Skip to main content

Integration of Ethylene and Gibberellin Signaling

  • Chapter
  • First Online:
Ethylene in Plants

Abstract

The phytohormones ethylene and gibberellin (GA) act synergistically to regulate a diversity of plant growth and development processes. In the presence of ethylene, the signaling mediated by ethylene receptors and CTR1 (CONSTITUTIVE TRIPLE RESPONSE1) is switched off, while EIN2 (ETHYLENE INSENSITIVE2) and EIN3 (ETHYLENE INSENSITIVE3) together mediate ethylene signaling. GA promotes plant growth by facilitating the degradation of the DELLA proteins, a family of nuclear growth repressors. Although the existence of crosstalk between ethylene and GA in the context of growth and development has long been known, its molecular basis is only now beginning to be understood. Both the synthesis and the signaling pathways controlled by ethylene and GA are reciprocally regulated. In this chapter, recent advances in the understanding of how they regulate germination, root and hypocotyl growth, apical hook development, and flowering initiation are reviewed. The significance of ethylene–GA crosstalk in the plant response to abiotic stress is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas M, Alabadi D, Blazquez MA. Differential growth at the apical hook: all roads lead to auxin. Front Plant Sci. 2013;4:441.

    Article  PubMed  PubMed Central  Google Scholar 

  • Abeles FB, Morgan PW, Saltveit ME Jr. Ethylene in plant biology. San Diego: Academic Press; 1992.

    Google Scholar 

  • Achard P, Vriezen WH, Van Der Straeten D, Harberd NP. Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell. 2003;15:2816–25.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Achard P, Herr A, Baulcombe DC, Harberd NP. Modulation of floral development by a gibberellin-regulated microRNA. Development. 2004;131:3357–65.

    Article  PubMed  CAS  Google Scholar 

  • Achard P, Renou JP, Berthome R, Harberd NP, Genschik P. Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr Biol. 2008;18:656–60.

    Article  PubMed  CAS  Google Scholar 

  • Achard P, Baghour M, Chapple A, Hedden P, Van Der Straeten D, Genschik P, et al. The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. Proc Natl Acad Sci USA. 2007;104:6484–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, et al. Integration of plant responses to environmentally activated phytohormonal signals. Science. 2006;311:91–4.

    Article  PubMed  CAS  Google Scholar 

  • Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science. 1999;284:2148–52.

    Article  PubMed  CAS  Google Scholar 

  • Alonso JM, Stepanova AN, Solano R, Wisman E, Ferrari S, Ausubel FM, Ecker JR. Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis. Proc Natl Acad Sci USA. 2003;100:2992–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • An F, Zhang X, Zhu Z, Ji Y, He W, Jiang Z, et al. Coordinated regulation of apical hook development by gibberellins and ethylene in etiolated Arabidopsis seedlings. Cell Res. 2012;22:915–27.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • An F, Zhao Q, Ji Y, Li W, Jiang Z, Yu X, et al. Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell. 2010;22:2384–401.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bailey-Serres J, Voesenek LA. Life in the balance: a signaling network controlling survival of flooding. Curr Opin Plant Biol. 2010;13:489–94.

    Article  PubMed  CAS  Google Scholar 

  • Beaudoin N, Serizet C, Gosti F, Giraudat J. Interactions between abscisic acid and ethylene signaling cascades. Plant Cell. 2000;12:1103–15.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chao Q, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker JR. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell. 1997;89:1133–44.

    Article  PubMed  CAS  Google Scholar 

  • Chiwocha SD, Cutler AJ, Abrams SR, Ambrose SJ, Yang J, Ross AR, et al. The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. Plant J. 2005;42:35–48.

    Article  PubMed  CAS  Google Scholar 

  • Colebrook EH, Thomas SG, Phillips AL, Hedden P. The role of gibberellin signalling in plant responses to abiotic stress. J Exp Biol. 2014;217:67–75.

    Article  PubMed  CAS  Google Scholar 

  • Collett CE, Harberd NP, Leyser O. Hormonal interactions in the control of Arabidopsis hypocotyl elongation. Plant Physiol. 2000;124:553–62.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cowling RJ, Harberd NP. Gibberellins control Arabidopsis hypocotyl growth via regulation of cellular elongation. J Exp Bot. 1999;50:1351–7.

    Article  CAS  Google Scholar 

  • Das KK, Sarkar RK, Ismail AM. Elongation ability and non-structural carbohydrate levels in relation to submergence tolerance in rice. Plant Sci. 2005;168:131–6.

    Article  CAS  Google Scholar 

  • Daviere JM, Achard P. Gibberellin signaling in plants. Development. 2013;140:1147–51.

    Article  PubMed  CAS  Google Scholar 

  • De Grauwe L, Vriezen WH, Bertrand S, Phillips A, Vidal AM, Hedden P, Van Der Straeten D. Reciprocal influence of ethylene and gibberellins on response-gene expression in Arabidopsis thaliana. Planta. 2007;226:485–98.

    Google Scholar 

  • De Grauwe L, Chaerle L, Dugardeyn J, Decat J, Rieu I, Vriezen WH, et al. Reduced gibberellin response affects ethylene biosynthesis and responsiveness in the Arabidopsis gai eto2-1 double mutant. New Phytol. 2008;177:128–41.

    Google Scholar 

  • Dill A, Jung HS, Sun TP. The DELLA motif is essential for gibberellin-induced degradation of RGA. Proc Natl Acad Sci USA. 2001;98:14162–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dill A, Thomas SG, Hu J, Steber CM, Sun TP. The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation. Plant Cell. 2004;16:1392–405.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dubois M, Skirycz A, Claeys H, Maleux K, Dhondt S, De Bodt S, et al. Ethylene response Factor6 acts as a central regulator of leaf growth under water-limiting conditions in Arabidopsis. Plant Physiol. 2013;162:319–32.

    Google Scholar 

  • Dugardeyn J, Vandenbussche F, Van Der Straeten D. To grow or not to grow: what can we learn on ethylene-gibberellin cross-talk by in silico gene expression analysis? J Exp Bot. 2008;59:1–16.

    Google Scholar 

  • Ecker JR. The ethylene signal transduction pathway in plants. Science. 1995;268:667–75.

    Article  PubMed  CAS  Google Scholar 

  • Feng S, Martinez C, Gusmaroli G, Wang Y, Zhou J, Wang F, et al. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature. 2008;451:475–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fu X, Harberd NP. Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature. 2003;421:740–3.

    Article  PubMed  CAS  Google Scholar 

  • Fu X, Richards DE, Fleck B, Xie D, Burton N, Harberd NP. The Arabidopsis mutant sleepy1gar2-1 protein promotes plant growth by increasing the affinity of the SCFSLY1 E3 ubiquitin ligase for DELLA protein substrates. Plant Cell. 2004;16:1406–18.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fukao T, Bailey-Serres J. Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proc Natl Acad Sci USA. 2008;105:16814–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fukao T, Yeung E, Bailey-Serres J. The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell. 2011;23:412–27.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fukao T, Xu K, Ronald PC, Bailey-Serres J. A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell. 2006;18:2021–34.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gagne JM, Smalle J, Gingerich DJ, Walker JM, Yoo SD, Yanagisawa S, et al. Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proc Natl Acad Sci USA. 2004;101:6803–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gallego-Bartolome J, Arana MV, Vandenbussche F, Zadnikova P, Minguet EG, Guardiola V, Van Der Straeten D, et al. Hierarchy of hormone action controlling apical hook development in Arabidopsis. Plant J. 2011;67:622–34.

    Article  PubMed  CAS  Google Scholar 

  • Gao XH, Huang XZ, Xiao SL, Fu XD. Evolutionarily conserved DELLA-mediated gibberellin signaling in plants. J Integr Plant Biol. 2008;50:825–34.

    Article  PubMed  CAS  Google Scholar 

  • Gao XH, Xiao SL, Yao QF, Wang YJ, Fu XD. An updated GA signaling ‘Relief of Repression’ regulatory model. Mol Plant. 2011;4:601–6.

    Article  PubMed  CAS  Google Scholar 

  • Gendreau E, Orbovic V, Hofte H, Traas J. Gibberellin and ethylene control endoreduplication levels in the Arabidopsis thaliana hypocotyl. Planta. 1999;209:513–6.

    PubMed  CAS  Google Scholar 

  • Griffiths J, Murase K, Rieu I, Zentella R, Zhang ZL, Powers SJ, et al. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell. 2006;18:3399–414.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Guo H, Ecker JR. Plant responses to ethylene gas are mediated by SCF(EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell. 2003;115:667–77.

    Article  PubMed  CAS  Google Scholar 

  • Guo H, Ecker JR. The ethylene signaling pathway: new insights. Curr Opin Plant Biol. 2004;7:40–9.

    Article  PubMed  CAS  Google Scholar 

  • Guzman P, Ecker JR. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell. 1990;2:513–23.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol. 2000;51:463–99.

    Article  PubMed  CAS  Google Scholar 

  • Hattori Y, Nagai K, Ashikari M. Rice growth adapting to deepwater. Curr Opin Plant Biol. 2011;14:100–5.

    Article  PubMed  Google Scholar 

  • Hattori Y, Nagai K, Furukawa S, Song XJ, Kawano R, Sakakibara H, et al. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature. 2009;460:1026–30.

    Article  PubMed  CAS  Google Scholar 

  • Hedden P, Phillips AL. Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci. 2000;5:523–30.

    Article  PubMed  CAS  Google Scholar 

  • Herzog M, Dorne AM, Grellet F. GASA, a gibberellin-regulated gene family from Arabidopsis thaliana related to the tomato GAST1 gene. Plant Mol Biol. 1995;27:743–52.

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann-Benning S, Kende H. On the role of abscisic acid and gibberellin in the regulation of growth in rice. Plant Physiol. 1992;99:1156–61.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, et al. Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinform. 2008;2008:420747.

    Google Scholar 

  • Hua J, Meyerowitz EM. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell. 1998;94:261–71.

    Article  PubMed  CAS  Google Scholar 

  • Hua J, Chang C, Sun Q, Meyerowitz EM. Ethylene insensitivity conferred by Arabidopsis ERS gene. Science. 1995;269:1712–4.

    Article  PubMed  CAS  Google Scholar 

  • Hua J, Sakai H, Nourizadeh S, Chen QG, Bleecker AB, Ecker JR, et al. EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell. 1998;10:1321–32.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Huang Y, Li H, Hutchison CE, Laskey J, Kieber JJ. Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J. 2003;33:221–33.

    Article  PubMed  CAS  Google Scholar 

  • Itoh H, Ueguchi-Tanaka M, Matsuoka M. Molecular biology of gibberellins signaling in higher plants. Int Rev Cell Mol Biol. 2008;268:191–221.

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen SE, Olszewski NE. Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction. Plant Cell. 1993;5:887–96.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jiang C, Fu X. GA action: turning on de-DELLA repressing signaling. Curr Opin Plant Biol. 2007;10:461–5.

    Article  PubMed  CAS  Google Scholar 

  • Ju C, Yoon GM, Shemansky JM, Lin DY, Ying ZI, Chang J, et al. CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc Natl Acad Sci USA. 2012;109:19486–91.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Karssen CM, Zagorski S, Kepczynski J, Groot SPC. Key role for endogenous gibberellins in the control of seed germination. Ann Bot. 1989;63:71–80.

    CAS  Google Scholar 

  • Kende H, van der Knaap E, Cho HT. Deepwater rice: a model plant to study stem elongation. Plant Physiol. 1998;118:1105–10.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kepczynski J, Kepczynska E. Ethylene in seed dormancy and germination. Physiol Plant. 1997;101:720–6.

    Article  CAS  Google Scholar 

  • Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell. 1993;72:427–41.

    Article  PubMed  CAS  Google Scholar 

  • Lehman A, Black R, Ecker JR. HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl. Cell. 1996;85:183–94.

    Article  PubMed  CAS  Google Scholar 

  • Lorbiecke R, Sauter M. Adventitious root growth and cell-cycle induction in deepwater rice. Plant Physiol. 1999;119:21–30.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mayerhofer H, Panneerselvam S, Mueller-Dieckmann J. Protein kinase domain of CTR1 from Arabidopsis thaliana promotes ethylene receptor cross talk. J Mol Biol. 2012;415:768–79.

    Article  PubMed  CAS  Google Scholar 

  • Moon J, Suh SS, Lee H, Choi KR, Hong CB, Paek NC, et al. The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J. 2003;35:613–23.

    Article  PubMed  CAS  Google Scholar 

  • Mutasa-Gottgens E, Hedden P. Gibberellin as a factor in floral regulatory networks. J Exp Bot. 2009;60:1979–89.

    Article  PubMed  Google Scholar 

  • Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008;59:651–81.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S. Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell. 2003;15:1591–604.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Peng J, Carol P, Richards DE, King KE, Cowling RJ, Murphy GP, et al. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev. 1997;11:3194–205.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S, Koncz C, et al. EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2. Cell. 2003;115:679–89.

    Article  PubMed  CAS  Google Scholar 

  • Qi W, Sun F, Wang Q, Chen M, Huang Y, Feng YQ, et al. Rice ethylene-response AP2/ERF factor OsEATB restricts internode elongation by down-regulating a gibberellin biosynthetic gene. Plant Physiol. 2011;157:216–28.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Qiao H, Shen Z, Huang SS, Schmitz RJ, Urich MA, Briggs SP, et al. Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas. Science. 2012;338:390–3.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Raskin I, Kende H. Regulation of growth in stem sections of deep-water rice. Planta. 1984;160:66–72.

    Article  PubMed  CAS  Google Scholar 

  • Raz V, Ecker JR. Regulation of differential growth in the apical hook of Arabidopsis. Development. 1999;126:3661–8.

    PubMed  CAS  Google Scholar 

  • Raz V, Koornneef M. Cell division activity during apical hook development. Plant Physiol. 2001;125:219–26.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Saibo NJ, Vriezen WH, Beemster GT, Van Der Straeten D. Growth and stomata development of Arabidopsis hypocotyls are controlled by gibberellins and modulated by ethylene and auxins. Plant J. 2003;33:989–1000.

    Google Scholar 

  • Sakai H, Hua J, Chen QG, Chang C, Medrano LJ, Bleecker AB, et al. ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proc Natl Acad Sci USA. 1998;95:5812–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Setter TL, Laureles EV. The beneficial effect of reduced elongation growth on submergence tolerance of rice. J Exp Bot. 1996;47:1551–9.

    Article  CAS  Google Scholar 

  • Shimada A, Ueguchi-Tanaka M, Nakatsu T, Nakajima M, Naoe Y, Ohmiya H, et al. Structural basis for gibberellin recognition by its receptor GID1. Nature. 2008;456:520–3.

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol. 2003;6:410–7.

    Article  PubMed  CAS  Google Scholar 

  • Silverstone AL, Jung HS, Dill A, Kawaide H, Kamiya Y, Sun TP. Repressing a repressor: gibberellin-induced rapid reduction of the RGA protein in Arabidopsis. Plant Cell. 2001;13:1555–66.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Singh HP, Singh BB, Ram PC. Submergence tolerance of rainfed lowland rice: search for physiological marker traits. J Plant Physiol. 2001;158:883–9.

    Article  CAS  Google Scholar 

  • Singh N, Dang TT, Vergara GV, Pandey DM, Sanchez D, Neeraja CN, et al. Molecular marker survey and expression analyses of the rice submergence-tolerance gene SUB1A. Theor Appl Genet. 2010;121:1441–53.

    Article  PubMed  CAS  Google Scholar 

  • Smalle J, Haegman M, Kurepa J, Van Montagu M, Straeten DV. Ethylene can stimulate Arabidopsis hypocotyl elongation in the light. Proc Natl Acad Sci USA. 1997;94:2756–61.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Solano R, Stepanova A, Chao Q, Ecker JR. Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev. 1998;12:3703–14.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Srikanth A, Schmid M. Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci. 2011;68:2013–37.

    Article  PubMed  CAS  Google Scholar 

  • Steffens B, Wang J, Sauter M. Interactions between ethylene, gibberellin and abscisic acid regulate emergence and growth rate of adventitious roots in deepwater rice. Planta. 2006;223:604–12.

    Article  PubMed  CAS  Google Scholar 

  • Stepanova AN, Alonso JM. Ethylene signaling and response: where different regulatory modules meet. Curr Opin Plant Biol. 2009;12:548–55.

    Article  PubMed  CAS  Google Scholar 

  • Setter TL, Bhekasut P, Greenway H. Desiccation of leaves after de-submergence is one cause for intolerance to complete submergence of the rice cultivar IR 42. Funct Plant Biol. 2010;37:1096–104.

    Article  Google Scholar 

  • Suge H. Ethylene and gibberellin: regulation of internodal elongation and nodal root development in floating rice. Plant Cell Physiol. 1985;26:607–14.

    CAS  Google Scholar 

  • Sun TP, Gubler F. Molecular mechanism of gibberellin signaling in plants. Annu Rev Plant Biol. 2004;55:197–223.

    Article  PubMed  CAS  Google Scholar 

  • Thomas B, Vince Prue D. Photoperiodism in plants. 2nd ed. San Diego: Academic press; 1997.

    Google Scholar 

  • Traas J, Hulskamp M, Gendreau E, Hofte H. Endoreduplication and development: rule without dividing? Curr Opin Plant Biol. 1998;1:498–503.

    Article  PubMed  CAS  Google Scholar 

  • Ueguchi-Tanaka M, Nakajima M, Motoyuki A, Matsuoka M. Gibberellin receptor and its role in gibberellin signaling in plants. Annu Rev Plant Biol. 2007;58:183–98.

    Article  PubMed  CAS  Google Scholar 

  • Vandenbussche F, Vancompernolle B, Rieu I, Ahmad M, Phillips A, Moritz T, et al. Ethylene-induced Arabidopsis hypocotyl elongation is dependent on but not mediated by gibberellins. J Exp Bot. 2007;58:4269–81.

    Google Scholar 

  • Vogel JP, Woeste KE, Theologis A, Kieber JJ. Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Proc Natl Acad Sci USA. 1998;95:4766–71.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vriezen WH, Achard P, Harberd NP, Van Der Straeten D. Ethylene-mediated enhancement of apical hook formation in etiolated Arabidopsis thaliana seedlings is gibberellin dependent. Plant J. 2004;37:505–16.

    Google Scholar 

  • Wang KL, Li H, Ecker JR. Ethylene biosynthesis and signaling networks. Plant Cell. 2002;14(Suppl):S131–51.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Weiss D, Ori N. Mechanisms of cross talk between gibberellin and other hormones. Plant Physiol. 2007;144:1240–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wen X, Zhang C, Ji Y, Zhao Q, He W, An F, et al. Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus. Cell Res. 2012;22:1613–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wilson RN, Heckman JW, Somerville CR. Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol. 1992;100:403–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, et al. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature. 2006;442:705–8.

    Article  PubMed  CAS  Google Scholar 

  • Yamagami T, Tsuchisaka A, Yamada K, Haddon WF, Harden LA, Theologis A. Biochemical diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. J Biol Chem. 2003;278:49102–12.

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol. 2002;53:247–73.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangdong Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fu, X., Gao, X., Liu, X. (2015). Integration of Ethylene and Gibberellin Signaling. In: Wen, CK. (eds) Ethylene in Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9484-8_9

Download citation

Publish with us

Policies and ethics