and volatile diffusion time constraints make these assessments implausible and in the second instance, both theoretical and geological considerations provide for the phenocryst distributions under explosive situations. These results and recent discoveries of high levels of iridium in volcanic ash in the Antarctic blue ice have implication for K/T boundary events, mass extinctions and endoexplosions. The geographical breadth of volcanic activity attending the K-T transition (e.g., Antarctic volcanism as well as the Deccan Traps) indicates a global mechanism and suggests a large portion of the mantle experienced convective surge as occurs at high Rayleigh number flow. Scaling to mantle conditions yields episodicities of the same order as the 30 my intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bailey, I. H., Radke, L. F., Lyons, J. H. & Hobbs, P. V. (1984): Airborne observations of Arctic aerosols. II: Giant particles. — Geophysical Research Letters, 11, 397–400.

    Google Scholar 

  • Betzer, P. R., Bernstein, R. E., Carder, K. L., Breland, J. B., Duce, R. A., Uematsu, M. & Feely, R. A. (1986): Particle fluxes in the North Pacific Ocean: responses to major atmospheric dust storms. — Trans. AGU, 67, 899.

    Google Scholar 

  • Bohor, B. F., Modreski, P. J. & Foord, E. E. (1987): Shocked quartz in the Cretaceous-Tertiary boundary clays: evidence for a global distribution. — Science, 236, 705–709.

    Google Scholar 

  • Bolt, B. (1976): Nuclear Explosions and Earthquakes. — W. H. Freeman Co., San Francisco.

    Google Scholar 

  • Breitschneider, C. L. (1969): Sea Motion. — In: Myers, J. (ed.): Handbook of Ocean and Underwater Engineering. — Mc Graw-Hill; New York.

    Google Scholar 

  • Campsie, J., Johnson, G. L., Jones, J. E. & Rich, J. E. (1984): Episodic volcanism and evolutionary crises. — Eos, 65 (45), 796–800.

    Google Scholar 

  • Carder, K. L., Steward, R. G., Betzer, P. R., Johnson, D. L. & Prospero, J. M. (1986): Dynamics and composition of particles from an aeolian input event to the Sargasso Sea. — J. Geophys. Res., 91, 1055–1066.

    Google Scholar 

  • Carter, G. F. (1979): Principles of Physical and Chemical Metallurgy. — American Society for Metals, Metal Park, Ohio, 431 p.

    Google Scholar 

  • Carter, N. L., Officer, C. B., Chesner, C. A. & Rose, Wm. I. (1986): Dynamic deformation of volcanic ejecta from the Toba caldera: possible relevance to Cretaceous/Tertiary boundary phenomena. — Geology, 14, 380–383.

    Article  Google Scholar 

  • Carter, N. L., Officer, C. B. & Drake, C. L. (1989) (in press): Deformation of quartz and feldspar: clues to causes of some natural crisis. — Tectonophysics.

    Google Scholar 

  • Carter, N. L. & Officer, C. B. (1989) (in press): Comments on “Microscopic lamellar deformation features in quartz: discrimination characteristics of shock generated varieties”. — Geology.

    Google Scholar 

  • Cook, M. A. (1968): The Science of High Explosives. — Reinhold Book Corp., New York, 440 pp.

    Google Scholar 

  • Courant, R. & Friedrichs, K. O. (1967): Supersonic Flow and Shock Waves. — Interscience Publishers, Inc., New York, 464 pp.

    Google Scholar 

  • Cox, K. G., Bell, J. D. & Pankhurst, R. J. (1979): The Interpretation of Igneous Rocks. — George Allen & Unwin, London, 450 pp.

    Google Scholar 

  • Dauphin, J. P. (1983): Eolian quartz granulometry as a paleowind indicator in the northeast equatorial Atlantic, North Pacific and southeast equatorial Pacific. — PhD Thesis, University of Rhode Island, Kingston, RI, 335 pp.

    Google Scholar 

  • Davies, G. J. (1973): Solidification and Casting. — John Wiley and Sons, New York, 205 pp.

    Google Scholar 

  • Duce, R. A. (1986): Aeolian mineral particles: effects of atmospheric and marine processes. — Trans. AGU., 44, 898.

    Google Scholar 

  • De Silva, S. L. & Sharpton, V. L. (1988): The K-T boundary debate — a volcanological perspective: 19th Lunar and Planetary Science Conference, 273–274.

    Google Scholar 

  • Dulleforce, T. A., Buchanan, D. J. & Peckover, R. S. (1976): Self-triggering of small scale fuel-coolent interactions: I. Experiments. — J. Phys. D: Appl. Phys., 9, 1295–1303.

    Article  Google Scholar 

  • Fickett, W. & Davis, W. C. (1979): Detonation. — University of California Press, Los Angeles, 386 pp.

    Google Scholar 

  • Fricke, A. & Schreyer, W. (1987): Further fluid inclusion studies on minerals from the Vredefort structure, and comparisons with shocked Sudbury rocks. — International Workshop on Cryptoexplosions and Catastrophes in the Geological Record, 6–10 July, Parys, So. Africa.

    Google Scholar 

  • Hallam, A. (1984): Pre-Quaternary sea-level changes. — Ann. Rev. Earth Planet. Sci., 12, 205–243.

    Article  Google Scholar 

  • Hanks, T. C. & Thatcher, W. (1972): A graphical representation of seismic source parameters. — J. Geophys. Res., 77, 4393–4405.

    Google Scholar 

  • Helz, R. T. (1987): Differentiation behavior of Kilauea Iki lava lake, Kilauea Volcano, Hawaii: An overview of past and current work. — In: Mysen, O. B. (ed.): Magmatic Processes: Physicochemical Principles. — Geochemical Society Special Publication, No. 1.

    Google Scholar 

  • Hess, H. H. (1960): Stillwater Igneous Complex. — Geological Society of America Memoir, 80, 230 pp.

    Google Scholar 

  • Hino, K. (1959): The Theory and Practice of Blasting. Nippon Kayaku. Yamaguchi-Ken.

    Google Scholar 

  • Ishihara, K. (1985): Dynamical analysis of volcanic explosion. — Journal of Geodynamics, 3, 327–349.

    Article  Google Scholar 

  • Kanamori, H. (1972): Mechanism of tsunami earthquakes. — Phys. Earth Planet. Interiors, 6, 346–359.

    Article  Google Scholar 

  • Kanamori, H. & Anderson, D. L. (1975): Theoretical basis of some empirical relations in seismology. — Bull. Seis. Soc. Amer., 65, 1073–1095.

    Google Scholar 

  • Kanamori, H. & Given, J. W. (1982): Analysis of long-period seismic waves excited by the May 18, 1980, eruption of Mount St. Helens — a terrestrial monopole? — J. Geophys. Res., 87, 5422–5432.

    Google Scholar 

  • Kanamori, H., Given, J. W. & Lay, T. (1984): Analysis of seismic body waves excited by the Mount St. Helens eruption of May 18, 1980. — J. Geophys. Res., 89, 1856–1866.

    Google Scholar 

  • Kanamori, H., Ekstrom, G., Dziewonski & Barker, J. S. (1986): An anomalous seismic event near Tori Shima Japan — a possible magma injection event. — Trans. AGU, 67, 1117.

    Google Scholar 

  • Kasahara, K. (1981): Earthquake Mechanics. — Cambridge University Press, London, 248 pp.

    Google Scholar 

  • Katz, D. L. & Sliepovich, C. M. (1971): LNG/water explosions: cause and effect. — Hydrocarbon Processing, 240–244.

    Google Scholar 

  • Kerr, R. A. (1987): Asteroid impact gets more support. — Science, 236, 666–668.

    Google Scholar 

  • Kurtz, J. & Rice, A. (1988) (in prep.): The terminal Cretaceous kimberlite pipe swarms: implications for atmospheric CO2 content.

    Google Scholar 

  • Larson, D. B. (1977): The relationship of rock properties to explosive energy coupling. — Lawrence Livermore Laboratory Report UCRL 52204, Livermore, CA.

    Google Scholar 

  • Lay, T. (1989): Structure of the Core-mantle Transition Zone. — Eos, 24 Jan., pg. 49–55.

    Google Scholar 

  • Lipman, P. W. & Mullineaux, D. R. (eds.) (1981): The 1980 eruptions of Mount St. Helens, Washington. — U.S. Geol. Survey Prof. Paper 1250, xxvii + 844 pp.

    Google Scholar 

  • Loper, D. E. & McCartney, K. (1988): Shocked quartz found at the K/T boundary: a possible endogenous mechanism. — Eos, vol. 69, pgs. 961.

    Google Scholar 

  • Lovett, G. M., Reiners, W. A. & Olson, R. K. (1982): Cloud droplet deposition in subalpine balsam fir forests: hydrological and chemical input. — Science, 218, 1303–1304.

    Google Scholar 

  • Marsh, B. D. & Maxey, M. R. (1985): On the distribution and separation of crystals in convecting magma. — Journal of Volcanology and Geothermal Research, vol. 24, 95–150.

    Article  Google Scholar 

  • McLean, D. M. (1985): Deccan Traps mantle degassing in the terminal Cretaceous marine extinctions. — Cretaceous Research, 6, 235–259.

    Article  Google Scholar 

  • Medenbach, O., Fricke, A. & Schreyer, W. (1987): Fluid inclusions along shock-induced planar elements in minerals from the basement rocks of the Vredefort structure: fingerprints of an endogenic origin? — International Workshop on Cryptoexplosions and Catastrophes in the Geological Record, 6–10 July, Parys, So. Africa.

    Google Scholar 

  • Moore, J. G. & Rice, C. J. (1984): Chronology and character of the May 18, 1980 explosive eruptions of Mount St. Helens. — In: Explosive Volcanism: Inception, Evolution and Hazards. — National Academy of Sciences Press, Washington, DC.

    Google Scholar 

  • Morey, G. W. (1922): The development of pressure in magmas as a result of crystallization. — Washington Acad. Sci. Journal, 12, 219–230.

    Google Scholar 

  • Morris, S. (1987): Fluid dynamic constraints on time — dependent convection in the earth's mantle. — Terra Cognita, Mathematical Geophysics Symposium, Osterbeek, June, 1986.

    Google Scholar 

  • Nellis et al. (1981): Chem. Phys., 75, 3055.

    Article  Google Scholar 

  • Nicolaysen, L. (1985): Renewed ferment in the earth sciences — especially about power supplies for the core, for the mantle and for crises in the faunal record. — South African Journal of Science, 81, 120–132.

    Google Scholar 

  • Owen, R. M. & Rea, D. K. (1985): Sea Floor hydrothermal activity links climate to tectonics: the Eocene carbone dioxide greenhouse. — Science, 227, 166–169.

    PubMed  Google Scholar 

  • Pilant, W. L. (1979): Elastic Waves in the Earth. — Elsevier Scientific Publishing Co., New York, 493 pp.

    Google Scholar 

  • Please, C. P., Wheeler, A. A. & Wilmott (1986): A mathematical model of cliff blasting, SIAM.

    Google Scholar 

  • Rice, A. (1972): Some Bernard convection experiments: their relationship to viscous dissipation and possible periodicity in sea floor spreading. — Journal of Geophysical Research, vol. 77 (14), 2514–2525.

    Google Scholar 

  • Rice, A. (1987): Shocked minerals at the K/T boundary; explosive volcanism as a source. — Physics of the Earth and Planetary Interiors, 48, 167–176.

    Article  Google Scholar 

  • Rice, A. (1981): Convective fractionation: a mechanism to provide cryptic zoning (macrosegregation), layering, crescumulates, banded tuffs and explosive volcanism in igneous processes. — Journal of Geophysical Research, vol. 86, 405–417.

    Google Scholar 

  • Rice, A. (1985): The mechanism of the Mt. St. Helens eruption and speculations regarding Soret effects in planetary dynamics. — Geophysical Surveys, 7, 303–384.

    Article  Google Scholar 

  • Rice, A. & Eichelberger, J. C. (1976): Convection in rhyolite magma. — Eos, vol. 57, p. 1024.

    Google Scholar 

  • Rice, A., Young, S. & Krieger, V. (1988) (Submitted for publication): Slope stability analyses of Mt St Helens: implications for the 18 May 1980 eruption.

    Google Scholar 

  • Rodean, H. C. (1970): Explosion — produced ground motion: technical summary with respect to seismic hazards. — Symp. Engineering Nuclear Explosives. American Nuclear Society/Atomic Energy Commission, Las Vegas, NV, Jan 14–16, 1024–1050.

    Google Scholar 

  • Roth, P. C., Blanchard, C., Harte, J., Michaels, H. & El-Ashray, M. T. (1985): The America west's acid rain test. — World Resource Institute Research Report, No. 1, 50 p.

    Google Scholar 

  • Rutherford, M. J., Sigurdsson, H., Carey, S. & Davis, A. (1985): The May 18, 1980, eruption of Mount St. Helens I. Melt composition and experimental phase equilibrium. — J. Geophys. Res., 90, 2929–2947.

    Google Scholar 

  • Sethna, S. F. & Battiwala, H. K. (1977): Chemical classification of the intermediate and acid rocks (Deccan Trap) of Salsette Island, Bombay. — Journal of the Geological Society of India, 18, 323–330.

    Google Scholar 

  • Shaw, H. R. (1965): Comments on viscosity, crystal settling and convection in granitic magma. — American Journal of Science, vol. 263, pg. 120–152.

    Google Scholar 

  • Shaw, M. R. & Moore, J. G. (1988): Magmatic Heat and the El Nino Cycle. — Eos, pp. 1553–1565, 8 Nov.

    Google Scholar 

  • Sukheswala, R. N. & Sethna, S. F. (1962): Deccan Traps and associated rocks of the Bassein area. — J. Geol. Soc. India, 3, 125–146.

    Google Scholar 

  • Stothers, R. B. & Rampino, M. R. (1983): Historic volcanism, European dry fogs, and Greenland acid precipitation, 1500 B.C. to A.D. 1500. — Science, v. 222, p. 411–413.

    Google Scholar 

  • Teller, E., Talley, W. K., Higgins, G. H. & Johnson, G. W. (1968): The Constructive Uses of Nuclear Explosives. — McGraw-Hill Book Co., New York, 320 pp.

    Google Scholar 

  • Thorarinsson, S. (1969): The Lakagigar eruption of 1783. — Bulletin Volcanologique, v. 33, 919–929.

    Google Scholar 

  • Thompson, C. V. & Spaepen, F. (1983): Homogeneous crystal nucleation in binary metallic melts. — Acta metall., 31, 2021–2027.

    Article  Google Scholar 

  • Tritton, D. J. (1977): Physical Fluid Dynamics. — Van Nostran Remhold Co., New York, 362 p.

    Google Scholar 

  • Uematsu, M., Duce, R. A. & Prospero, J. M. (1985): Deposition of atmospheric mineral particles in the North Pacific Ocean. — J. Atmospheric Chemistry, 3, 123–138.

    Article  Google Scholar 

  • Utsu, T. & Seki, A. (1955): A relation between the area of after-shock region and the energy of main shock. — Zisin, J. Seismol. Soc. Japan, 7, 233–240 (in Japanese).

    Google Scholar 

  • Vandamme, D., Besse, J., Courtillot, V., Motigny, R., Jaeger, J.-J. & Cappetta, H. (1986): Deccan flood basalts at the Cretaceous-Tertiary boundary? — Trans. Am. Geophys. Union, 67.

    Google Scholar 

  • Vogt, P. R. & Perry, R. K. (1981): North Atlantic Ocean: bathymetry and plate tectonic evolution. — Geol. Soc. Am. Map and Chart. Ser. MO-35.

    Google Scholar 

  • Voight, B. (1981): Time scale for the first moments of the May 18 eruption. — U.S. Geological Survey Prof. Pap. 1250, 69–86.

    Google Scholar 

  • Voight, B., Glicken, H., Janda, R. J. & Douglass, P. M. (1981): Catastrophic rockslide avalanche of May 18. — U.S. Geological Survey Prof. Pap. 1250, 347–377.

    Google Scholar 

  • Weinstein, S. A., Yuen, D. A. & Olson, P. L. (1988): Evolution of crystal-settling in magma chamber convection. — Earth and Planetary Science Letters, vol. 81, 237–248.

    Article  Google Scholar 

  • Weisman, J. (1987): Elements of Nuclear Reactor Design. — Elsevier Scientific Publishing Co., New York, 466 p.

    Google Scholar 

  • Wilson, L. & Huang, T. C. (1979): Influence of shape on the atmospheric settling velocity of volcanic ash particles. — Earth and Planetary Science Letters, vol. 44, 311–324.

    Article  Google Scholar 

  • Wohlbier, R. H. (ed.) (1986): Hydraulic Conveying and Slurry Pipeline Technology. — Trans. Techn. Publications, Clausthal-Zellerfeld, West-Germany, 232 p.

    Google Scholar 

  • Yoder, H. S. (1976): Generation of Basaltic Magma, National Academy of Science, Washington, DC.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Erle G. Kauffman Otto H. Walliser

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Rice, A. (1990). Shock pressures in igneous processes: Implications for K/T events. In: Kauffman, E.G., Walliser, O.H. (eds) Extinction Events in Earth History. Lecture Notes in Earth Sciences, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0011135

Download citation

  • DOI: https://doi.org/10.1007/BFb0011135

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52605-6

  • Online ISBN: 978-3-540-47071-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics