Skip to main content

Application of Cost-Effective Biological Tools for Assessing of Chemical Poisoning

  • Conference paper
Nanotechnology to Aid Chemical and Biological Defense

Abstract

There is an enormous amount of new chemicals emerging every day with potential adverse effects for humans and environment. To assess these chemicals we need cost effective and reliable biological tools. Here we present in detail one of many bioassays suited for assessing chemical poisoning in the environment. This is a terrestrial isopod single-species test. Advantages of this test with terrestrial isopods are its flexibility in terms of exposure duration and versatile biomarker selection. By alternating test duration, one can test also those substances which are with moderate or low toxic potential; while a variety of biomarkers at different levels of biological complexity increase the relevance of tests results. In addition to laboratory single-species tests, terrestrial isopods could also be used for biomonitoring of pollutants. So far, this was thoroughly assessed in case of metal pollution, although isopods have a potential to be used also for biomonitoring of some organic substances and metal based nanoparticles. This is usually not the case in other standardised ecotoxicity tests species. In addition, we discuss that at present, we do not need completely new tests for emerging substances like new generations pesticides, personal care products and products of nanotechnologies, but is sufficient to adopt and modify existing test protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Escher BI, Bramaz N, Mueller JF, Quayle P, Rutishausera S, Vermeirssena ELM (2008) Toxic equivalent concentrations (TEQs) for baseline toxicity and specific modes of action as a tool to improve interpretation of ecotoxicity testing of environmental samples. J Environ Monit 10:612–621

    Article  Google Scholar 

  2. Mitchell EJAK, Burgess JE, Stuetz RM (2002) Developments in ecotoxicity testing. Rev Environ Sci Biotechnol 1:169–198

    Article  Google Scholar 

  3. www.nanowerk.com. Accessed 20 Sept 2014

  4. Bavcon Kralj M, Černigoj U, Franko M, Trebše P (2007) Comparison of photocatalysis and photolysis of malathion, isomalathion, malaoxon, and commercial malathion-products and toxicity studies. Water Res 41:4504–4514

    Article  Google Scholar 

  5. Kolpin DW, Battaglin WA, Conn KE, Furlong ET, Glassmeyer ST, Kalkhoff SJ, Meyer MT, Schnoebelen DJ (2009) Handbook of environmental chemistry. Transform Prod Synth Chem Environ 2P:83–100

    Article  Google Scholar 

  6. Tennekes H (ed) (2010) The systemic insecticides: a disaster in the making. Northern Bee Books, Mytholmroyd

    Google Scholar 

  7. Tomizawa M, Casida JE (2003) Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annu Rev Entomol 48:339–364

    Article  Google Scholar 

  8. Cordova D, Benner EA, Sacher MD, Rauh JJ, Sopa JS, Lahm GP, Selby TP, Stevenson TM, Flexner L, Gutteridge S, Rhoades DF, Wu L, Smith RM, Tao Y (2006) Anthranilic diamides: a new class of insecticides with a novel mode of action, ryanodine receptor activation. Pestic Biochem Physiol 84:196–214

    Article  Google Scholar 

  9. www.nanovalid.eu. Accessed: 20 Sept 2014

  10. Persoone G, Janssen C, De Coe W (1999) New microbiotests for routine toxicity screening and biomonitoring. Kluwer/Plenium Press, New York. ISBN 978-1-4615-4289-6

    Google Scholar 

  11. EC (2008) Council directive 2008/105/EC on Environmental Quality Standards (EQSs) in the field of water policy, amending and subsequently repealing council directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending directive 2000/60/EC of the European parliament and the council. Off J Eur Communities L348:84–97, 24 Dec 2008

    Google Scholar 

  12. Barcelona Convention (1976) http://www.unepmap.org/index.php?module=content2&catid=001001004

  13. Rand GM, Wells PG, Mc Carty LS (1995) Introduction to aquatic toxicology. In: Rand GM (ed) Fundamentals in aquatic toxicology. Taylor and Francis, Washington, DC

    Google Scholar 

  14. Hopkin SP (1989) Ecophysiology of metals in terrestrial invertebrates. Elsevier Applied Science, London, p 366. ISBN 1-85166-312-6

    Google Scholar 

  15. Løkke H, van Gestel CAM (1998) Handbook of soil invertebrate toxicity tests. Wiley, Chichester

    Google Scholar 

  16. www.ecetoc.org. Accessed 20 Sept 2014

  17. Drobne D (1997) Terrestrial isopods – a good choice for toxicity testing of pollutants in the terrestrial environment. Environ Toxicol Chem 16:1159–1164

    Google Scholar 

  18. Warburg MR (1993) Evolutionary biology of land isopods. Springer, Berlin

    Book  Google Scholar 

  19. Paoletti MG, Hassall M (1999) Woodlice (Isopoda: Oniscidea): their potential for assessing sustainability and use as bioindicators. Agric Ecosyst Environ 74(1–3):157–165

    Article  Google Scholar 

  20. Kammenga JE, Dallinger R, Donker MH, Kohler H-R, Simonsen V, Triebskorn R, Weeks JM (2000) Biomarkers in terrestrial invertebrates for ecotoxicological soil risk assessment. Rev Environ Toxicol Chem 164:93–147

    Google Scholar 

  21. Roberts AP, Oris JT (2004) Multiple biomarker response in rainbow trout during exposure to hexavalent chromium. Comp Biochem Physiol 138C:221–228

    Google Scholar 

  22. Drobne D, Blazic M, Van Gestel CAM, Leser V, Zidar P, Jemec A, Trebse P (2008) Toxicity of imidacloprid to the terrestrial isopod Porcellio scaber (Isopoda, crustacea). Chemosphere 71:1326–1334

    Article  Google Scholar 

  23. Stanek K, Drobne D, Trebse P (2006) Linkage of biomarkers along levels of biological complexity in juvenile and adult diazinon fed terrestrial isopod (Porcellio scaber, Isopoda, Crustacea). Chemosphere 64:1745–1752

    Article  Google Scholar 

  24. Stanek K, Gabrijelcic E, Drobne D, Trebse P (2003) Inhibition of acetylcholinesterase activity in the terrestrial isopod Porcellio scaber as a biomarker of organophosphorus compounds in food. Arh Hig Rada Toksikol 54(3):183–188

    Google Scholar 

  25. Drobne D, Hopkin SP (1994) Ecotoxicological laboratory test for assessing the effects of chemicals on terrestrial isopods. Bull Environ Contam Toxicol 53:390–397

    Article  Google Scholar 

  26. Loureiro S, Sampaio A, Brandão A, Nogueira AJA, Soares AMVM (2006) Feeding behaviour of the terrestrial isopod Porcellionides pruinosus Brandt, 1833 (Crustacea, Isopoda) in response to changes in food quality and contamination. Sci Total Environ 369(1-3):119–128

    Article  Google Scholar 

  27. Zidar P, Drobne D, trus J, Van Gestel CAM, Donker M (2004) Food selection as a means of Cu intake reduction in the terrestrial isopod Porcellio scaber (Crustacea, Isopoda). Appl Soil Ecol 25:257–265

    Article  Google Scholar 

  28. Jemec A, Tišler T, Drobne D, Sepčić K, Fournier D, Trebše P (2007) Comparative toxicity of imidacloprid, of its commercial liquid formulation and of diazinon to a non-target arthropod, the microcrustacean Daphnia magna. Chemosphere 68(8):1408–1418

    Article  Google Scholar 

  29. Drobne D, Hopkin SP (1995) The toxicity of zinc to terrestrial isopods in a standard laboratory test. Ecotoxicol Environ Saf 31:1–6

    Article  Google Scholar 

  30. Drobne D, Jemec A, Pipan Tkalec Ž (2009) In vivo screening to determine hazards of nanoparticles: nanosized TiO2. Environ Pollut 157:1157–1164

    Article  Google Scholar 

  31. Jemec A, Drobne D, Remskar M, Sepcic K, Tisler T (2008) Effects of ingested nanosized titanium dioxide on terrestrial isopods Porcellio scaber. Environ Toxicol Chem 27:1904–1914

    Article  Google Scholar 

  32. Drobne D, Štrus J (1996) The effect of Zn on the digestive gland epithelium of Porcellio scaber (Isopoda, Crustacea). Pflugers Arch 431:247–248

    Article  Google Scholar 

  33. Drobne D, Drobne S (2005) Application of computer microscopy for histopathology in isopod toxicity studies. In: Ostrander GK (ed) Techniques in aquatic toxicology, vol 2. Taylor & Francis, Boca Raton, pp 137–146 (Chapter 7)

    Google Scholar 

  34. Lapanje A, Rupnik M, Drobne D (2007) Gut bacterial community structure (Porcellio scaber, Isopoda, Crustacea) as a measure of community level response to long-term and short-term metal pollution. Environ Toxicol Chem 26(4):755–763

    Article  Google Scholar 

  35. Lešer V, Drobne D, Vilhar B, Kladnik A, Žnidaršič N, Štrus J (2008) Epithelial thickness and lipid droplets in the hepatopancreas of Porcellio scaber (crustacea: isopoda) in different physiological conditions. Zoology 6(111):419–432

    Google Scholar 

  36. Žnidaršič N, Štrus J, Drobne D (2003) Ultrastructural alterations of the he-patopancreas in Porcellio scaber under stress. Environ Toxicol Pharmacol 13:161–174

    Article  Google Scholar 

  37. Lapanje A, Drobne D, Nolde N, Valant J, Muscet B, Leser V, Rupnik M (2008) Long-term Hg pollution induced Hg tolerance in the terrestrial isopod Porcellio scaber (Isopoda, Crustacea). Environ Pollut 153:537–547

    Article  Google Scholar 

  38. Nolde N, Drobne D, Valant J, Padovan I, Horvat M (2006) Lysosomal membrane stability in laboratory- and field-exposed terrestrial isopods Porcellio scaber (Isopoda, Crustacea). Environ Toxicol Chem 25:263–271

    Article  Google Scholar 

  39. Fischer E, Farkas S, Hornung E, Past T (1997) Sublethal effects on an organophosphorus insecticide, dimethoate, on the isopod Porcellio scaber Latr. Comp Biochem Physiol 116C(2):161–166

    Google Scholar 

  40. Ribeiro S, Guilhermino L, Sousa JP, Soares AMVM (1999) Novel bioassay based on acetylcholinesterase and lactate dehydrogenase activities to evaluate the toxicity of chemicals to soil isopods. Ecotoxicol Environ Saf 44:287–293

    Article  Google Scholar 

  41. Sousa JP, Loureiro S, Pieper S, Frost M, Kratz W, Nogueira AJA, Soares AMVM (2000) Soil and plant diet exposure routes and toxicokinetics of lindane in a terrestrial isopod. Environ Toxicol Chem 19(10):2557–2563

    Article  Google Scholar 

  42. Engenheiro EL, Hankard PK, Sousa JP, Lemos MF, Weeks JM, Soares AMVM (2005) Influence of dimethoate on acetylcholinesterase activity and locomotor function in terrestrial isopods. Environ Toxicol Chem 24(3):603–609

    Article  Google Scholar 

  43. Vink K, van Straalen NM (1999) Effects of benomyl and diazinon on isopod-mediated leaf soil litter decomposition in microcosms. Pedobiologia 43(4):345–359

    Google Scholar 

  44. Tišler T, Jemec A, Mozetič Vodopivec B, Trebše P (2009) Hazard identification of imidacloprid to aquatic environment. Chemosphere 76(7):907–914

    Article  Google Scholar 

  45. Anatra-Cordone M, Durkin P (2005) Imidacloprid. Human health assessment and ecological risk assessment – final report. Syracuse Environmental Research Associates, New York, SERA TR 05-43-24-03a, 28 Dec 2005

    Google Scholar 

  46. EPA (2004) Interim registration eligibility decision. Prevention pesticides and toxic substances (7508C). 738-R-04-006

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Polonca Trebše .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Malev, O., Klobučar, R.S., Tišler, T., Drobne, D., Trebše, P. (2015). Application of Cost-Effective Biological Tools for Assessing of Chemical Poisoning. In: Camesano, T. (eds) Nanotechnology to Aid Chemical and Biological Defense. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7218-1_6

Download citation

Publish with us

Policies and ethics