Skip to main content

Enhancing Nutritional Quality in Crops Via Genomics Approaches

  • Chapter
  • First Online:
Genomics of Plant Genetic Resources

Abstract

Micronutrient malnutrition—also known as hidden hunger—is a growing public health concern that affects especially women and children in the developing world. Worldwide, at least 2 billion people suffer from vitamin A, iron, and zinc deficiencies. Here we review recent advances in the application of genomic approaches for biofortification of staple crops to enhance their nutritional quality and thus reduce ‘hidden hunger’. The application of genomic tools such as marker-assisted selection in conventional breeding or genetic modification offers sustainable and cost-effective ways to provide essential micronutrients (here provitamin A or iron) to people in developing countries. To maximize the benefits of genomic approaches for biofortification, we need to extend our understanding of the genetic control mechanisms and relative contribution from different rate-limiting steps for both provitamin A and iron accumulation in edible plant parts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anuradha K, Agarwal SY, Rao YV et al (2012) Mapping QTLs and candidate genes for iron and zinc concentrations in unpolished rice of Madhukar × Swarna RILs. Gene 508:233–240

    Article  CAS  PubMed  Google Scholar 

  • Bhullar NK, Gruissem W (2012) Nutritional enhancement of rice for human health: the contribution of biotechnology. Biotechnol Adv. doi.org/10.1016/j.biotechadv.2012.02.001

    Google Scholar 

  • Black RE, Allen LH, Bhutta ZA et al, for the Maternal and Child Undernutrition Study Group (2008) Maternal and child undernutrition: global and regional exposures and health consequences. Lancet 371:243–260

    Article  PubMed  Google Scholar 

  • Borg S, Brinch-Pedersen H, Tauris B, Holm PB (2009) Iron transport, deposition and bioavailability in the wheat and barley grain. Plant Soil 325:15–24

    Article  CAS  Google Scholar 

  • Bouis HE, Hotz C, McClafferty B et al (2011) Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull 32(Suppl 1):31S–40S

    Google Scholar 

  • Bouis HE, Welch RM (2010) Biofortification—a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Sci 50:S1–S13

    Article  Google Scholar 

  • Briat JF, Curie C, Gaymard F (2007) Iron utilization and metabolism in plants. Curr Opin Plant Biol 10:276–282

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I, Pfeiffer WH, McClafferty B (2010) Review: biofortification of durum wheat with zinc and iron. Cereal Chem 87:10–20

    Article  CAS  Google Scholar 

  • Ceballos H, Fregene M, Pérez JC et al (2007) Cassava genetic improvement. In: Kang MS, Priyadarshan PM (eds) Breeding major food staples. Blackwell, Ames, pp 365–391

    Chapter  Google Scholar 

  • Ceballos H, Hershey C, Becerra López-LavalleLA (2012a) New approaches to cassava breeding. In: Janick J (ed) Plant Breeding Reviews, vol 36, chapter 6. Wiley, New York, pp 427–504

    Chapter  Google Scholar 

  • Ceballos H, Morante N, Sanchez T et al (2012b) Progress increasing carotenoids content in cassava roots through fast recurrent selection. In: Global Cassava Partnership Second Scientific Conference GCP21-II. Cassava: Overcoming challenges of global climatic change. National Crops Resources Research Institute. Namulonge, Uganda. June 18–22, 2012

    Google Scholar 

  • Chandel G, Samuel P, Dubey M, Meena R (2011) In silico expression analysis of QTL specific candidate genes for grain micronutrient (Fe/Zn) content using ESTs and MPSS signature analysis in rice (Oryza sativa L.). J Plant Genet Transgenics 2:11–22

    Google Scholar 

  • Chávez AL, Sánchez T, Jaramillo G et al (2005) Variation of quality traits in cassava roots evaluated in landraces and improved clones. Euphytica 143:125–133

    Article  Google Scholar 

  • Cheng L, Wang F, Shou H et al (2007) Mutation in nicotianamine aminotransferase stimulated the Fe(II) acquisition system and led to iron accumulation in rice. Plant Physiol 145:1647–1657

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cichy KA, Forster S, Graft KF, Hosfield GL (2005) Inheritance of seed zinc accumulation in navy bean. Crop Sci 45:864–870

    Article  CAS  Google Scholar 

  • Courtney M, McHaro M, Bonte D, Grüneberg W (2008) Heritability estimates for micronutrient composition of sweetpotato storage roots. HortScience 43:1382–1384

    Google Scholar 

  • Curie C, Briat JF (2003) Iron transport and signaling in plants. Annu Rev Plant Biol 54:183–206

    Article  CAS  PubMed  Google Scholar 

  • Curie C, Cassin G, Couch D et al (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 103:1–11

    Article  CAS  PubMed  Google Scholar 

  • Cuttriss AJ, Cazzonelli CI, Wurtzel ET, Pogson BJ (2011) Carotenoids. In: Rébeillé F, Douce R (eds) Adv Bot Res 58:1–36

    Google Scholar 

  • DellaPenna D (1999) Nutritional genomics: manipulating plant micronutrients to improve human health. Science 285:375–379

    Article  CAS  PubMed  Google Scholar 

  • Douchkov D, Gryczka C, Stephan UW et al (2005) Ectopic expression of nicotianamine synthase genes results in improved iron accumulation and increased nickel tolerance in transgenic tobacco. Plant Cell Environ 28:365–374

    Article  CAS  Google Scholar 

  • Egesel CO, Wong JC, Lambert RJ, Rocheford TR (2003) Combining ability of maize inbreds for carotenoids and tocopherols. Crop Sci 43:818–823

    Article  CAS  Google Scholar 

  • Esuma W, Rubaihayo P, Pariyo A et al (2012) Genetic diversity of provitamin A cassava in Uganda. J Plant Stud 1:60–71

    Article  Google Scholar 

  • Ferguson ME, Hearne SJ, Close TJ et al (2012) Identification, validation and high-throughput genotyping of transcribed gene SNPs in cassava. Theor Appl Genet 124:685–695

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Galera S, Rojas E, Sudhakar D et al (2010) Critical evaluation of strategies for mineral fortification of staple food crops. Transgenic Res 19:165–180

    Article  PubMed  Google Scholar 

  • Goto F, Yoshihara T, Shigemoto N et al (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17:282–286

    Article  CAS  PubMed  Google Scholar 

  • Gross J, Stein RJ, Fett-Neto AG, Fett JP (2003) Iron homeostasis related genes in rice. Genetics Mol Biol 26:477–497

    Article  CAS  Google Scholar 

  • Grüneberg WJ, Manrique K, Zhang D, Hermann M (2005) Genotype × environment interactions for a diverse set of sweetpotato clones evaluated across varying ecogeographic conditions in Peru. Crop Sci 45:2160–2171

    Article  Google Scholar 

  • Grusak MA (1994) Iron transport to developing ovules of Pisum sativum. I. Seed import characteristics and phloem iron-loading capacity of source regions. Plant Physiol 104:649–655

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grusak MA (2002) Enhancing mineral content and bioavailability in plant food products. J Am Coll Nutr 21:178S–183S

    Article  PubMed  Google Scholar 

  • Grusak MA, Pearson JN, Marentes E (1999) The physiology of micronutrient homeostasis in field crops. Field Crops Res 60:41–56

    Article  Google Scholar 

  • Guerinot ML (2007) It’s elementary: enhancing Fe3 + reduction improves rice yields. Proc Natl Acad Sci USA 104:7311–7312

    Article  CAS  PubMed  Google Scholar 

  • Harjes CE, Rocheford TR, Bai L et al (2008) Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319:330–333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hell R, Stephan UW (2003) Iron uptake, trafficking and homeostasis in plants. Planta 216:541–551

    CAS  PubMed  Google Scholar 

  • Higuchi K, Takahashi M, Nakanishi H et al (2001) Analysis of transgenic rice containing barley nicotianamine synthase gene. Soil SciPlant Nutr 47:315–322

    Article  CAS  Google Scholar 

  • Higuchi K, Suzuki K, Nakanishi H et al (2009) Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol 119:471–479

    Article  Google Scholar 

  • Hotz C, McClafferty B (2007) From harvest to health: challenges for developing biofortified staple foods and determining their impact on micronutrient status. Food Nutr Bull 28:S271–S279

    PubMed  Google Scholar 

  • Ishimaru Y, Suzuki M, Tsukamoto T et al (2006) Rice plants take up iron as an Fe3+ -phytosiderophore and as Fe2+. Plant J 45:335–346

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru Y, Kim S, Tsukamoto T et al (2007) Mutational reconstructed ferric chelate reductase confers enhanced tolerance in rice to iron deficiency in calcareous soil. Proc Natl Acad Sci US A 104:7373–7378

    Article  CAS  Google Scholar 

  • Johnson AAT (2010) Strategies for increasing micronutrient mineral levels in cereal crops. Online Proceedings First Global Conference on Biofortification, November 9–11, 2010, Washington, DC. http://biofortconf.ifpri.info/conference-agenda/symposia-november-10/

  • Johnson AAT, Kyriacou B, Callahan DL et al (2011) Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective Iron- and Zinc-biofortification of rice endosperm. PLoS ONE 6(9):e24476. doi:10.1371/journal.pone.0024476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kennedy G, Nantel G, Shetty P (2003) The scourge of “hidden hunger”: global dimensions of micronnutrient deficiencies. Food Nutr Agric 32:8–16

    Google Scholar 

  • Khalekuzzaman M, Datta K, Oliva N et al (2006) Stable integration, expression and inheritance of the ferritin gene in transgenic elite indica rice cultivar BR29 with enhanced iron level in the endosperm. Indian J Biotechnol 5:26–31

    CAS  Google Scholar 

  • Khush G, Lee S, Cho JI, Jeon JS (2012) Biofortification of crops for reducing malnutrition. Plant Biotechnol Rep 6:195–202

    Article  Google Scholar 

  • Koike S, Inoue H, Mizuno D et al (2004) OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J 39:415–424

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Jeon US, Lee SJ et al (2009) Iron fortification of rice seeds through activation of the nicotianamine synthase gene. Proc Natl Acad Sci US A 106:22014–22019

    Article  CAS  Google Scholar 

  • Long JK, Bänziger M, Smith ME (2004) Diallel analysis of grain iron and zinc density in Southern African-adapted maize inbreds. Crop Sci 44:2019–2026

    Article  Google Scholar 

  • Lopez C, Piégu B, Cooke R et al (2005) Using cDNA and genomic sequences as tools to develop SNP strategies in cassava (Manihot sculenta Crantz). Theor Appl Genet 110:425–431

    Article  CAS  PubMed  Google Scholar 

  • Lucca P, Hurrell R, Potrykus I (2001) Approaches to improving the bioavailability and level of iron in rice seeds. J Sci Food Agric 81:828–834

    Article  CAS  Google Scholar 

  • Lucca P, Hurrell R, Potrykus I (2002) Fighting iron deficiency anemia with iron-rich rice. J Am Coll Nutr 21:184S–190S

    Article  CAS  PubMed  Google Scholar 

  • Marr KM, Batten GD, Blakeney AB (1995) Relations between minerals in Australian brown rice. J Sci Food Agric 68:285–291

    Article  CAS  Google Scholar 

  • Marschner H, Römheld V, Kissel M (1986) Different strategies in higher plants in mobilization and uptake of iron. J Plant Nutr 9:695–713

    Article  CAS  Google Scholar 

  • Masuda H, Usuda K, Kobayashi T et al (2009) Overexpression of the barley nicotianamine synthase gene HvNAS1 increases iron and zinc concentrations in rice grains. Rice 2:155–166

    Article  Google Scholar 

  • Mayer JE, Pfeiffer WH, Beyer P (2008) Biofortified crops to alleviate micronutrient malnutrition. Curr Opin Plant Biol 11:166–170

    Article  CAS  PubMed  Google Scholar 

  • Mba REC, Stephenson P, Edwards K et al (2001) Single sequence repeat (SSR) marker survey of the cassava (Manihot esculenta Crantz) genome: towards an SSR-based molecular genetic map of cassava. Theor Appl Genet 1002:21–31

    Article  Google Scholar 

  • Meenakshi JV, Johnson NL, Manyong VM et al (2010) How cost-effective is biofortification in combating micronutrient malnutrition? An ex ante assessment. World Dev 38:64–75

    Article  Google Scholar 

  • Menkir A, Maziya-Dixon B (2004) Influence of genotype and environment on β-carotene content of tropical yellow-endosperm maize genotypes. Maydica 49:313–318

    Google Scholar 

  • Menkir A, Pixley K, Maziya-Dixon B, Gedil M (2012) Recent advances in breeding maize for enhanced pro-vitamin A content. In: Worku M, Twumasi-Afriyie S, Wolde L et al (eds) Meeting the challenges of global climate change and food security through innovative maize research. Proceedings of the Third National Maize Workshop of Ethiopia. Addis Ababa, Ethiopia, pp 66–73

    Google Scholar 

  • Micronutrient Initiative (2009) Investing in the future: a united call to action on vitamin and mineral deficiencies, Global Report 2009. Micronutrient Initiative, Ontario, Canada

    Google Scholar 

  • Mori S (1999) Iron acquisition by plants. Curr Opin Plant Biol 2:250–253

    Article  CAS  PubMed  Google Scholar 

  • Morillo Coronado Y (2009) Herencia del contenido de carotenos en raíces de yuca (Manihot esculenta Crantz). Dissertation, National University of Colombia

    Google Scholar 

  • Morrissey J, Guerinot ML (2009) Iron uptake and transport in plants: the good, the bad, and the ionome. Chem Rev 109:4553–4567

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nirupa N, Prasad MNV (2008) Iron bioavailability, homeostasis through phytoferritins and fortification strategies: implications for human health and nutrition. In: Prasad MNV (ed) Trace elements as contaminants and nutrients: consequences in ecosystems and human health. Wiley, New York, pp 233–265

    Chapter  Google Scholar 

  • Pfeiffer WH, McClafferty B (2007) HarvestPlus: breeding crops for better nutrition. Crop Sci 47(Suppl 3):S88–S105

    Google Scholar 

  • Pich A, Scholz G, Stephan UW (1994) Iron-dependent changes of heavy metals, nicotianamine, and citrate in different plant organs in the xylem exudate of two tomato genotypes. Nicotianamine as possible copper translocator. Plant Soil 165:189–196

    Article  CAS  Google Scholar 

  • Pixley K, Palacios N, Babu R, Menkir A (2011) Maize harvestplus: biofortifying maize with provitamin A carotenoids. In: Zaidi PH, Babu R, Cairns J et al (eds) Addressing climate change effects and meeting maize demand for Asia. Book of extended summaries of the 11th Asian Maze Conference, Nanning, China, 7–11 November 2011. CIMMYT, Mexico, pp 317–319

    Google Scholar 

  • Prochnik S, Marri PR, Desany B et al (2012) The cassava genome: current progress, future directions. Trop Plant Biol 5:88–94

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qu LQ, Yoshihara T, Ooyama A et al (2005) Iron accumulation does not parallel the high expression level of ferritin in transgenic rice seeds. Planta 222:225–233

    Article  CAS  Google Scholar 

  • Raji AA, Anderson JV, Kolade OA et al (2009) Gene-based microsatellites for cassava (Manihot esculenta Crantz): prevalence, polymorphisms, and cross-taxa utility. BMC Plant Biol 9:118

    Article  PubMed Central  PubMed  Google Scholar 

  • Roa AC, Chavarriaga-Aguirre P, Duque MC et al (2000) Cross-species amplification of cassava (Manihot esculenta) (Euphorbiaceae) microsatellites: allelic polymorphism and degree of relationship. Am J Bot 87:1647–1655

    Article  CAS  PubMed  Google Scholar 

  • Römheld V, Marschner H (1986) Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol 80:175–180

    Article  PubMed Central  PubMed  Google Scholar 

  • Schurr U (1999) Dynamics of nutrient transport from the root to the shoot. Prog Bot 60:234–253

    Article  CAS  Google Scholar 

  • Sperotto RA, Boff T, Duarte GL et al (2010) Identification of putative target genes to manipulate Fe and Zn concentrations in rice grains. J Plant Physiol 167:1500–1506

    Article  CAS  PubMed  Google Scholar 

  • Sperotto RA, Ricachenevsky FK, Waldow VdA, Fett JP (2012) Iron biofortification in rice: it’s a long way to the top. Plant Sci 190:24–39

    Article  CAS  PubMed  Google Scholar 

  • Takagi S, Nomoto K, Takemoto T (1984) Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plant. J Plant Nutr 7:469–477

    Article  CAS  Google Scholar 

  • Takahashi M, Nakanishi H, Kawasaki S et al (2001) Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nat Biotechnol 19:466–469

    Article  CAS  PubMed  Google Scholar 

  • Tangphatsornruang S, Sraphet S, Singh R et al (2008) Development of polymorphic markers from expressed sequence tags of Manihot esculenta Crantz. Mol Ecol Resour 8:682–685

    Article  CAS  PubMed  Google Scholar 

  • Theil EC (1987) Ferritin: structure, gene regulation, and cellular function in animals, plants, and microorganisms. Annu Rev Biochem 56:289–315

    Article  CAS  PubMed  Google Scholar 

  • Theil EC (2004) Iron, ferritin, and nutrition. Annu Rev Nutr 24:327–343

    Article  CAS  PubMed  Google Scholar 

  • Usuda K, Wada Y, Ishimaru Y et al (2009) Genetically engineered rice containing larger amounts of nicotianamine to enhance the antihypertensive effect. Plant Biotechnol J 71:87–95

    Article  Google Scholar 

  • Vasconcelos M, Datta K, Oliva N et al (2003) Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci 164:371–378

    Article  CAS  Google Scholar 

  • von Wiren N, Klair S, Bansal S et al (1999) Nicotianamine chelates both FeIII and FeII. Implications for metal transport in plants. Plant Physiol 119:1107–1114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walker SP, Wachs TD, Gardner JM et al (2007) Child development: risk factors for adverse outcomes in developing countries. Lancet 369:145–157

    Article  PubMed  Google Scholar 

  • Welch RM (1995) Micronutrient nutrition of plants. Crit Rev Plant Sci 14:49–82

    CAS  Google Scholar 

  • Welsch R, Arango J, Bär C et al (2010) Provitamin A-accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene. Plant Cell 22:3348–3356

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • WHO and FAO (2006) Guidelines on food fortification with micronutrients. World Health Organization, Geneva, Switzerland

    Google Scholar 

  • Wirth J, Poletti S, Aeschlimann B et al (2009) Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin. Plant Biotechnol J 7:631–644

    Article  CAS  PubMed  Google Scholar 

  • Yan JB, Kandianis CB, Harjes CE et al (2010) Rare genetic variation at Zea mays crtRB1 increases beta-carotene in maize grain. ure Genet 42:322–327

    CAS  Google Scholar 

  • Zhang X, Pfeiffer W, Palacios-Rojas N et al (2012) Probability of success of breeding strategies for improving pro-vitamin A content in maize. Theor Appl Genet 125:235–246

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, Shewry PR (2011) Recent developments in modifying crops and agronomic practice to improve human health. Food Pol 36(Suppl 1):S94–S101

    Article  Google Scholar 

  • Zheng L, Cheng Z, Ai C et al (2010) Nicotianamine, a novel enhancer of rice iron bioavailability to humans. PLoS One 5(4):e10190. doi:10.1371/journal.pone.0010190

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joe Tohme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Andersson, M., Pfeiffer, W., Tohme, J. (2014). Enhancing Nutritional Quality in Crops Via Genomics Approaches. In: Tuberosa, R., Graner, A., Frison, E. (eds) Genomics of Plant Genetic Resources. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7575-6_17

Download citation

Publish with us

Policies and ethics