Skip to main content

An Evolutionary Perspective on the Plant Hormone Ethylene

  • Chapter
  • First Online:
Ethylene in Plants

Abstract

The plant hormone ethylene plays diverse roles in growth, development, and stress responses, and has been well studied in Arabidopsis and other flowering plants, with somewhat sparser information among other land plants. There has been increasing interest in the evolution of this hormone, as studies of mosses, lycopods, ferns, and gymnosperms have made it clear that ethylene functions as a plant hormone across the land plants (embryophytes). Hormones present a particularly interesting problem in evolutionary biology because they require cooperating components for biosynthesis, perception, signaling, and response, and the sequence by which these different parts of the hormone system become operational is not always immediately obvious. In the case of ethylene, biosynthesis appears to have an ancient origin in the Archaeplastida, whereas ethylene signaling was assembled from a combination of prokaryotic, eukaryotic, and plant-specific elements. The gene for ethylene perception appears to have originated in cyanobacteria and entered the plant lineage with the endosymbiotic acquisition of the chloroplast, possibly originally functioning for environmental sensing. Most likely, ethylene as a plant hormone arose during the evolution of the charophyte algae, which ultimately gave rise to land plants. Ethylene’s roles as a hormone have undergone considerable modification during the course of plant evolution, and yet elements of the pathways involved are surprisingly well conserved. Study of the genomes and biology of diverse plants and plant relatives is helping to reveal this history. Knowledge of the process by which it has evolved helps clarify the relationships among different aspects of ethylene signaling, suggests mechanisms that could be of theoretical and practical importance, and reveals ways in which natural systems have solved problems that may be of agricultural interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeles F, Morgen P, Saltveit, ME Jr. Ethylene in plant biology. Amsterdam: Elsevier; 1992.

    Google Scholar 

  • Abeles FB, Lonski F. Stimulation of lettuce seed germination by ethylene. Plant Physiol. 1969;44:277–80.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Adams DO, Yang SF. Methionine metabolism in apple tissue: implication of S-adenosylmethionine as an intermediate in conversion of methionine to ethylene. Plant Physiol. 1977;60:892–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Adams DO, Yang SF. Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc Natl Acad Sci USA. 1979;76:170–4.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Adl SM, Simpson AGB, Lane CE, Lukeš J, Bass D, Bowser SS, Brown MW, Burki F, Dunthorn M, Hampl V, et al. The revised classification of eukaryotes. J Eukaryot Microbiol. 2012;59:429–93.

    PubMed  PubMed Central  Google Scholar 

  • Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science. 1999;284:2148–52.

    PubMed  CAS  Google Scholar 

  • Amagai A. Ethylene as a potent inducer of sexual development. Dev Growth Diff. 2011;53:617–23.

    CAS  Google Scholar 

  • Amagai A, Maeda Y. The ethylene action in the development of cellular slime molds: an analogy to higher plants. Protoplasma. 1992;167:159–68.

    CAS  Google Scholar 

  • Amagai A, Soramoto S-S, Saito S-H, Maeda Y. Ethylene induces zygote formation through an enhanced expression of zyg1 in Dictyostelium mucoroides. Exp Cell Res. 2007;313:2493–503.

    PubMed  CAS  Google Scholar 

  • An F, Zhao Q, Ji Y, Li W, Jiang Z, Yu X, Zhang C, Han Y, He W, Liu Y, Zhang S, Ecker JR, Guo H. Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell. 2010;22:2384–401.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Andersson SGE, Zomorodipour A, Andersson JO, Sicheritz-ponte T, Eriksson A, Winkler HH, Alsmark UCM, Podowski RM, Na AK, Kurland CG. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature. 1998;396:133–43.

    Google Scholar 

  • Banks JA, et al. The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science. 2011;332:960–3.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Banthoengsuk S, Ketsa S, van Doorn WG. 1-MCP partially alleviates dehydration-induced abscission in cut leaves of the fern Nephrolepis cordifolia. Postharvest Biol Tech. 2011;59:253–7.

    CAS  Google Scholar 

  • Barry CS, Giovannoni JJ. Ripening in the tomato Green-ripe mutant is inhibited by ectopic expression of a protein that disrupts ethylene signaling. Proc Natl Acad Sci USA. 2006;103:7923–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Basile D, Basile M. Desuppression of leaf primordia of Plagiochila arctica (Hepaticae) by ethylene antagonists. Science. 1983;220:1051–3.

    PubMed  CAS  Google Scholar 

  • Binder BM. The ethylene receptors: complex perception for a simple gas. Plant Sci. 2008;175:8–17.

    CAS  Google Scholar 

  • Blaha D, Prigent-Combaret C, Mirza MS, Moënne-Loccoz Y. Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol. 2006;56:455–70.

    PubMed  CAS  Google Scholar 

  • Bleecker AB. Ethylene perception and signaling: an evolutionary perspective. Trends in Plant Sci. 1999;4:269–74.

    Google Scholar 

  • Boller T, Herner RC, Kende H. Assay for and enzymatic formation of an ethylene precursor, 1-aminocyclopropane-l-carboxylic acid. Planta. 1979;145:293–303.

    PubMed  CAS  Google Scholar 

  • Bower FO. The origin of a land flora: a theory based upon the facts of alternation. London: Macmillan; 1908.

    Google Scholar 

  • Broadgate W, Malin G, Küpper F, Thompson A, Liss P. Isoprene and other non-methane hydrocarbons from seaweeds: a source of reactive hydrocarbons to the atmosphere. Marine Chem. 2004;88:61–73.

    CAS  Google Scholar 

  • Brooks KE. Reproductive biology of Selaginella. Plant Physiol. 1973;51:718–22.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Camehl I, Sherameti I, Venus Y, Bethke G, Varma A, Lee J, Oelmüller R. Ethylene signalling and ethylene-targeted transcription factors are required to balance beneficial and nonbeneficial traits in the symbiosis between the endophytic fungus Piriformospora indica and Arabidopsis thaliana. New Phytol. 2010;185:1062–73.

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T. Membrane heredity and early chloroplast evolution. Trends Plant Sci. 2000;5:174–82.

    CAS  Google Scholar 

  • Chagué V, Danit L-V, Siewers V, Schulze-Gronover C, Tudzynski P, Tudzynski B, Sharon A. Ethylene sensing and gene activation in Botrytis cinerea: a missing link in ethylene regulation of fungus-plant interactions? Mol Plant Microbe In. 2006;19:33–42.

    Google Scholar 

  • Chao Q, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker JR. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell. 1997;89:1133–44.

    PubMed  CAS  Google Scholar 

  • Chernys J, Kende H. Ethylene biosynthesis in Regnellidium diphyllum and Marsilea quadrifolia. Planta. 1996;200:113–8.

    CAS  Google Scholar 

  • Clouse RM, Carraro N. A novel phylogeny and morphological reconstruction of the PIN genes and first phylogeny of the ACC-oxidases (ACOs). Front Plant Sci. 2014;5:296. doi:10.3389/fpls.2014.00296.

    PubMed  PubMed Central  Google Scholar 

  • Cookson C, Osborne DJ. The effect of ethylene and auxin on cell wall extensibility of the semi-aquatic fern, Regnellidium diphyllum. Planta. 1979;146:303–7.

    PubMed  CAS  Google Scholar 

  • Cooper ED. Overly simplistic substitution models obscure green plant phylogeny. Trends Plant Sci. 2014;19:576–82. doi:10.1016/j.tplants.2014.06.006.

  • Delwiche C. Tracing the thread of plastid diversity through the tapestry of life. Am Nat. 1999;154:S164–77.

    PubMed  Google Scholar 

  • Derelle E, Ferraz C, Rombauts S, Rouzé P, Worden AZ, Robbens S, Partensky F, Degroeve S, Echeynié S, Cooke R, Saeys Y, Wuyts J, Jabbari K, Bowler C, Panaud O, Piégu B, Ball SG, Ral J-P, Bouget F-Y, Piganeau G, De Baets B, Picard A, Delseny M, Demaille J, Van de Peer Y, Moreau H. Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci USA. 2006;103:11647–52.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Eckert C, Xu W, Xiong W, Lynch S, Ungerer J, Tao L, Gill R, Maness P-C, Yu J. Ethylene-forming enzyme and bioethylene production. Biotechnol Biofuels. 2014;7:33. doi:10.1186/1754-6834-7-33.

    PubMed  PubMed Central  Google Scholar 

  • Edwards ME, Miller JH. Growth regulation by ethylene in fern gametophytes. III. Inhibition of spore germination. Am J Bot. 1972;59:458–65.

    CAS  Google Scholar 

  • Elmore H, Whittier W. Ethylene production and ethylene-induced apogamous bud formation in nine gametophytic strains of Pteridium aquilinum (L.) Kuhn. Ann Bot. 1975;39:965–71.

    CAS  Google Scholar 

  • Fisher R, Miller J. Growth regulation by ethylene in fern gametophytes. V. Ethylene and the early events of spore germination. Am J Bot. 1978;65:334–9.

    CAS  Google Scholar 

  • Flaishman MA, Kolattukudy PE. Timing of fungal invasion using host’s ripening hormone as a signal. Proc Natl Acad Sci USA. 1994;91:6579–83.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gagne JM, Smalle J, Gingerich DJ, Walker JM, Yoo SD, Yanagisawa S, Vierstra RD. Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proc Natl Acad Sci USA. 2004;101:6803–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Garcia-Jimenez P, Brito-Romano O, Robaina RR. Production of volatiles by the red seaweed Gelidium arbuscula (Rhodophyta): emission of ethylene and dimethyl sulfide. J Phycol. 2013;49:661–9.

    Google Scholar 

  • García-Jiménez P, Robaina RR. Effects of ethylene on tetrasporogenesis in Pterocladiella Capillacea (Rhodophyta) 1. J Phycol. 2012;48:710–5.

    Google Scholar 

  • Glick BR. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res. 2014;169:30–9.

    PubMed  CAS  Google Scholar 

  • Grbić V, Bleecker A. Ethylene regulates the timing of leaf senescence in Arabidopsis. Plant J. 1995;8:595–602.

    Google Scholar 

  • Groen SC, Whiteman NK. The evolution of ethylene signaling in plant chemical ecology. J Chem Ecol. 2014;40:700–16.

    PubMed  CAS  Google Scholar 

  • Guo H, Ecker JR. Plant responses to ethylene gas are mediated by SCF (EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell. 2003;115:667–77.

    PubMed  CAS  Google Scholar 

  • Hamilton AJ, Bouzayen M, Grierson D. Identification of a tomato gene for the ethylene-forming enzyme by expression in yeast. Proc Natl Acad Sci USA. 1991;88:7434–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  • He D, Fiz-palacios O, Fu C, Fehling J, Tsai C, Baldauf SL. An alternative root for the eukaryote tree of life. Curr Biol. 2014;24:465–70.

    PubMed  CAS  Google Scholar 

  • Hirayama T, Kieber JJ, Hirayama N, Kogan M, Guzman P, Nourizadeh S, Alonso JM, Dailey WP, Dancis A, Ecker JR. RESPONSIVE-TO-ANTAGONIST1, a Menkes/Wilson disease related copper transporter, is required for ethylene signaling in Arabidopsis. Cell. 1999;97:383–93.

    PubMed  CAS  Google Scholar 

  • Hori K, Maruyama F, Fujisawa T, Togashi T, Yamamoto N, Seo M, Sato S, Yamada T, Mori H, Tajima N, et al. Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation. Nat Commun. 2014;5:3978. doi:10.1038/ncomms4978.

    PubMed  PubMed Central  Google Scholar 

  • Huang T-C, Chow T-J. Ethylene production by blue-green algae. Bot Bull Academia Sinica. 1984;25:81–6.

    CAS  Google Scholar 

  • Ilag L, Curtis R. Production of ethylene by fungi. Science. 1968;159:1357–8.

    PubMed  CAS  Google Scholar 

  • Ishida K, Yamashino T, Nakanishi H, Mizuno T. Classification of the genes involved in the two-component system of the moss Physcomitrella patens. Biosci Biotech Biochem. 2010;74:2542–5.

    CAS  Google Scholar 

  • Jacobsen DW, Wang CH. The biogenesis of ethylene in Penicillium Digitatum. Plant Physiol. 1968;43:1959–66.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jourda C, Cardi C, Mbéguié-A-Mbéguié D, Bocs S, Garsmeur O, D’Hont A, Yahiaoui N. Expansion of banana (Musa acuminata) gene families involved in ethylene biosynthesis and signalling after lineage-specific whole-genome duplications. New Phytol. 2014;202:986–1000.

    PubMed  CAS  Google Scholar 

  • Ju C, Yoon GM, Shemansky JM, Lin DY, Ying ZI, Chang J, Garrett WM, Kessenbrock M, Groth G, Tucker ML, Kieber JJ, Chang C. CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc Natl Acad Sci USA. 2012;109:19486–91.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Karol KG, McCourt RM, Cimino MT, Delwiche CF. The closest living relatives of land plants. Science. 2001;294:2351–3.

    PubMed  CAS  Google Scholar 

  • Kawai Y, Ono E, Mizutani M. Evolution and diversity of the 2-oxoglutarate-dependent dioxygenase superfamily in plants. Plant J. 2014;78:328–43.

    PubMed  CAS  Google Scholar 

  • Keeling PJ. The endosymbiotic origin, diversification and fate of plastids. Philos Tran R Soc Lond B Biol Sci. 2010;365:729–48.

    CAS  Google Scholar 

  • Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell. 1993;72:427–41.

    PubMed  CAS  Google Scholar 

  • Kim H, Shitashiro M, Kuroda A. Ethylene chemotaxis in Pseudomonas aeruginosa and other Pseudomonas species. Microbes Environ. 2007;22:186–9.

    CAS  Google Scholar 

  • Koonin EV. The origin and early evolution of eukaryotes in the light of phylogenomics. Genome Biol. 2010;11:209. doi:10.1186/gb-2010-11-5-209.

    PubMed  PubMed Central  Google Scholar 

  • Krasko A, Schroder HC, Perovic S, Steffen R, Kruse M, Reichert W, Muller IM, Muller WEG. Ethylene modulates gene expression in cells of the marine sponge Suberites domuncula and reduces the degree of apoptosis. J Biol Chem. 1999;274:31524–30.

    PubMed  CAS  Google Scholar 

  • Kreslavsky VD, Kobzar EF, Muzafarov EN. Effect of red radiation, kinetin and linuron on growth and ethylene production in Chlorella. Biol Plantarum. 1997;39:427–30.

    CAS  Google Scholar 

  • Kwa S-H, Wee Y-C, Kumar PP. Role of ethylene in the production of sporophytes from Platycerium coronarium (Koenig) Desv. frond and rhizome pieces cultured in vitro. J Plant Growth Regul. 1995;14:183–9.

    CAS  Google Scholar 

  • Ladygina N, Dedyukhina EG, Vainshtein MB. A review on microbial synthesis of hydrocarbons. Process Biochem. 2006;41:1001–14.

    CAS  Google Scholar 

  • Law DM, Basile DV, Basile MR. Determination of endogenous indole-3-acetic acid in Plagiochila arctica (Hepaticae). Plant Physiol. 1985;77:926–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lee RF, Baker J. Ethylene and ethane production in an estuarine river: formation from the decomposition of polyunsaturated fatty acids. Marine Chem. 1992;38:25–36.

    CAS  Google Scholar 

  • Lynch J. Identification of substrates and isolation of microorganisms responsible for ethylene production in the soil. Nature. 1972;240:45–6.

    CAS  Google Scholar 

  • Magnani E, Sjölander K, Hake S. From endonucleases to transcription factors: evolution of the AP2 DNA binding domain in plants. Plant Cell. 2004;16:2265–77.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Maillard P, Thepenier C, Gudin C. Determination of an ethylene biosynthesis pathway in the unicellular green alga, Haematococcus pluvialis. Relationship between growth and ethylene production. J Appl Phycol. 1993;5:93–8.

    CAS  Google Scholar 

  • Mansouri S, Bunch AW. Bacterial ethylene synthesis from 2-oxo-4-thiobutyric acid and from methionine. J Gen Microbiol. 1989;135:2819–27.

    PubMed  CAS  Google Scholar 

  • Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA. 2002; 99:12246–51.

    Google Scholar 

  • Matsuzaki M, et al. Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature. 2004;428:653–7.

    PubMed  CAS  Google Scholar 

  • Mattoo AK, Baker JE, Moline HE. Induction by copper ions of ethylene production in Spirodela oligorrhiza: evidence for a pathway independent of 1-aminocyclopropane-1-carboxylic acid. J Plant Physiol. 1986;123:193–202.

    CAS  Google Scholar 

  • McManus MT. Annual plant reviews, the plant hormone ethylene. Hoboken: Wiley-Blackwell; 2012.

    Google Scholar 

  • Meng D, Shen L, Yang R, Zhang X, Sheng J. Identification and active site analysis of the 1-aminocyclopropane-1-carboxylic acid oxidase catalysing the synthesis of ethylene in Agaricus bisporus. Biochim Biophys Acta. 2014;1840:120–8.

    PubMed  CAS  Google Scholar 

  • Merchant SS, et al. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science. 2007;318:245–50.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Métraux J, Kende H. Does ethylene mediate the autochemotropic and rheotropic responses in Phycomyces. Planta. 1983;159:286–8.

    PubMed  Google Scholar 

  • Moeskops BWM, Steeghs MML, van Swam K, Cristescu SM, Scheepers PTJ, Harren FJM. Real-time trace gas sensing of ethylene, propanal and acetaldehyde from human skin in vivo. Physiol Maes. 2006;27:1187–96.

    CAS  Google Scholar 

  • Mount S, Chang C. Evidence for a plastid origin of plant ethylene receptor genes. Plant Physiol. 2002;130:10–4.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Müller WEG, Ushijima H, Batel R, Krasko A, Borejko A, Müller IM, Schröder H-C. Novel mechanism for the radiation-induced bystander effect: nitric oxide and ethylene determine the response in sponge cells. Mutat Res. 2006;597:62–72.

    PubMed  Google Scholar 

  • Musgrave A, Walters J. Ethylene and buoyancy control rachis elongation of the semi-aquatic fern Regnillidium diphyllum. Planta. 1974;121:51–6.

    PubMed  CAS  Google Scholar 

  • Nagahama K, Ogawa T, Fujii T, Fukuda H. Classification of ethylene-producing bacteria in terms of biosynthetic pathways to ethylene. J Ferment Bioeng. 1992;73:1–5.

    CAS  Google Scholar 

  • Nagahama K, Ogawa T, Fujii T, Tazaki M, Tanase S, Morino Y, Fukuda H. Purification and properties of an ethylene-forming enzyme from Pseudomonas syringae pv. phaseolicola PK2. J Gen Microbiol. 1991;137:2281–6.

    PubMed  CAS  Google Scholar 

  • Nevo Y, Nelson N. The NRAMP family of metal-ion transporters. Biochim Biophys Acta. 2006;1763:609–20.

    PubMed  CAS  Google Scholar 

  • Osborne DJ, Walters J, Milborrow BV, Norville A, Stange LMC. Evidence for a non-ACC ethylene biosynthesis pathway in lower plants. Phytochem. 1996;42:51–60.

    CAS  Google Scholar 

  • Ott S, Krieg T, Spanier U, Schieleit P. Phytohormones in lichens with emphasis on ethylene biosynthesis and functional aspects on lichen symbiosis. Phyton. 2000;40:83–94.

    CAS  Google Scholar 

  • Perovic S, Seack J, Gamulin V, Muller W, Schroder H. Modulation of intracellular calcium and proliferative activity of invertebrate and vertebrate cells by ethylene. BMC Cell Biol. 2001;2:7. doi:10.1186/1471-2121-2-7.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Plettner I, Steinke M, Malin G. Ethene (ethylene) production in the marine macroalga Ulva (Enteromorpha) intestinalis L. (Chlorophyta, Ulvophyceae): effect of light-stress and co-production with dimethyl sulphide. Plant Cell Environ. 2005;28:1136–45.

    CAS  Google Scholar 

  • Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S, Koncz C, Genschik P. EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2. Cell. 2003;115:679–89.

    PubMed  CAS  Google Scholar 

  • Primrose SB. Ethylene-forming bacteria from soil and water. J Gen Microbiol. 1976;97:343–6.

    PubMed  CAS  Google Scholar 

  • Qiao H, Shen Z, Huang SC, Schmitz RJ, Urich MA, Briggs SP, Ecker JR. Processing and subcellular trafficking of ER tethered EIN2 control response to ethylene gas. Science. 2012;338:390–3.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rensing SA, et al. The Physcomitrella genome reveals evolutionary insights into conquest of land by plants. Science. 2008;319:64–9.

    PubMed  CAS  Google Scholar 

  • Resnick JS, Wen C, Shockey JA, Chang C. REVERSION-TO-ETHYLENE SENSITIVITY1, a conserved gene that regulates receptor function in Arabidopsis. Proc Natl Acad Sci USA. 2006;103:7917–22.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Richardt S, Timmerhaus G, Lang D, Qudeimat E, Corrêa LGG, Reski R, Rensing SA, Frank W. Microarray analysis of the moss Physcomitrella patens reveals evolutionarily conserved transcriptional regulation of salt stress and abscisic acid signalling. Plant Mol Biol. 2010;72:27–45.

    PubMed  CAS  Google Scholar 

  • Riechmann JL, Meyerowitz EM. The AP2/EREB family of plant transcription factors. J Biol Chem. 1998;379:633–46.

    CAS  Google Scholar 

  • Rivarola M, McClellan CA, Resnick JS, Chang C. ETR1-specific mutations distinguish ETR1 from other Arabidopsis ethylene receptors as revealed by genetic interaction with RTE1. Plant Physiol. 2009;150:547–51.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rohwer F, Bopp M. Ethylene synthesis in moss protonema. J Plant Physiol. 1985;117:331–8.

    PubMed  CAS  Google Scholar 

  • Russo VE, Halloran B, Gallori E. Ethylene is involved in the autochemotropism of Phycomyces. Planta. 1977;134:61–6.

    PubMed  CAS  Google Scholar 

  • Seack J, Perovic S, Gamulin V, Schröder HC, Beutelmann P, Müller IM, Müller WE. Identification of highly conserved genes: SNZ and SNO in the marine sponge Suberites domuncula: their gene structure and promoter activity in mammalian cells. Biochim Biophys Acta. 2001;1520:21–34.

    PubMed  CAS  Google Scholar 

  • Shakeel SN, Wang X, Binder BM, Schaller GE. Mechanisms of signal transduction by ethylene: overlapping and non-overlapping signalling roles in a receptor family. AooB Plants. 2013;5:plt010. doi:10.1093/aobpla/plt010.

  • Shipston N, Bunch AW. The physiology of L-methionine catabolism to the secondary metabolite ethylene by Escherichia coli. J General Microbiol. 1989;135:1489–97.

    CAS  Google Scholar 

  • Solano R, Stepanova A, Chao Q, Ecker JR. Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE FACTOR1. Genes Dev. 1998;12:3703–14.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sørensen I, Fei Z, Andreas A, Willats WGT, Domozych DS, Rose JKC. Stable transformation and reverse genetic analysis of Penium margaritaceum: a platform for studies of charophyte green algae, the immediate ancestors of land plants. Plant J. 2014;77:339–51.

    PubMed  Google Scholar 

  • Taylor JS, Raes J. Duplication and divergence: the evolution of new genes and old ideas. Annu Rev Genet. 2004;38:615–43.

    PubMed  CAS  Google Scholar 

  • Thomas R, Harrison M. Endogenous auxin and ethylene in Pellia (Bryophyta). Plant Physiol. 1983;73:395–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Thrash JC, Boyd A, Huggett MJ, Grote J, Carini P, Yoder RJ, Robbertse B, Spatafora JW, Rappé MS, Giovannoni SJ. Phylogenomic evidence for a common ancestor of mitochondria and the SAR11 clade. Sci Rep. 2011;1:13. doi:10.1038/srep00013.

    PubMed  PubMed Central  Google Scholar 

  • Timme RE, Delwiche CF. Uncovering the evolutionary origin of plant molecular processes: comparison of the Coleochaete (Coleochaetales) and Spirogyra (Zygnematales) transcriptomes. BMC Plant Biol. 2010;10:96. doi:10.1186/1471-2229-10-96.

    PubMed  PubMed Central  Google Scholar 

  • Timmis JN, Ayliffe MA, Huang CY, Martin W. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Gen. 2004;5:123–35.

    Google Scholar 

  • Vanden Driessche T, Kevers C, Collet M, Gaspar T. Acetabularia mediterranea and ethylene: production in relation with development, circadian rhythms in emission, and response to external application. J Plant Physiol. 1988;133:635–9.

    CAS  Google Scholar 

  • Vandenbussche F, Vaseva I, Vissenberg K, Van Der Straeten D. Ethylene in vegetative development: a tale with a riddle. New Phytol. 2012;194:895–909.

    PubMed  CAS  Google Scholar 

  • Ververidis P, John P. Complete recovery in vitro of ethylene-forming enzyme-activity. Phytochemistry. 1991;30:725–7.

    CAS  Google Scholar 

  • Voesenek LACJ, Sasidharan R. Ethylene—and oxygen signalling—drive plant survival during flooding. Plant Biol. 2013;15:426–35.

    PubMed  CAS  Google Scholar 

  • Wang W, Esch JJ, Shiu S-H, Agula H, Binder BM, Chang C, Patterson SE, Bleecker AB. Identification of important regions for ethylene binding and signaling in the transmembrane domain of the ETR1 ethylene receptor of Arabidopsis. Plant Cell. 2006;18:3429–42.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Weingart H, Volksch B. Ethylene production by Pseudomonas syringae pathovars In Vitro and In Planta. App Environ Microbiol. 1997;63:156–61.

    CAS  Google Scholar 

  • Wen X, Zhang C, Ji Y, Zhao Q, He W, An F, Jiang L, Guo H. Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus. Cell Res. 2012;22:1613–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wilson DF, Swinnerton JW, Lamontagne RA. Production of carbon monoxide and gaseous hydrocarbons in seawater: relation to dissolved organic carbon. Science. 1970;168:1577–9.

    PubMed  CAS  Google Scholar 

  • Woeste KE, Kieber JJ. A strong loss-of-function mutation in RAN1 results in constitutive activation of the ethylene response pathway as well as a rosette-lethal phenotype. Plant Cell. 2000;12:443–55.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yasumura Y, Pierik R, Fricker MD, Voesenek LACJ, Harberd NP. Studies of Physcomitrella patens reveal that ethylene-mediated submergence responses arose relatively early in land-plant evolution. Plant J. 2012;72:947–59.

    CAS  Google Scholar 

  • Yordanova ZP, Iakimova ET, Cristescu SM, Harren FJM, Kapchina-Toteva VM, Woltering EJ. Involvement of ethylene and nitric oxide in cell death in mastoparan-treated unicellular alga Chlamydomonas reinhardtii. Cell Biol Int. 2010;34:301–8.

    PubMed  CAS  Google Scholar 

  • Zhang X, Ho S-M. Epigenetics meets endocrinology. J Mol Endocrinol. 2010;46:R11–32.

    Google Scholar 

  • Zhu P, Xu L, Zhang C, Toyoda H, Gan S-S. Ethylene produced by Botrytis cinerea can affect early fungal development and can be used as a marker for infection during storage of grapes. Postharvest Biol Tech. 2012;66:23–9.

    CAS  Google Scholar 

  • Zuo Z, Zhu Y, Bai Y, Wang Y. Acetic acid-induced programmed cell death and release of volatile organic compounds in Chlamydomonas reinhardtii. Plant Physiol Biochem. 2012;51:175–84.

    PubMed  CAS  Google Scholar 

  • Zusterzeel PLM, Steegers-Theunissen RPM, Harren FJM, Stekkinger E, Kateman H, Timmerman BH, Berkelmans R, Nieuwenhuizen A, Peters WHM, Raijmakers MTM, Steegers EA. Ethene and other biomarkers of oxidative stress in hypertensive disorders of pregnancy. Hypertens Pregnancy. 2002;21:39–49.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NSF grant MCB-0923796 to CC, NSF grants EF0523719 (Microbial Genome Sequencing) and DEB-1036506 (Assembling the Tree of Life) to CFD, a Belgian American Educational Foundation Fellowship and a CBMG/CMNS Merit Postdoctoral Fellowship (University of Maryland) to BVDP. CC and CFD are supported in part by the Maryland Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caren Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Van de Poel, B., Cooper, E.D., Delwiche, C.F., Chang, C. (2015). An Evolutionary Perspective on the Plant Hormone Ethylene. In: Wen, CK. (eds) Ethylene in Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9484-8_7

Download citation

Publish with us

Policies and ethics