Skip to main content

Developing Sensors Based on TiO2 Nanotubes to Detect Explosives

  • Conference paper
Nanotechnology to Aid Chemical and Biological Defense

Abstract

Within the last decade there has been a great increase in the need of trace and ultra-trace detection of explosives. Due to the very low vapor pressure of TNT and PETN, the development of efficient and sensitive detector systems seems to be complex and expensive. But the development of those systems is highly desirable, as there are considerable security needs, especially with increased use of explosives in terrorist attacks and the present surge of international terrorism.

The reported approach offers a novel procedure based on metal oxide Nanotubes that are inexpensive, lightweight, easily made, and produce cost effective devices to detect PETN.

The development will be described as a step by step procedure to produce a sensing chip device, beginning with the synthesis of the starting materials, to the supersensitive measurements of PETN explosive. As a result, the whole process is actually one of the most cost-effective methods to produce explosive sensing devices reported to date. The achieved chemical nose assembly will be able to detect PETN explosive down to ∼112 ppt. Besides its low detection limit, the sensing device has further advantages founded in the easy and competitive design. The explosives sensor is architecturally designed to be smaller and light weight, which will allow multifaceted application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hallowell SF (2001) Screening people for illicit substances: a survey of current portal technology. Talanta 54(3):447–458

    Article  Google Scholar 

  2. Fainberg A (1992) Explosives detection for aviation security. Science 255:1531–1537

    Article  Google Scholar 

  3. Colton RJ, Russel JN Jr (2003) COUNTERTERRORISM: making the world a safer place. Science 299(5611):2

    Article  Google Scholar 

  4. Czarnik AW (1998) A sense for landmines. Nature 394(6692):417–418

    Article  Google Scholar 

  5. Furton KG, Myers LJ (2001) The scientific foundation and efficacy of the use of canines as chemical detectors for explosives. Talanta 54(3):487–500

    Article  Google Scholar 

  6. Hiltmar Schubert AR-K (ed) (2006) Stand-off detection of suicide bombers and mobile subjects, NATO security through science series. Springer, Dordrecht

    Google Scholar 

  7. Meaney M, McGuffin V (2008) Luminescence-based methods for sensing and detection of explosives. Anal Bioanal Chem 391(7):2557–2576

    Article  Google Scholar 

  8. Singh S (2007) Sensors – an effective approach for the detection of explosives. J Hazard Mater 144(1–2):15–28

    Article  Google Scholar 

  9. Smith RG, D’Souza N, Nicklin S (2008) A review of biosensors and biologically-inspired systems for explosives detection. Analyst 133(5):571–584

    Article  Google Scholar 

  10. Andrew TL, Swager TM (2007) A fluorescence turn-on mechanism to detect high explosives RDX and PETN. J Am Chem Soc 129(23):7254–7255

    Article  Google Scholar 

  11. Anderson GP et al (2010) Bead-based fluid array detection of Pentaerythritol Tetranitrate: comparison of Monoclonal vs. Llama Polyclonal antibodies. Anal Lett 43(18):2913–2922

    Article  Google Scholar 

  12. Mikhaltsevitch VT, Beliakov AV (2006) Polarization enhancement of NQR signals for explosive detection. Solid State Commun 138(8):409–411

    Article  Google Scholar 

  13. Judd LL et al (1995) Antibody-based fluorometric assay for detection of the explosives TNT and PETN. SPIE, San Jose

    Google Scholar 

  14. Hilmi A, Luong JHT, Nguyen A-L (1999) Development of electrokinetic capillary electrophoresis equipped with amperometric detection for analysis of explosive compounds. Anal Chem 71(4):873–878

    Article  Google Scholar 

  15. Yinon J (2003) Peer reviewed: detection of explosives by electronic noses. Anal Chem 75(5):98 A–105 A

    Article  Google Scholar 

  16. Wang ZL (2004) FUNCTIONAL OXIDE NANOBELTS: materials, properties and potential applications in nanosystems and biotechnology. Annu Rev Phys Chem 55(1):159–196

    Article  Google Scholar 

  17. Law M, Goldberger J, Yang P (2004) Semiconductor nanowires and nanotubes. Annu Rev Mater Res 34(1):83–122

    Article  Google Scholar 

  18. Lu JG, Chang P, Fan Z (2006) Quasi-one-dimensional metal oxide materials–synthesis, properties and applications. Mater Sci Eng: R: Rep 52(1–3):49–91

    Article  Google Scholar 

  19. Snow ES, Perkins FK, Robinson JA (2006) Chemical vapor detection using single-walled carbon nanotubes. Chem Soc Rev 35(9):790–798

    Article  Google Scholar 

  20. Patolsky F, Lieber CM (2005) Nanowire nanosensors. Mater Today 8(4):20–28

    Article  Google Scholar 

  21. Grobert N (n.d.) Carbon nanotubes – becoming clean. Mater Today 10(1–2):28–35

    Google Scholar 

  22. Allen BL, Kichambare PD, Star A (2007) Carbon nanotube field-effect-transistor-based biosensors. Adv Mater 19(11):1439–1451

    Article  Google Scholar 

  23. Sysoev VV et al (2007) A gradient microarray electronic nose based on percolating SnO2 nanowire sensing elements. Nano Lett 7(10):3182–3188

    Article  Google Scholar 

  24. Baik JM et al (2010) Tin-oxide-nanowire-based electronic nose using heterogeneous catalysis as a functionalization strategy. ACS Nano 4(6):3117–3122

    Article  Google Scholar 

  25. Cerrato Oliveros MC et al (2002) Electronic nose based on metal oxide semiconductor sensors as a fast alternative for the detection of adulteration of virgin olive oils. Anal Chim Acta 459(2):219–228

    Article  Google Scholar 

  26. Po-Chiang C, Guozhen S, Chongwu Z (2008) Chemical sensors and electronic noses based on 1-D metal oxide nanostructures. Nanotechnol IEEE Trans Nanotechnol 7(6):668–682

    Article  Google Scholar 

  27. Dionne BC et al (1986) Vapor pressure of explosives. J Energetic Mater 4(1):447–472

    Article  Google Scholar 

  28. Boehme M et al (2011) Cerium (IV) oxide nanotubes prepared by low temperature deposition at normal pressure. Nanotechnology 22(6):065602

    Article  Google Scholar 

  29. Cox A (1992) Photochemistry 22:505

    Article  Google Scholar 

  30. Gonzalez RZRJ (1997) In: Thorpe MF (ed) NATO ASI proceedings

    Google Scholar 

  31. Xia DLY (2004) Nano Lett 4(5):933–938

    Article  Google Scholar 

  32. Sadeghzadeh Attar A et al (2008) Synthesis and characterization of anatase and rutile TiO2 nanorods by template-assisted method. J Mater Sci 43(17):5924–5929

    Article  Google Scholar 

  33. Maiyalagan T, Viswanathan B, Varadaraju UV (2006) Fabrication and characterization of uniform TiO2 nanotube arrays by sol–gel template method. Bull Mater Sci 29(7):705–708

    Google Scholar 

  34. Martin CR (1994) Nanomaterials: a membrane-based synthetic approach. Science 266(5193):1961–1966

    Article  Google Scholar 

  35. Klein JD et al (1993) Electrochemical fabrication of cadmium chalcogenide microdiode arrays. Chem Mater 5(7):902–904

    Article  Google Scholar 

  36. Shi Z (2006) Nanotechnology 17:2161–2166

    Article  Google Scholar 

  37. Ohsaka T, Izumi F, Fujiki Y (1978) Raman spectrum of anatase, TiO2. J Raman Spectrosc 7(6):321–324

    Article  Google Scholar 

  38. Fang D et al (2008) Fabrication and photoluminiscent properties of titanium oxide nanotube arrays. J Braz Chem Soc 19(6):1059–1064

    Article  Google Scholar 

  39. Murata M, Wakino K, Ikeda S (1975) X-ray photoelectron spectroscopic study of perovskite titanates and related compounds: an example of the effect of polarization on chemical shifts. J Electron Spectrosc Relat Phenom 6(5):459–464

    Article  Google Scholar 

  40. Gonbeau D et al (1991) XPS study of thin films of titanium oxysulfides. Surf Sci 254 (1–3):81–89

    Article  Google Scholar 

  41. Silversmit G, De Doncker G, De Gryse R (2002) A mineral TiO2 (001) anatase crystal examined by XPS. Surf Sci Spectra 9(1):21–29

    Article  Google Scholar 

  42. Boehme M, Ensinger W (2011) Fabrication of zinc oxide nanotubes by chemical bath deposition using ion track-etched templates. IEEE Trans Nanotechnol 10(1):63–69

    Article  Google Scholar 

  43. Boehme M et al (2011) Room temperature synthesis of samarium oxide nanotubes using cost-effective electroless deposition method. J Exp Nanosci 158:286–291

    Google Scholar 

  44. Boehme M et al (2011) Room temperature synthesis of indium tin oxide nanotubes with high precision wall thickness by electroless deposition. Beilstein J Nanotechnol 2:119–126

    Article  Google Scholar 

  45. Boehme M, Ensinger W (2011) From nanowheat to nanograss: a preparation method to achieve free standing nanostructures having a high length/diameter aspect ratio. Adv Eng Mater. In Print Accepted 20.12.10

    Google Scholar 

  46. Zhang D et al (2003) Ultraviolet photodetection properties of indium oxide nanowires. Appl Phys A: Mater Sci Process 77(1):163–166

    Article  Google Scholar 

  47. Giefers H, Pravica M (2008) Radiation-induced decomposition of PETN and TATB under extreme conditions. J Phys Chem A 112(15):3352–3359

    Article  Google Scholar 

  48. Volltrauer HN (1982) Real time low temperature decomposition of explosives – PETN. J Hazard Mater 5(4):353–357

    Article  Google Scholar 

  49. Snow ES, Perkins FK (2005) Capacitance and conductance of single-walled carbon nanotubes in the presence of chemical vapors. Nano Lett 5(12):2414–2417

    Article  Google Scholar 

  50. Robinson JT et al (2008) Reduced graphene oxide molecular sensors. Nano Lett 8(10):3137–3140

    Article  Google Scholar 

  51. Atkins PW (2006) Physikalische Chemie. Wiley-VCH, Weinheim

    Google Scholar 

  52. Wilson R, Clavering C, Hutchinson A (2003) Electrochemiluminescence enzyme immunoassays for TNT and Pentaerythritol Tetranitrate. Anal Chem 75(16):4244–4249

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Boehme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Boehme, M., Ensinger, W. (2015). Developing Sensors Based on TiO2 Nanotubes to Detect Explosives. In: Camesano, T. (eds) Nanotechnology to Aid Chemical and Biological Defense. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7218-1_8

Download citation

Publish with us

Policies and ethics