Skip to main content

Bacillus thuringiensis Applications in Agriculture

  • Chapter
  • First Online:
Bacillus thuringiensis Biotechnology

Abstract

Bacillus thuringiensis (Bt) and its insecticidal toxins have been used in agronomical pest control for decades. The mechanism of action of Bt toxins on insect pest involves specific molecular interactions which makes Bt a popular choice for pest control. The specificity of action of Bt toxins reduces the concern of adverse effects on non-target species, a concern which remains with chemical insecticides. Different strains of Bt are known to express different classes of toxins which in turn target different insects. Bt and its toxins can be formulated into powder or liquid sprays or expressed in transgenic plants. To maximize the effect of Bt toxins, multiple toxins are often combined when making Bt formulations or expressed in transgenic plants. Though Bt is a very effective biological control agent, there are concerns over the development of resistance by insect species and also the narrow spectrum of activity of individual toxins. To address these concerns, new strains of Bt expressing novel toxins are actively sought and existing toxins are genetically modified for improved activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelkefi-Mesrati L, Boukedi H, Dammak-Karray M, Sellami-Boudawara T, Jaoua S, Tounsi S (2011) Study of the Bacillus thuringiensis Vip3Aa16 histopathological effects and determination of its putative binding proteins in the midgut of Spodoptera littoralis. J Invertebr Pathol 106(2):250–254

    Article  CAS  Google Scholar 

  • Abdullah MAF, Dean DH (2004) Enhancement of Cry19Aa mosquitocidal activity against Aedes aegypti by mutations in the putative loop regions of domain II. Appl Environ Microbiol 70(6):3769–3771

    Article  CAS  Google Scholar 

  • Abdullah MAF, Alzate O, Mohammad M, McNall RJ, Adang MJ, Dean DH (2003) Introduction of Culex toxicity into Bacillus thuringiensis Cry4Ba by protein engineering. Appl Environ Microbiol 69(9):5343–5353

    Article  CAS  Google Scholar 

  • Abdullah MAF, Moussa S, Taylor MD, Adang MJ (2009) Manduca sexta (Lepidoptera: Sphingidae) cadherin fragments function as synergists for Cry1A and Cry1C Bacillus thuringiensis toxins against noctuid moths Helicoverpa zea, Agrotis ipsilon and Spodoptera exigua. Pest Manag Sci 65(10):1097–1103

    Article  CAS  Google Scholar 

  • Ahmad M, Sayyed AH, Saleem MA (2008) Evidence for field evolved resistance to newer insecticides in Spodoptera litura (Lepidoptera: Noctuidae) from Pakistan. Crop Prot 27(10):1367–1372

    Article  CAS  Google Scholar 

  • Ahmedani MS, Haque MI, Afzal SN, Iqbal U, Naz S (2008) Scope of commercial formulations of Bacillus thuringiensis berliner as an alternative to methyl bromide against Tribolium castaneum adults. Pak J Bot 40(5):2149–2156

    Google Scholar 

  • Ali S, Zafar Y, Ali GM, Nazir F (2010) Bacillus thuringiensis and its application in agriculture. Afr J Biotechnol 9(14):2022–2031

    CAS  Google Scholar 

  • Anilkumar KJ, Sivasupramaniam S, Head G, Orth R, Van Santen E, Moar WJ (2009) Synergistic interactions between Cry1Ac and natural cotton defenses limit survival of Cry1Ac-resistant Helicoverpa Zea (Lepidoptera: Noctuidae) on Bt cotton. J Chem Ecol 35(7):785–795

    Article  CAS  Google Scholar 

  • Arenas I, Bravo A, Soberón M, Gómez I (2010) Role of alkaline phosphatase from Manduca sexta in the mechanism of action of Bacillus thuringiensis Cry1Ab toxin. J Biol Chem 285(17):12497–12503

    Article  CAS  Google Scholar 

  • Aronson AI, Han ES, McGaughey W, Johnson D (1991) The solubility of inclusion proteins from Bacillus thuringiensis is dependent upon protoxin composition and is a factor in toxicity to insects. Appl Environ Microbiol 57(4):981–986

    CAS  Google Scholar 

  • Atsumi S, Inoue Y, Ishizaka T, Mizuno E, Yoshizawa Y, Kitami M, Sato R (2008) Location of the Bombyx mori 175 kDa cadherin-like protein-binding site on Bacillus thuringiensis Cry1Aa toxin. FEBS J 275(19):4913–4926

    Article  CAS  Google Scholar 

  • Avisar D, Eilenberg H, Keller M, Reznik N, Segal M, Sneh B, Zilberstein A (2009) The Bacillus thuringiensis delta-endotoxin Cry1C as a potential bioinsecticide in plants. Plant Sci 176(3):315–324

    Article  CAS  Google Scholar 

  • Baig DN, Bukhari DA, Shakoori AR (2010) Cry Genes profiling and the toxicity of isolates of Bacillus thuringiensis from soil samples against American bollworm, Helicoverpa armigera. J Appl Microbiol 109(6):1967–1978

    Article  CAS  Google Scholar 

  • Barton KA, Whiteley HR, Yang NS (1987) Bacillus-thuringiensis delta-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects. Plant Physiol 85(4):1103–1109

    Article  CAS  Google Scholar 

  • Bel Y, Siqueira HAA, Siegfried BD, Ferré J, Escriche B (2009) Variability in the cadherin gene in an Ostrinia nubilalis strain selected for Cry1Ab resistance. Insect Biochem Mol Biol 39(3):218–223

    Article  CAS  Google Scholar 

  • Berbert-Molina MA, Prata AMR, Pessanha LG, Silveira MM (2008) Kinetics of Bacillus thuringiensis var. israelensis growth on high glucose concentrations. J Ind Microbiol Biotechnol 35(11):1397–1404

    Article  CAS  Google Scholar 

  • Berebaum M (1980) Adaptive significance of midgut pH in larval lepidoptera. Am Nat 115(1):138–146

    Article  Google Scholar 

  • Bhalla R, Dalal M, Panguluri SK, Jagadish B, Mandaokar AD, Singh AK, Kumar PA (2005) Isolation, characterization and expression of a novel vegetative insecticidal protein gene of Bacillus thuringiensis. FEMS Microbiol Lett 243(2):467–472

    Article  CAS  Google Scholar 

  • Boonserm P, Davis P, Ellar DJ, Li J (2005) Crystal structure of the mosquito-iarvicidal toxin Cry4Ba and its biological implications. J Mol Biol 348(2):363–382

    Article  CAS  Google Scholar 

  • Boonserm P, Mo M, Angsuthanasombat C, Lescar J (2006) Structure of the functional form of the mosquito larvicidal Cry4Aa toxin from Bacillus thuringiensis at a 2.8-Angstrom resolution. J Bacteriol 188(9):3391–3401

    Article  CAS  Google Scholar 

  • Bradley D, Harkey MA, Kim MK, Biever KD, Bauer LS (1995) The insecticidal cryIB crystal protein of Bacillus thuringiensis ssp. thuringiensis has dual specificity to coleopteran and lepidopteran larvae. J Invertebr Pathol 65(2):162–173

    Article  CAS  Google Scholar 

  • Brar SK, Verma M, Tyagi RD, Valéro JR, Surampalli RY (2009) Entomotoxicity, protease and chitinase activity of Bacillus thuringiensis fermented wastewater sludge with a high solids content. Bioresour Technol 100(19):4317–4325

    Article  CAS  Google Scholar 

  • Bravo A, Gómez I, Conde J, Muñoz-Garay C, Sánchez J, Miranda R, Zhuang M, Gill SS, Soberón M (2004) Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. Biochim Biophys Acta 1667(1):38–46

    Article  CAS  Google Scholar 

  • Bravo A, Gill SS, Soberón M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49(4):423–435

    Article  CAS  Google Scholar 

  • Bruce MJ, Gatsi R, Crickmore N, Sayyed AH (2007) Mechanisms of resistance to Bacillus thuringiensis in the Diamondback Moth. Biopestic Int 3(1):1–12

    Google Scholar 

  • Cammack R, Attwood TK, Campbell PN, Parish JH, Smith AD, Stirling JL, Vella F (2006) Oxford dictionary of biochemistry and molecular biology, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Cappello M, Bungiro RD, Harrison LM, Bischof LJ, Griffitts JS, Barrows BD, Aroian RV (2006) A purified Bacillus thuringiensis crystal protein with therapeutic activity against the hookworm parasite Ancylostoma ceylanicum. Proc Natl Acad Sci U S A 103(41):15154–15159

    Article  CAS  Google Scholar 

  • Chen J, Hua G, Jurat-Fuentes JL, Abdullah MA, Adang MJ (2007) Synergism of Bacillus thuringiensis toxins by a fragment of a toxin-binding cadherin. Proc Natl Acad Sci U S A 104(35):13901–13906

    Article  CAS  Google Scholar 

  • Chen J, Aimanova KG, Fernandez LE, Bravo A, Soberón M, Gill SS (2009) Aedes aegypti cadherin serves as a putative receptor of the Cry11Aa toxin from Bacillus thuringiensis subsp. israelensis. Biochem J 424(2):191–200

    Article  CAS  Google Scholar 

  • Chen M, Shelton A, Ye GY (2011) Insect-resistant genetically modified rice in china: from research to commercialization. Annu Rev Entomol 56:81–101

    Article  CAS  Google Scholar 

  • Cohen S, Dym O, Albeck S, Ben-Dov E, Cahan R, Firer M, Zaritsky A (2008) High-resolution crystal structure of activated Cyt2Ba monomer from Bacillus thuringiensis subsp. israelensis. J Mol Biol 380(5):820–827

    Article  CAS  Google Scholar 

  • Craveiro KIC, Júnior JEG, Silva MCM, Macedo LLP, Lucena WA, Silva MS, Júnior JDADS, Oliveira GR, Magalhães MTQD, Santiago AD, Grossi-De-Sa MF (2010) Variant Cry1Ia toxins generated by DNA shuffling are active against sugarcane giant borer. J Biotechnol 145(3):215–221

    Article  CAS  Google Scholar 

  • Crickmore N, Zeigler DR, Feitelson J, Schnepf E, Van Rie J, Lereclus D, Baum J, Dean DH (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev 62(3):807–813

    CAS  Google Scholar 

  • Darsi S, Prakash GD, Udayasuriyan V (2010) Cloning and characterization of truncated cry1Ab gene from a new indigenous isolate of Bacillus thuringiensis. Biotechnol Lett 32(9):1311–1315

    Article  CAS  Google Scholar 

  • de Maagd RA, Weemen-Hendriks M, Stiekema W, Bosch D (2000) Bacillus thuringiensis delta-endotoxin Cry1C domain III can function as a specificity determinant for Spodoptera exigua in different, but not all, Cry1-Cry1C hybrids. Appl Environ Microbiol 66(4):1559–1563

    Article  CAS  Google Scholar 

  • de Maagd RA, Bravo A, Crickmore N (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet 17(4):193–199

    Article  CAS  Google Scholar 

  • de Maagd RA, Bravo A, Berry C, Crickmore N, Schnepf HE (2003) Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annu Rev Genet 37:409–433

    Article  CAS  Google Scholar 

  • Ding XZ, Luo ZH, Xia LQ, Gao B, Sun YJ, Zhang YM (2008) Improving the insecticidal activity by expression of a recombinant cry1Ac gene with chitinase-encoding gene in acrystalliferous Bacillus thuringiensis. Curr Microbiol 56(5):442–446

    Article  CAS  Google Scholar 

  • Donovan WP, Gonzalez JM Jr, Gilbert MP, Dankocsik C (1988) Isolation and characterization of EG2158, a new strain of Bacillus thuringiensis toxic to coleopteran larvae, and nucleotide sequence of the toxin gene. Mol Gen Genet 214(3):365–372

    Article  CAS  Google Scholar 

  • Donovan WP, Donovan JC, Engleman JT (2001) Gene knockout demonstrates that vip3A contributes to the pathogenesis of Bacillus thuringiensis toward Agrotis ipsilon and Spodoptera exigua. J Invertebr Pathol 78(1):45–51

    Article  CAS  Google Scholar 

  • Eriksson H, Wiktelius S (2011) Impact of chlorpyrifos used for desert locust control on non-target organisms in the vicinity of mangrove, an ecologically sensitive area. Int J Pest Manag 57(1):23–34

    Article  CAS  Google Scholar 

  • Estruch JJ, Warren GW, Mullins MA, Nye GJ, Craig JA, Koziel MG (1996) Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc Natl Acad Sci U S A 93(11):5389–5394

    Article  CAS  Google Scholar 

  • Fabrick J, Oppert C, Lorenzen MD, Morris K, Oppert B, Jurat-Fuentes JL (2009a) A novel Tenebrio molitor cadherin is a functional receptor for Bacillus thuringiensis Cry3Aa toxin. J Biol Chem 284(27):18401–18410

    Article  CAS  Google Scholar 

  • Fabrick JA, Jech LF, Henneberry TJ (2009b) Novel pink bollworm resistance to the Bt toxin Cry1Ac: effects on mating, oviposition, larval development and survival. J Insect Sci 9(24):1–8

    Article  Google Scholar 

  • Fedhila S, Gohar M, Slamti L, Nel P, Lereclus D (2003) The Bacillus thuringiensis PlcR-regulated gene inhA2 is necessary, but not sufficient, for virulence. J Bacteriol 185(9):2820–2825

    Article  CAS  Google Scholar 

  • Fernandez-Luna MT, Tabashnik BE, Lanz-Mendoza H, Bravo A, Soberón M, Miranda-Rios J (2010) Single concentration tests show synergism among Bacillus thuringiensis subsp israelensis toxins against the malaria vector mosquito Anopheles albimanus. J Invertebr Pathol 104(3):231–233

    Article  CAS  Google Scholar 

  • Fleming NI, Knower KC, Lazarus KA, Fuller PJ, Simpson ER, Clyne CD (2010) Aromatase is a direct target of FOXl2: C134W in granulosa cell tumors via a single highly conserved binding site in the ovarian specific promoter. PLoS One 5(12):e14389

    Google Scholar 

  • Frankenhuyzen KV (2009) Insecticidal activity of Bacillus thuringiensis crystal proteins. J Invertebr Pathol 101(1):1–16

    Article  CAS  Google Scholar 

  • Galitsky N, Cody V, Wojtczak A, Ghosh D, Luft JR, Pangborn W, English L (2001) Structure of the insecticidal bacterial delta-endotoxin Cry3Bb1 of Bacillus thuringiensis. Acta Crystallogr D Biol Crystallogr 57:1101–1109

    Article  CAS  Google Scholar 

  • Garcia-Robles I, Sanchez J, Gruppe A, Martinez-Ramirez AC, Rausell C, Real MD, Bravo A (2001) Mode of action of Bacillus thuringiensis PS86Q3 strain in hymenopteran forest pests. Insect Biochem Mol Biol 31(9):849–856

    Article  CAS  Google Scholar 

  • Gómez I, Sánchez J, Miranda R, Bravo A, Soberón M (2002) Cadherin-like receptor binding facilitates proteolytic cleavage of helix α-1 in domain I and oligomer pre-pore formation of Bacillus thuringiensis Cry1Ab toxin. FEBS Lett 513(2–3):242–246

    Article  Google Scholar 

  • Gómez I, Pardo-Lopez L, Munoz-Garay C, Fernandez LE, Perez C, Sanchez J, Soberón M, Bravo A (2007) Role of receptor interaction in the mode of action of insecticidal Cry and Cyt toxins produced by Bacillus thuringiensis. Peptides 28(1):169–173

    Article  CAS  Google Scholar 

  • Gominet M, Slamti L, Gilois N, Rose M, Lereclus D (2001) Oligopeptide permease is required for expression of the Bacillus thuringiensis plcR regulon and for virulence. Mol Microbiol 40(4):963–975

    Article  CAS  Google Scholar 

  • Gong YJ, Wang CL, Yang YH, Wu SW, Wu YD (2010) Characterization of resistance to Bacillus thuringiensis toxin Cry1Ac in Plutella xylostella from China. J Invertebr Pathol 104(2):90–96

    Article  CAS  Google Scholar 

  • Gonzalez-Cabrera J, Farinos GP, Caccia S, Diaz-Mendoza M, Castanera P, Leonardi MG, Giordana B, Ferre J (2006) Toxicity and mode of action of Bacillus thuringiensis cry proteins in the Mediterranean corn borer, Sesamia nonagrioides (Lefebvre). Appl Environ Microbiol 72(4):2594–2600

    Article  CAS  Google Scholar 

  • Gould F (1998) Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annu Rev Entomol 43:701–726

    Article  CAS  Google Scholar 

  • Gringorten JL, Crawford DN, Harvey WR (1993) High pH in the ectoperitrophic space of the larval lepidopteran midgut. J Exp Biol 183:353–359

    CAS  Google Scholar 

  • Grochulski P, Masson L, Borisova S, Pusztaicarey M, Schwartz JL, Brousseau R, Cygler M (1995) Bacillus-thuringiensis CrylA(a) insecticidal toxin crystal structure and channel formation. J Mol Biol 254(3):447–464

    Article  CAS  Google Scholar 

  • Guidelli-Thuler AM, De Abreu IL, Lemos MVF (2009) Expression of the sigma35 and cry2ab genes involved in Bacillus thuringiensis virulence. Sci Agric (Piracicaba, Braz) 66(3):403–409

    CAS  Google Scholar 

  • Guo S, Ye S, Liu Y, Wei L, Xue J, Wu H, Song F, Zhang J, Wu X, Huang D, Rao Z (2009) Crystal structure of Bacillus thuringiensis Cry8Ea1: an insecticidal toxin toxic to underground pests, the larvae of Holotrichia parallela. J Struct Biol 168(2):259–266

    Article  CAS  Google Scholar 

  • Haider MZ, Ellar DJ (1989) Mechanism of action of Bacillus thuringiensis insecticidal δ-endotoxin: interaction with phospholipid vesicles. Biochim Biophys Acta Biomembr 978(2):216–222

    Article  CAS  Google Scholar 

  • Hajaij-Ellouze M, Fedhila S, Lereclus D, Nielsen-Leroux C (2006) The enhancin-like metalloprotease from the Bacillus cereus group is regulated by the pleiotropic transcriptional activator PlcR but is not essential for larvicidal activity. FEMS Microbiol Lett 260(1):9–16

    Article  CAS  Google Scholar 

  • Heckel DG, Gahan LJ, Baxter SW, Zhao JZ, Shelton AM, Gould F, Tabashnik BE (2007) The diversity of Bt resistance genes in species of Lepidoptera. J Invertebr Pathol 95(3):192–197

    Article  CAS  Google Scholar 

  • Herrero S, Gonzalez-Cabrera J, Ferre J, Bakker PL, de Maagd RA (2004) Mutations in the Bacillus thuringiensis Cry1Ca toxin demonstrate the role of domains II and III in specificity towards Spodoptera exigua larvae. Biochem J 384:507–513

    Article  CAS  Google Scholar 

  • Hilbert DW, Piggot PJ (2004) Compartmentalization of gene expression during Bacillus subtilis spore formation. Microbiol Mol Biol Rev 68(2):234–262

    Article  CAS  Google Scholar 

  • Hofte H, Whiteley HR (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53(2):242–255

    CAS  Google Scholar 

  • Hofte H, Van Rie J, Jansens S, Van Houtven A, Vanderbruggen H, Vaeck M (1988) Monoclonal antibody analysis and insecticidal spectrum of three types of lepidopteran-specific insecticidal crystal proteins of Bacillus thuringiensis. Appl Environ Microbiol 54(8):2010–2017

    CAS  Google Scholar 

  • Hu Y, Georghiou SB, Kelleher AJ, Aroian RV (2010) Bacillus thuringiensis Cry5B protein is highly efficacious as a single-dose therapy against an intestinal roundworm infection in mice. PLoS Negl Trop Dis 4(3):e614

    Google Scholar 

  • Ibargutxi MA, Muñoz D, Escudero IRD, Caballero P (2008) Interactions between Cry1Ac, Cry2Ab, and Cry1Fa Bacillus thuringiensis toxins in the cotton pests Helicoverpa armigera (Hübner) and Earias insulana (Boisduval). Biol Control 47(1):89–96

    Article  CAS  Google Scholar 

  • Infante I, Morel MA, Ubalde MC, Martínez-Rosales C, Belvisi S, Castro-Sowinski S (2010) Wool-degrading Bacillus isolates: extracellular protease production for microbial processing of fabrics. World J Microbiol Biotechnol 26(6):1047–1052

    Article  CAS  Google Scholar 

  • Jiménez-Juárez N, Muñoz-Garay C, Gómez I, Saab-Rincon G, Damian-Almazo JY, Gill SS, Soberón M, Bravo A (2007) Bacillus thuringiensis Cry1Ab mutants affecting oligomer formation are non-toxic to Manduca sexta larvae. J Biol Chem 282(29):21222–21229

    Article  CAS  Google Scholar 

  • Johnson DE, McGaughey WH (1996) Contribution of Bacillus thuringiensis spores to toxicity of purified cry proteins towards indianmeal moth larvae. Curr Microbiol 33(1):54–59

    Article  CAS  Google Scholar 

  • Johnson DE, Oppert B, McGaughey WH (1998) Spore coat protein synergizes Bacillus thuringiensis crystal toxicity for the Indianmeal moth (Plodia interpunctella). Curr Microbiol 36(5):278–282

    Article  Google Scholar 

  • Jurat-Fuentes JL, Gould FL, Adang MJ (2003) Dual resistance to Bacillus thuringiensis Cry1Ac and Cry2Aa toxins in heliothis virescens suggests multiple mechanisms of resistance. Appl Environ Microbiol 69(10):5898–5906

    Article  CAS  Google Scholar 

  • Kao SS, Hsieh FC, Tzeng CC, Tsai YS (2003) Cloning and expression of the insecticidal crystal protein gene cry1Ca9 of Bacillus thuringiensis G10-01A from Taiwan granaries. Curr Microbiol 47(4):295–299

    Article  CAS  Google Scholar 

  • Kapur M, Bhatia R, Pandey G, Pandey J, Paul D, Jain RK (2010) A case study for assessment of microbial community dynamics in genetically modified Bt cotton crop fields. Curr Microbiol 61(2):118–124

    Article  CAS  Google Scholar 

  • Karlova R, Weemen-Hendriks M, Naimov S, Ceron J, Dukiandjiev S, de Maagd RA (2005) Bacillus thuringiensis δ-endotoxin Cry1Ac domain III enhances activity against Heliothis virescens in some, but not all Cry1-Cry1Ac hybrids. J Invertebr Pathol 88(2):169–172

    Article  CAS  Google Scholar 

  • Kaur S (2006) Molecular approaches for identification and construction of novel insecticidal genes for crop protection. World J Microbiol Biotechnol 22(3):233–253

    Article  CAS  Google Scholar 

  • Kim YS, Roh JY, Kang JN, Wang Y, Shim HJ, Li MS, Choi JY, Je YH (2008) Mutagenesis of Bacillus thuringiensis cry1Ac gene and its insecticidal activity against Plutella xylostella and Ostrinia furnacalis. Biol Control 47(2):222–227

    Article  CAS  Google Scholar 

  • Knowles BH, Ellar DJ (1987) Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis δ-endotoxins with different insect specificity. Biochim Biophys Acta Gen Subj 924(3):509–518

    Article  CAS  Google Scholar 

  • Kristoff G, Guerrero NRV, Cochón AC (2010) Inhibition of cholinesterases and carboxylesterases of two invertebrate species, Biomphalaria glabrata and Lumbriculus variegatus, by the carbamate pesticide carbaryl. Aquat Toxicol 96(2):115–123

    Article  CAS  Google Scholar 

  • Kronstad JW, Whiteley HR (1986) Three classes of homologous Bacillus thuringiensis crystal-protein genes. Gene 43(1–2):29–40

    Article  CAS  Google Scholar 

  • Lambert B, Hofte H, Annys K, Jansens S, Soetaert P, Peferoen M (1992) Novel Bacillus thuringiensis insecticidal crystal protein with a silent activity against coleopteran larvae. Appl Environ Microbiol 58(8):2536–2542

    CAS  Google Scholar 

  • Lassner M, Bedbrook J (2001) Directed molecular evolution in plant improvement. Curr Opin Plant Biol 4(2):152–156

    Article  CAS  Google Scholar 

  • Lee X, Thompson A, Zhang Z, Ton-That H, Biesterfeldt J, Ogata C, Xu L, Johnston RAZ, Young NM (1998) Structure of the complex of Maclura pomifera agglutinin and the T- antigen disaccharide, Galβ1,3GalNAc. J Biol Chem 273(11):6312–6318

    Article  CAS  Google Scholar 

  • Lesieur C, Frutiger S, Hughes G, Kellner R, Pattus F, Van Der Goott FG (1999) Increased stability upon heptamerization of the pore-forming toxin aerolysin. J Biol Chem 274(51):36722–36728

    Article  CAS  Google Scholar 

  • Leuber M, Orlik F, Schiffler B, Sickmann A, Benz R (2006) Vegetative insecticidal protein (Vip1Ac) of Bacillus thuringiensis HD201: evidence for oligomer and channel formation. Biochemistry 45(1):283–288

    Article  CAS  Google Scholar 

  • Li JD, Carroll J, Ellar DJ (1991) Crystal-structure of insecticidal delta-endotoxin from Bacillus-thuringiensis at 2.5-A resolution. Nature 353(6347):815–821

    Article  CAS  Google Scholar 

  • Li J, Koni PA, Ellar DJ (1996) Structure of the mosquitocidal δ-endotoxin CytB from Bacillus thuringiensis sp. kyushuensis and implications for membrane pore formation. J Mol Biol 257(1):129–152

    Article  CAS  Google Scholar 

  • Liu XS, Dean DH (2006) Redesigning Bacillus thuringiensis Cry1Aa toxin into a mosquito toxin. Protein Eng Des Sel 19(3):107–111

    Article  Google Scholar 

  • López-Pazos SA, Rojas Arias AC, Ospina SA, Cerón J (2010) Activity of Bacillus thuringiensis hybrid protein against a lepidopteran and a coleopteran pest. FEMS Microbiol Lett 302(2):93–98

    Article  CAS  Google Scholar 

  • Mandal CC, Gayen S, Basu A, Ghosh KS, Dasgupta S, Maiti MK, Sen SK (2007) Prediction-based protein engineering of domain I of Cry2A entomocidal toxin of Bacillus thuringiensis for the enhancement of toxicity against lepidopteran insects. Protein Eng Des Sel 20(12):599–606

    Article  CAS  Google Scholar 

  • Martin PAW, Gundersen-Rindal DE, Blackburn MB (2010) Distribution of phenotypes among Bacillus thuringiensis strains. Syst Appl Microbiol 33(4):204–208

    Article  CAS  Google Scholar 

  • Menzies BE, Kourteva I (2000) Staphylococcus aureus alpha-toxin induces apoptosis in endothelial cells. FEMS Immunol Med Microbiol 29(1):39–45

    CAS  Google Scholar 

  • Milne R, Liu Y, Gauthier D, Frankenhuyzen KV (2008) Purification of Vip3Aa from Bacillus thuringiensis HD-1 and its contribution to toxicity of HD-1 to spruce budworm (Choristoneura fumiferana) and gypsy moth (Lymantria dispar) (Lepidoptera). J Invertebr Pathol 99(2):166–172

    Article  CAS  Google Scholar 

  • Milner RJ (1994) History of Bacillus thuringiensis. Agric Ecosyst Environ 49(1):9–13

    Article  Google Scholar 

  • Mommaerts V, Jans K, Smagghe G (2010) Impact of Bacillus thuringiensis strains on survival, reproduction and foraging behaviour in bumblebees (Bombus terrestris). Pest Manag Sci 66(5):520–525

    Article  CAS  Google Scholar 

  • Morse RJ, Yamamoto T, Stroud RM (2001) Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure 9(5):409–417

    Article  CAS  Google Scholar 

  • Moser SE, Obrycki JJ (2009) Non-target effects of neonicotinoid seed treatments; mortality of coccinellid larvae related to zoophytophagy. Biol Control 51(3):487–492

    Article  Google Scholar 

  • Moustafa DA, Jain N, Sriranganathan N, Vemulapalli R (2010) Identification of a single-nucleotide insertion in the promoter region affecting the sodc promoter activity in Brucella neotomae. PLoS One 5(11):e14112

    Google Scholar 

  • Mueller M, Grauschopf U, Maier T, Glockshuber R, Ban N (2009) The structure of a cytolytic α-helical toxin pore reveals its assembly mechanism. Nature 459(7247):726–730

    Article  CAS  Google Scholar 

  • Muñóz-Garay C, Portugal L, Pardo-López L, Jiménez-Juárez N, Arenas I, Gómez I, Sánchez-López R, Arroyo R, Holzenburg A, Savva CG, Soberón M, Bravo A (2009) Characterization of the mechanism of action of the genetically modified Cry1AbMod toxin that is active against Cry1Ab-resistant insects. Biochim Biophys Acta Biomembr 1788(10):2229–2237

    Article  CAS  Google Scholar 

  • Naimov S, Weemen-Hendriks M, Dukiandjiev S, de Maagd RA (2001) Bacillus thuringiensis delta-endotoxin Cry1 hybrid proteins with increased activity against the Colorado potato beetle. Appl Environ Microbiol 67(11):5328–5330

    Article  CAS  Google Scholar 

  • Nair MS, Xinyan SL, Dean DH (2008) Membrane insertion of the Bacillus thuringiensis Cry1Ab toxin: single mutation in domain II block partitioning of the toxin into the brush border membrane. Biochemistry 47(21):5814–5822

    Article  CAS  Google Scholar 

  • Nelson KL, Brodsky RA, Buckley JT (1999) Channels formed by subnanomolar concentrations of the toxin aerolysin trigger apoptosis of T lymphomas. Cell Microbiol 1(1):69–74

    Article  CAS  Google Scholar 

  • Nisnevitch M, Sigawi S, Cahan R, Nitzan Y (2010) Isolation, characterization and biological role of camelysin from Bacillus thuringiensis subsp. israelensis. Curr Microbiol 61(3):176–183

    Article  CAS  Google Scholar 

  • Obata F, Kitami M, Inoue Y, Atsumi S, Yoshizawa Y, Sato R (2009) Analysis of the region for receptor binding and triggering of oligomerization on Bacillus thuringiensis Cry1Aa toxin. FEBS J 276(20):5949–5959

    Article  CAS  Google Scholar 

  • Pacheco S, Gómez I, Arenas I, Saab-Rincon G, Rodríguez-Almazán C, Gill SS, Bravo A, Soberón M (2009a) Domain II loop 3 of Bacillus thuringiensis Cry1Ab toxin is involved in a “Ping Pong” binding mechanism with Manduca sexta aminopeptidase-N and cadherin receptors. J Biol Chem 284(47):32750–32757

    Article  CAS  Google Scholar 

  • Pacheco S, Gómez I, Gill SS, Bravo A, Soberón M (2009b) Enhancement of insecticidal activity of Bacillus thuringiensis Cry1A toxins by fragments of a toxin-binding cadherin correlates with oligomer formation. Peptides 30(3):583–588

    Article  CAS  Google Scholar 

  • Palvannan T, Boopathy R (2005) Phosphatidylinositol-specific phospholipase C production from Bacillus thuringiensis serovar. kurstaki using potato-based media. World J Microbiol Biotechnol 21(6–7):1153–1155

    Article  CAS  Google Scholar 

  • Pardo-López L, Muñoz-Garay C, Porta H, Rodríguez-Almazán C, Soberón M, Bravo A (2009) Strategies to improve the insecticidal activity of Cry toxins from Bacillus thuringiensis. Peptides 30(3):589–595

    Article  CAS  Google Scholar 

  • Park Y, Abdullah MAF, Taylor MD, Rahman K, Adang MJ (2009) Enhancement of Bacillus thuringiensis Cry3Aa and Cry3Bb toxicities to coleopteran larvae by a toxin-binding fragment of an insect cadherin. Appl Environ Microbiol 75(10):3086–3092

    Article  CAS  Google Scholar 

  • Parker MW, Pattus F (1993) Rendering a membrane protein soluble in water: a common packing motif in bacterial protein toxins. Trends Biochem Sci 18(10):391–395

    Article  CAS  Google Scholar 

  • Peng DH, Xu XH, Ruan LF, Yu ZN, Sun M (2010) Enhancing Cry1Ac toxicity by expression of the Helicoverpa armigera cadherin fragment in Bacillus thuringiensis. Res Microbiol 161(5):383–389

    Article  CAS  Google Scholar 

  • Pereira EJG, Lang BA, Storer NP, Siegfried BD (2008) Selection for Cry1F resistance in the European corn borer and cross-resistance to other Cry toxins. Entomol Exp Appl 126(2):115–121

    Article  CAS  Google Scholar 

  • Pereira EJG, Siqueira HAA, Zhuang M, Storer NP, Siegfried BD (2010) Measurements of Cry1F binding and activity of luminal gut proteases in susceptible and Cry1F resistant Ostrinia nubilalis larvae (Lepidoptera: Crambidae). J Invertebr Pathol 103(1):1–7

    Article  CAS  Google Scholar 

  • Pérez C, Muñoz-Garay C, Portugal LC, Sánchez J, Gill SS, Soberón M, Bravo A (2007) Bacillus thuringiensis ssp. israelensis Cyt1Aa enhances activity of Cry11Aa toxin by facilitating the formation of a pre-pore oligomeric structure. Cell Microbiol 9(12):2931–2937

    Article  CAS  Google Scholar 

  • Pérez-García G, Basurto-Ríos R, Ibarra JE (2010) Potential effect of a putative σH-driven promoter on the over expression of the Cry1Ac toxin of Bacillus thuringiensis. J Invertebr Pathol 104(2):140–146

    Article  CAS  Google Scholar 

  • Pigott CR, Ellar DJ (2007) Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol Mol Biol Rev 71(2):255–281

    Article  CAS  Google Scholar 

  • Porta H, Cancino-Rodezno A, Soberón M, Bravo A (2011) Role of MAPK p38 in the cellular responses to pore-forming toxins. Peptides 32(3):601–606

    Article  CAS  Google Scholar 

  • Qaim M, Zilberman D (2003) Yield effects of genetically modified crops in developing countries. Science 299(5608):900–902

    Article  CAS  Google Scholar 

  • Rajagopal R, Arora N, Sivakumar S, Rao NGV, Nimbalkar SA, Bhatnagar RK (2009) Resistance of Helicoverpa armigera to Cry1Ac toxin from Bacillus thuringiensis is due to improper processing of the protoxin. Biochem J 419 309–316

    Article  CAS  Google Scholar 

  • Rajamohan F, Alzate O, Cotrill JA, Curtiss A, Dean DH (1996) Protein engineering of Bacillus thuringiensis delta-endotoxin: mutations at domain II of CryIAb enhance receptor affinity and toxicity toward gypsy moth larvae. Proc Natl Acad Sci U S A 93(25):14338–14343

    Article  CAS  Google Scholar 

  • Ramarao N, Lereclus D (2006) Adhesion and cytotoxicity of Bacillus cereus and Bacillus thuringiensis to epithelial cells are FlhA and PlcR dependent, respectively. Microbes Infect 8(6):1483–1491

    Article  CAS  Google Scholar 

  • Randhawa GJ, Singh M, Grover M (2011) Bioinformatic analysis for allergenicity assessment of Bacillus thuringiensis Cry proteins expressed in insect-resistant food crops. Food Chem Toxicol 49(2):356–362

    Article  CAS  Google Scholar 

  • Rasko DA, Altherr MR, Han CS, Ravel J (2005) Genomics of the Bacillus cereus group of organisms. FEMS Microbiol Rev 29(2):303–329

    CAS  Google Scholar 

  • Rausell C, Pardo-López L, Sánchez J, Muñoz-Garay C, Morera C, Soberón M, Bravo A (2004) Unfolding events in the water-soluble monomeric Cry1Ab toxin during transition to oligomeric pre-pore and membrane-inserted pore channel. J Biol Chem 279(53):55168–55175

    Article  CAS  Google Scholar 

  • Read TD, Peterson SN, Tourasse N, Baillie LW, Paulsen IT, Nelson KE, Tettelin H, Fouts DE, Eisen JA, Gill SR, Holtzapple EK, Okstad OA, Helgason E, Rilstone J, Wu M, Kolonay JF, Beanan MJ, Dodson RJ, Brinkac LM, Gwinn M, Deboy RT, Madpu R, Daugherty SC, Durkin AS, Haft DH, Nelson WC, Peterson JD, Pop M, Khouri HM, Radune D, Benton JL, Mahamoud Y, Jiang LX, Hance IR, Weidman JF, Berry KJ, Plaut RD, Wolf AM, Watkins KL, Nierman WC, Hazen A, Cline R, Redmond C, Thwaite JE, White O, Salzberg SL, Thomason B, Friedlander AM, Koehler TM, Hanna PC, Kolsto AB, Fraser CM (2003) The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature 423(6935):81–86

    Article  CAS  Google Scholar 

  • Regev A, Keller M, Strizhov N, Sneh B, Prudovsky E, Chet I, Ginzberg I, Konczkalman Z, Koncz C, Schell J, Zilberstein A (1996) Synergistic activity of a Bacillus thuringiensis delta-endotoxin and a bacterial endochitinase against Spodoptera littoralis larvae. Appl Environ Microbiol 62(10):3581–3586

    CAS  Google Scholar 

  • Rodriguez-Almazan C, Ruiz De Escudero I, Cantón PE, Muñoz-Garay C, Pérez C, Gill SS, Soberón M, Bravo A (2011) The amino- and carboxyl-terminal fragments of the Bacillus thuringensis Cyt1Aa toxin have differential roles in toxin oligomerization and pore formation. Biochemistry 50(3):388–396

    Article  CAS  Google Scholar 

  • Roh JY, Kim YS, Wang Y, Liu Q, Tao X, Xu HG, Shim HJ, Choi JY, Lee KS, Jin BR, Je YH (2010) Expression of Bacillus thuringiensis mosquitocidal toxin in an antimicrobial Bacillus brevis strain. J Asia Pac Entomol 13(1):61–64

    Article  CAS  Google Scholar 

  • Salamitou S, Ramisse F, Brehelin M, Bourguet D, Gilois N, Gominet M, Hernandez E, Lereclus D (2000) The plcR regulon is involved in the opportunistic properties of Bacillus thuringiensis and Bacillus cereus in mice and insects. Microbiology 146(11):2825–2832

    CAS  Google Scholar 

  • Sanchis V, Lereclus D, Menou G, Chaufaux J, Guo S, Lecadet MM (1989) Nucleotide sequence and analysis of the N-terminal coding region of the Spodoptera-active delta-endotoxin gene of Bacillus thuringiensis aizawai 7.29. Mol Microbiol 3(2):229–238

    Article  CAS  Google Scholar 

  • Sayyed AH, Raymond B, Ibiza-Palacios MS, Escriche B, Wright DJ (2004) Genetic and biochemical characterization of field-evolved resistance to Bacillus thuringiensis toxin Cry1Ac in the diamondback moth, Plutella xylostella. Appl Environ Microbiol 70(12):7010–7017

    Article  CAS  Google Scholar 

  • Sayyed AH, Gatsi R, Sales Ibiza-Palacios M, Escriche B, Wright DJ,Crickmore N (2005) Common, but complex, mode of resistance of Plutella xylostella to Bacillus thuringiensis toxins Cry1Ab and Cry1Ac. Appl Environ Microbiol 71(11):6863–6869

    Article  CAS  Google Scholar 

  • Sayyed AH, Moores G, Crickmore N, Wright DJ (2008) Cross-resistance between a Bacillus thuringiensis Cry toxin and non-Bt insecticides in the diamondback moth. Pest Manag Sci 64(8):813–819

    Article  CAS  Google Scholar 

  • Schnepf HE, Whiteley HR (1981) Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli. Proc Natl Acad Sci U S A 78(5):2893–2897

    Article  CAS  Google Scholar 

  • Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62(3):775–806

    CAS  Google Scholar 

  • Sedlak M, Walter T, Aronson A (2000) Regulation by overlapping promoters of the rate of synthesis and deposition into crystalline inclusions of Bacillus thuringiensis δ-endotoxins. J Bacteriol 182(3):734–741

    Article  CAS  Google Scholar 

  • Shah MD, Iqbal M (2010) Diazinon-induced oxidative stress and renal dysfunction in rats. Food Chem Toxicol 48(12):3345–3353

    Article  CAS  Google Scholar 

  • Shan S, Zhang Y, Ding X, Hu S, Sun Y, Yu Z, Liu S, Zhu Z, Xia L (2011) A Cry1Ac toxin variant generated by directed evolution has enhanced toxicity against lepidopteran insects. Curr Microbiol 62(2):358–365

    Article  CAS  Google Scholar 

  • Sharma HC, Dhillon MK, Arora R (2008) Effects of Bacillus thuringiensis delta-endotoxin-fed Helicoverpa armigera on the survival and development of the parasitoid Campoletis chlorideae. Entomol Exp Appl 126(1):1–8

    CAS  Google Scholar 

  • Sharma P, Nain V, Lakhanpaul S, Kumar PA (2010) Synergistic activity between Bacillus thuringiensis Cry1Ab and Cry1Ac toxins against maize stem borer (Chilo partellus Swinhoe). Lett Appl Microbiol 51(1):42–47

    CAS  Google Scholar 

  • Shi Y, Xu W, Yuan M, Tang M, Chen J, Pang Y (2004) Expression of vip1/vip2 genes in Escherichia coli and Bacillus thuringiensis and the analysis of their signal peptides. J Appl Microbiol 97(4):757–765

    Article  CAS  Google Scholar 

  • Shimizu T, Vassylyev DG, Kido S, Doi Y, Morikawa K (1994) Crystal structure of vitelline membrane outer layer protein I (VMO-I): a folding motif with homologous Greek key structures related by an internal three-fold symmetry. EMBO J 13(5):1003–1010

    CAS  Google Scholar 

  • Shu C, Yan G, Wang R, Zhang J, Feng S, Huang D, Song F (2009) Characterization of a novel cry8 gene specific to Melolonthidae pests: Holotrichia oblita and Holotrichia parallela. Appl Microbiol Biotechnol 84(4):701–707

    Article  CAS  Google Scholar 

  • Singh G, Sachdev B, Sharma N, Seth R, Bhatnagar RK (2010) Interaction of Bacillus thuringiensis vegetative insecticidal protein with ribosomal S2 protein triggers larvicidal activity in Spodoptera frugiperda. Appl Environ Microbiol 76(21):7202–7209

    Article  CAS  Google Scholar 

  • Smith GP, Ellar DJ (1994) Mutagenesis of two surface-exposed loops of the Bacillus thuringiensis CrylC δ-endotoxin affects insecticidal specificity. Biochem J 302(2):611–616

    CAS  Google Scholar 

  • Soberón M, Pardo-López L, López I, Gómez I, Tabashnik BE, Bravo A (2007) Engineering modified Bt toxins to counter insect resistance. Science 318(5856):1640–1642

    Article  CAS  Google Scholar 

  • Soberón M, Gill SS, Bravo A (2009) Signaling versus punching hole: how do Bacillus thuringiensis toxins kill insect midgut cells? Cell Mol Life Sci 66(8):1337–1349

    Article  CAS  Google Scholar 

  • Song FP, Zhang J, Gu AX, Wu Y, Han LL, He KL, Chen ZY, Yao J, Hu YQ, Li GX, Huang DF (2003) Identification of cry1I-type genes from Bacillus thuringiensis strains and characterization of a novel cry1I-type gene. Appl Environ Microbiol 69(9):5207–5211

    Article  CAS  Google Scholar 

  • Stemmer WPC (1994a) DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc Natl Acad Sci U S A 91(22):10747–10751

    Article  CAS  Google Scholar 

  • Stemmer WPC (1994b) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370(6488):389–391

    Article  CAS  Google Scholar 

  • Stevens MM, Burdett AS, Mudford EM, Helliwell S, Doran G (2011) The acute toxicity of fipronil to two non-target invertebrates associated with mosquito breeding sites in Australia. Acta Trop 117(2):125–130

    Article  CAS  Google Scholar 

  • Tabashnik BE, Liu YB, Malvar T, Heckel DG, Masson L, Ferré J (1998) Insect resistance to Bacillus thuringiensis: uniform or diverse? Philos Trans R Soc B Biol Sci 353(1376):1751–1756

    Article  Google Scholar 

  • Tang JD, Shelton AM, Van Rie J, De Roeck S, Moar WJ, Roush RT, Peferoen M (1996) Toxicity of Bacillus thuringiensis spore and crystal protein to resistant diamondback moth (Plutella xylostella). Appl Environ Microbiol 62(2):564–569

    CAS  Google Scholar 

  • Vaeck M, Reynaerts A, Hofte H, Jansens S, Debeuckeleer M, Dean C, Zabeau M, Vanmontagu M, Leemans J (1987) Transgenic plants protected from insect attack. Nature 328(6125):33–37

    Article  CAS  Google Scholar 

  • Walter C, Fladung M, Boerjan W (2010) The 20-year environmental safety record of GM trees. Nat Biotechnol 28(7):656–658

    Article  CAS  Google Scholar 

  • Wu SJ, Koller CN, Miller DL, Bauer LS, Dean DH (2000) Enhanced toxicity of Bacillus thuringiensis Cry3A δ-endotoxin in coleopterans by mutagenesis in a receptor binding loop. FEBS Lett 473(2):227–232

    Article  CAS  Google Scholar 

  • Xia L, Sun Y, Ding X, Fu Z, Mo X, Zhang H, Yuan Z (2005) Identification of cry-type genes on 20-kb DNA associated with Cry1 crystal proteins from Bacillus thuringiensis. Curr Microbiol 51(1):53–58

    Article  CAS  Google Scholar 

  • Xu L, Wang Z, Zhang J, He K, Ferry N, Gatehouse AMR (2010) Cross-resistance of Cry1Ab-selected Asian corn borer to other Cry toxins. J Appl Entomol 134(5):429–438

    Article  CAS  Google Scholar 

  • Xue J, Liang G, Crickmore N, Li H, He K, Song F, Feng X, Huang D, Zhang J (2008) Cloning and characterization of a novel Cry1A toxin from Bacillus thuringiensis with high toxicity to the Asian corn borer and other lepidopteran insects. FEMS Microbiol Lett 280(1):95–101

    Article  CAS  Google Scholar 

  • Zhang X, Candas M, Griko NB, Rose-Young L, Bulla LA (2005) Cytotoxicity of Bacillus thuringiensis Cry1Ab toxin depends on specific binding of the toxin to the cadherin receptor BT-R-1 expressed in insect cells. Cell Death Differ 12(11):1407–1416

    Article  CAS  Google Scholar 

  • Zhang XB, Candas M, Griko NB, Taussig R, Bulla LA (2006) A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proc Natl Acad Sci U S A 103(26):9897–9902

    Article  CAS  Google Scholar 

  • Zhao HM, Arnold FH (1997) Optimization of DNA shuffling for high fidelity recombination. Nucleic Acids Res 25(6):1307–1308

    Article  CAS  Google Scholar 

  • Zhao X, Xia L, Ding X, Yu Z, Lü Y, Tao W (2009) Homology modeling of Cyt2Ca1 of Bacillus thuringiensis and its molecular docking with inositol monophosphate. Chin J Chem 27(10):2085–2089

    Article  CAS  Google Scholar 

  • Zhong CH, Ellar DJ, Bishop A, Johnson C, Lin SS, Hart ER (2000) Characterization of a Bacillus thuringiensis delta-endotoxin which is toxic to insects in three orders. J Invertebr Pathol 76(2):131–139

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zenas George .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

George, Z., Crickmore, N. (2012). Bacillus thuringiensis Applications in Agriculture. In: Sansinenea, E. (eds) Bacillus thuringiensis Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3021-2_2

Download citation

Publish with us

Policies and ethics