Skip to main content

Biological selectivity of extinction

  • General Aspects
  • Conference paper
  • First Online:
Extinction Events in Earth History

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 30))

Abstract

Selective survival across major extinction event horizons is both a bothersome puzzle and an opportunity to delimit the biologically interesting question of causality. Heritable differences in characters may have predictable consequences in terms of differential species survival. Differences in magnitude and intensity of extinction are insufficient to distinguish background from mass extinction regimes. Biological adaptations may establish links of causality between abnormal times of mass extinction and normal times of background extinction. A current hypothesis, developed from a comparison of extinction patterns among Late Cretaceous molluscs, is that biological adaptations of organisms, effective during normal times of Earth history, are ineffectual during times of crises. A counter example is provided by data from high-latitude laminated marine strata that preserve evidence of an actively exploited life-history strategy among Late Cretaceous phytoplankton. These data illustrate a causal dependency between a biological character selected for during times of background extinction and macroevolutionary survivorship during an unusual time of crisis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. V. (1980): Extraterrestrial cause for the Cretaceous-Tertiary extinction. — Science, 208, 1095–1108.

    Google Scholar 

  • Alvarez, W., Alvarez, L.W., Asaro, F. & Michel, H. V. (1984): The end of the Cretaceous: sharp boundary or gradual transition? — Science, 223, 1183–1186.

    Google Scholar 

  • Barron, E. J. (1985): Numerical climate modeling, a frontier in petroleum source rock prediction: results based on Cretaceous simulations. — American Association of Petroleum Geologists Bull., 69, 448–459.

    Google Scholar 

  • Boyajian, G. F. (1986): Phanerozoic trends in background extinction: consequence of an aging fauna. — Geology, 14, 955–958.

    Article  Google Scholar 

  • Cooper, W. S. (1984): Expected time to extinction and the concept of fundamental fitness. — Journal of Theoretical Biology, 107, 603–629.

    Google Scholar 

  • Fryxell, G. A. (1983): Survival Strategies of the Algae. — Cambridge University Press, 144 p.

    Google Scholar 

  • Garrison, D. L. (1980): Monterey Bay phytoplankton I. Seasonal cycles of phytoplankton assemblages. — Journal of Plankton Research, 1, 241–265.

    Google Scholar 

  • Gombos, A. M., Jr. (unpubl. ms): A review of the record of Late Cretaceous diatom extinctions.

    Google Scholar 

  • Gould, S. J. (1984): The cosmic dance of Siva. — Natural History, 8, 14–19.

    Google Scholar 

  • Gould, S. J. (1985): The paradox of the first tier: an agenda for paleobiology. — Paleobiology, 11, 2–12.

    Google Scholar 

  • Gould, S. J. & Calloway, C. B. (1980): Clams and brachiopods — ships that pass in the night. — Paleobiology, 6, 383–396.

    Google Scholar 

  • Gresham, C. W. (1985): Cretaceous and Paleocene siliceous phytoplankton assemblages from DSDP sites 216, 214 and 208 in the Pacific and Indian Oceans. — Univ. of Wisconsin-Madison M.S. Thesis, 233 p.

    Google Scholar 

  • Hansen, T. A. (1978): Larval dispersal and species longevity in Lower Tertiary gastropods. — Science, 199, 885–887.

    Google Scholar 

  • Hansen, T. A. (1980): Influence of larval dispersal and geographic distribution on species longevity in neogastropods. — Paleobiology, 6, 193–207.

    Google Scholar 

  • Hargraves, P. E. & French, F. W. (1983): Diatom resting spores: significance and strategies. — In: Fryxell, G. A. (ed.): Survival Strategies of the Algae. — Cambridge University Press, Cambridge, 49–68.

    Google Scholar 

  • Harwood, D. M. (1986): Upper Cretaceous and lower Paleocene diatom and silicoflagellate biostratigraphy of Seymour Island, eastern Antarctic Peninsula. — In: Feldmann, R. M. & Woodburn, M. O. (eds.): Geological Society of America Memoir Series.

    Google Scholar 

  • Hoffman, A. & Kitchell, J. A. (1984): Evolution in a pelagic planktic system: a paleobiologic test of models of multispecies evolution. — Paleobiology, 10, 9–33.

    Google Scholar 

  • Jablonski, D. (1986): Background and mass extinctions: the alternation of macroevolutionary regimes. — Science, 231, 129–133.

    Google Scholar 

  • Kitchell, J. A., Clark, D. L. & Gombos, A. M., Jr. (1986): Biological selectivity of extinction: a link between background and mass extinction. — Palaios, 1, 504–511.

    Google Scholar 

  • Kitchell, J. A. & Estabrook, G. (1986): Was there 26-myr periodicity of extinctions? — Nature, 321, 534–535.

    Article  Google Scholar 

  • Kitchell, J. A. & Hoffman, A. (in press): Rates of origination and extinction: age-, time-, and diversity-dependence. — In: Stenseth, N. (ed.): Coevolution in Ecosystems. — Cambridge University Press, Cambridge.

    Google Scholar 

  • Kitchell, J. A. & Pena, D. (1984): Periodicity of extinctions in the geologic past: deterministic versus stochastic explanations. — Science, 226, 689–692.

    Google Scholar 

  • McKinney, F. K. (1986): Evolution of erect marine bryozoan faunas: repeated success of unilaminate species. — American Naturalist, 128, 795–809.

    Article  Google Scholar 

  • McPhee, J. (1980): Basin and Range. — Farrar, Straus, Giroux, New York, 216 p.

    Google Scholar 

  • Parrish, J. T. & Curtis, R. L. (1982): Atmospheric circulation, upwelling, and organic-rich rocks in the Mesozoic and Cenozoic eras. — Paleogeography, Palaeoclimatology, Paleoecology, 40, 31–66.

    Google Scholar 

  • Phillips, J. (1860): Life on the Earth: Its Origin and Succession. — Cambridge and London.

    Google Scholar 

  • Raup, D. M. (1986): Biological extinction in Earth history. — Science, 231, 1528–1533.

    PubMed  Google Scholar 

  • Raup, D. M. & Sepkoski, J. J., Jr. (1982): Mass extinctions in the marine fossil record. — Science, 215, 1501–1503.

    Google Scholar 

  • Raup, D. M. & Sepkoski, J. J., Jr. (1984): Periodicities of extinctions in the geologic past. — Proc. of the National Academy of Sciences USA, 81, 801–805.

    Google Scholar 

  • Raup, D. M. & Sepkoski, J. J., Jr. (1986): Periodic extinction of families and genera. — Science, 231, 833–836.

    PubMed  Google Scholar 

  • Sandgren, C. D. (1983): Survival strategies of chrysosphycean flagellates: reproduction and the formation of resistant resting cysts. — In: Fryxell, G. (ed.): Survival Strategies of the Algae. — Cambridge Univ. Press, Cambridge, 23–48.

    Google Scholar 

  • Simonsen, R. (1979): The diatom system: ideas on phylogeny. — Bacillaria, 2, 9–71.

    Google Scholar 

  • Smit, J. & Kyte, F. T. (1984): Siderophile-rich magnetic spheroids from the Cretaceous/Tertiary boundary in Umbria, Italy. — Nature, 310, 403–405.

    Article  Google Scholar 

  • Sober, E. (1984): The Nature of Selection. — MIT Press, Cambridge, Mass., 383 p.

    Google Scholar 

  • Stigler, S. M. (1987): Testing hypotheses or fitting models? Another look at mass extinctions. — In: Nitecki, M. (ed.): Neutral Models in Biology. — Oxford Univ. Press.

    Google Scholar 

  • Tappan, H. (1982): Extinction or survival: selectivity and causes of Phanerozoic crises. — In: Silver, L. T. & Schulz, P. H. (eds.): Geological Implications of Impacts of Large Asteroids and Comets on the Earth. — Geol. Soc. of America, Spec. Pap., 190, 265–276.

    Google Scholar 

  • Thierstein, H. R. (1982): Terminal Cretaceous plankton extinctions: a critical assessment. — In: Silver, L. T. & Schulz, P. H. (eds.): Geological Implications of Large Asteroids and Comets on the Earth. — Geol. Soc. of America, Spec. Pap., 190, 385–399.

    Google Scholar 

  • Van Valen, L. M. (1984): A resetting of Phanerozoic community evolution. — Nature, 307, 50–52.

    Article  Google Scholar 

  • Wolbach, W. S., Lewis, R. S. & Anders, E. (1985): Cretaceous extinctions: evidence for wildfires and search for meteoritic material. — Science, 230, 167–170.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Erle G. Kauffman Otto H. Walliser

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Kitchell, J.A. (1990). Biological selectivity of extinction. In: Kauffman, E.G., Walliser, O.H. (eds) Extinction Events in Earth History. Lecture Notes in Earth Sciences, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0011132

Download citation

  • DOI: https://doi.org/10.1007/BFb0011132

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52605-6

  • Online ISBN: 978-3-540-47071-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics