Skip to main content

Xanthomonas vesicatoria Specific Virus and Its Potential to Prevent Tomato Bacterial Spot Disease

  • Conference paper
Nanotechnology to Aid Chemical and Biological Defense

Abstract

The effect of prolonged and over usage of chemicals in crops production has resulted in human health hazards and pollution of environment and ground water. Identification of new sources for biological control of plant diseases is important for sustainable agriculture, ensuring food security, improving human health and rehabilitating the environment. The use of bacterial viruses or bacteriophages for bacterial diseases control is a fast expanding area of plant protection. Study of phages diversity, specificity, stability and efficacy are important for their application as biological means against the pathogens. The paper summarizes data on properties of bacteriophages specific to Xanthomonas vesicatoria strains spread in Georgia and efficacy to prevent tomato bacterial spot in laboratory conditions under artificial infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ackermann HW (2007) 5500 phages examined in the electron microscope. Arch Virol 152:227–243

    Article  Google Scholar 

  2. Balogh B, Jones JB, Momol MT, Olson SM, Obradovic A, King P et al (2003) Improved efficacy of newly formulated bacteriophages for management of bacterial spot on tomato. Plant Dis 87:949–954. doi:10.1094/PDIS.2003.87.8.949

    Article  Google Scholar 

  3. Adams MH (1959) Bacteriophages. Interscience Publishers, New York

    Google Scholar 

  4. Balogh B, Jones JB, Momol MT, Olson SM (2005) Persistence of bacteriophages as biocontrol agents in the tomato canopy. Proc Int Symp Tomato Dis, 1st, Orlando, FL.ISHS Acta Hortic 695:299 101–101

    Google Scholar 

  5. Balogh B (2006) Characterization and use of bacteriophages associated with citrus bacterial pathogens for disease control. PhD thesis University of Florida, Gainesville, 112p

    Google Scholar 

  6. Basit HA, Angle JS, Salem S, Gewaily EM (1992) Phage coating of soybean seeds reduces nodulation by indigenous soil bradyrhizobia. Can J Microbiol 38:1264–1269

    Article  Google Scholar 

  7. Bergamin FA, Kimati H (1981) Estudos sobre um bacteriofago isolado de Xanthomonas campestris. II. Seu emprego no controle de X. campestris e X. vesicatoria. Summa Phytopathol 7:35–43

    Google Scholar 

  8. Bouzar H, Jones JB, Stall RE, Louws FJ, Schneider M, Rademaker JLW et al (1999) Multiphasic analysis of Xanthomonads causing bacterial spot disease on tomato and pepper in the Caribbean and central America: evidence for common lineages within and between countries. Phytopathology 89:328–335

    Article  Google Scholar 

  9. Flaherty JE, Jones JB, Harbaugh BK, Somodi GC, Jackson LE (2000) Control of bacterial spot on tomato in the greenhouse and field with H-mutant bactetriophages. Hortic Sci 35:882–884

    Google Scholar 

  10. Flaherty JE, Jones JB, Harbaugh BK, Somodi GC, Jackson LE (2001) H-mutant bacteriophages as a potential biocontrol of bacterial blight of geranium. HortScience 36:98–100

    Google Scholar 

  11. Frampton RA, Pitman AR, Fineran PC (2012) Advances in bacteriophage mediated control of plant pathogens. Int J Microbiol 13:326452, 11 pages

    Google Scholar 

  12. Gill JJ, Abedon TS (2003) Bacteriophage ecology and plants APSnet feature. http://www.apsnet.org/online/feature/phages/abedon.pdf

  13. Greer GG (2005) Bacteriophage control of foodborne bacteria. Food Prot 68:1102–1111

    Google Scholar 

  14. Ghudumidze N, Chkonia I, Shapovalova N, Sadunishvili T, Meiphariani A (2006) Study of bacteriophages against the tomato with some bacterial etiologies. Proc Georgian Acad Sci Biol Ser B 4:21–24

    Google Scholar 

  15. Ghudumidze N, Shapovalova N, Giorkhelidze D, ZaaliShvili G, Sadunishvili T (2007) The morphological properties of phages specific for Xanthomonas vesicatoria tomato bacterial strains. Proc Georgian Acad Sci Biol Ser B 5:26–29

    Google Scholar 

  16. Ghudumidze N, Alavidze Z, Chkonia I, Eliashvili P, Giorgobiani N, Shapovalova N, Meiphariani A, Sadunishvili T (2007) Effective controlling of bacterial spot in tomato with bacteriophages. Proc Georgian Acad Sci Biol Ser B 5:8–11

    Google Scholar 

  17. Goldfarb DM (1961) Bacteriophagy. Med. Gaz, Moscow, p 295, In Russian

    Google Scholar 

  18. Gómez P, Buckling A (2011) Bacteria-phage antagonistic coevolution in soil. Science 332:106–109

    Article  Google Scholar 

  19. Hert AP (2001) Relative importance of bacteriocin-like genes in antagonism of T3 to T1 strains of Xanthomonas campestris pv. vesicatoria. MS thesis, University of Florida, Gainesville

    Google Scholar 

  20. Iriarte FB, Balogh B, Momol MT, Smith LM, Wilson M, Jones JB (2007) Factors affecting survival of bacteriophage on tomato leaf surfaces. Appl Environ Microbiol 73(6):1704–1711

    Article  Google Scholar 

  21. Jackson LE (1989) Bacteriophage prevention and control of harmful plant bacteria. US patent 4,828,999

    Google Scholar 

  22. Jones JB (1991) Bacterial spot. In: Jones JB et al (eds) Compendium of tomato diseases. APS Press, St. Paul, p 27

    Google Scholar 

  23. Jones JB, Bouzar H, Somodi GC, Stall RE, Pernezny K, El-Morsy G, Scott JW (1998) Evidence for the preemptive nature of tomato race 3 of Xanthomonas campestris pv. vesicatoria in Florida. Phytopathology 88:33–38

    Article  Google Scholar 

  24. Jones JB, Jackson LE, Balogh B, Obradovich A, Iriarte FB, Momol T (2007) Bacteriophages for plant disease control. Annu Rev Phytopathol 45:245–262

    Article  Google Scholar 

  25. Jones JB, Vallad GE, Iriarte FB, Obradovich A et al (2012) Considerations for using bacteriophages for plant disease control. Bacteriophage 2:208–214

    Article  Google Scholar 

  26. Koller W (1998) Chemical approaches to managing plant pathogens. In: Ruberson JB (ed) Handbook of integrated pest management. Dekker, New York

    Google Scholar 

  27. Kutter E, Sulakvelidze A (2005) Bacteriophages:biology and applications. CRC Press, Boca Raton, 500p

    Google Scholar 

  28. Labrie SJ, Samson JE, Moineau S (2010) Bacteriophage resistance mechanisms. Nat Rev Microbiol 8:317–327

    Article  Google Scholar 

  29. Leboeuf J, Cuppels D, Dick J, Pitblado R, Poewen St, Celetti M (2005) Bacterial diseases of tomato; Bacterial Spot, Bacterial Speck, Bacterial Canker. Queen’s Printer for Ontario. Factsheet ISSN:1198-712X, 363–365

    Google Scholar 

  30. Louws EJ, Wilson M, Cambell HL, Cuppels DA, Jones JB, Shoemaker PB, Sahin F, Miller SA (2001) Field control of bacterial spot and bacterial speck of tomato using a plant activator. Plant Dis 85:481–488

    Article  Google Scholar 

  31. Mao W, Lewis JA, Lumsden RD et al (1998) Crop protection. Crop Prot 17:535–542

    Article  Google Scholar 

  32. McManus PS, Stockwell VO, Sundin GW, Jones AL (2002) Antibiotic use in plant agriculture. Annu Rev Phytopathol 40:443–465

    Article  Google Scholar 

  33. Momol MT, Jones JB, Olson SM, Obradovic A, Balogh B, King P (2002) Integrated management of bacterial spot on tomato in Florida. Rep PP110, EDIS. Inst. Food Agric. Sci., Univ. FL

    Google Scholar 

  34. Moore ES (1926) D’Herelle’s bacteriophage in relation to plant parasites. S Afr J Sci 23:306–310

    Google Scholar 

  35. Obradovich A, Jones J, Momol M et al (2004) Management of tomato bacterial spot in the field by foliar applications of bacteriophages and SAR inducers. Plant Dis 88:736–740

    Article  Google Scholar 

  36. Pal KK, McSpadden G (2011) Biological control of plant pathogens. The Plant Health Instructor, 10, 1094/PHI-A-2006-1117-02:1–25

    Google Scholar 

  37. Sadunishvili T, Giorgobiani N, Amashukeli N et al (2012) Strategy of biological control of phytopathogenic bacteria in Georgia. Ann Agrar Sci 10:62–66

    Google Scholar 

  38. Sulakvelidze A, Barrow P (2004) Phage therapy in animals and agribusiness. Bacteriophages Biol Appl 335:380

    Google Scholar 

  39. Svircev AM, Lehman SM, Kim WS, Barszcz E et al. (2006) Control of the fire blight pathogen with bacteriophages. In: Zeller W, Ulrich C (eds) Proceedings of the 1st international symposium on biological control of bacterial plant diseases, 408: 259–261

    Google Scholar 

  40. Tanaka H, Negishi H, Maeda H (1990) Control of tobacco bacterial wilt by an avirulent strain of Pseudomonas solanacearum M4S and its bacteriophage. Ann Phytopathol Soc Jpn 56:243–244

    Article  Google Scholar 

  41. Thayer PL, Stall RE (1961) A survey of Xanthomonas vesicatoria resistance to streptomycin. Proc Fla Hort Soc 75:163–165

    Google Scholar 

  42. Thomas RC (1935) A bacteriophage in relation to Stewart’s disease of corn. Phytopathology 25:371–372

    Google Scholar 

  43. Wilson MS, Hirano S, Lindow SE (1999) Location and survival of leaf-associated bacteria in relation to pathogenicity and potential for growth within the leaf. Appl Environ Microbiol 65:1435–1443

    Google Scholar 

Download references

Acknowledgments

This work was supported by ISTC G-1129 and GNSF-STCU 5001 grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgi Kvesitadze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Sadunishvili, T., Kvesitadze, E., Kvesitadze, G. (2015). Xanthomonas vesicatoria Specific Virus and Its Potential to Prevent Tomato Bacterial Spot Disease. In: Camesano, T. (eds) Nanotechnology to Aid Chemical and Biological Defense. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7218-1_3

Download citation

Publish with us

Policies and ethics