Skip to main content

Future Challenges and Prospects of Bacillus thuringiensis

  • Chapter
  • First Online:

Abstract

Bacillus thuringiensis is the most important entomopathogenic microorganism, owing to its insecticidal crystal proteins (Cry) that are nontoxic to the human beings and represent the hallmark of this bacterium. Most of the studies performed with this microorganism are focused to understand the role of Cry proteins in toxicity, mainly because these components constituted the toxic molecules of its commercial products. B. thuringiensis produces several metabolites with potential applied uses, in particular, chitinolytic enzymes and bacteriocins are two types of proteins produced by different subspecies of this microorganism that could expand the perspective of application of this extraordinary bacterium. In this chapter, we review the different kinds of chitinases that are synthesized by B. thuringiensis, their roles in nature, and their applications in environment, agriculture and food industry. Additionally, we analyze bacteriocins of B. thuringiensis reported to date, how to enhance their production, and the methods for screening the bacteriocin activity. Finally, the future challenges and prospects of the antimicrobial peptides as biopreservatives, antibiotics, and nodulation factors are showed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abriouel H, Franz C, Ben Omar N, Gálvez A (2011) Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev 35:201–232

    Article  CAS  Google Scholar 

  • Ahern M, Verschueren S, Van Sinderen D (2003) Isolation and characterisation of a novel bacteriocin produced by Bacillus thuringiensis strain B439. FEMS Microbiol Lett 220:127–131

    Article  CAS  Google Scholar 

  • Barboza-Corona JE, Nieto-Mazzocco E, Velázquez-Robledo R, Salcedo-Hernández R, Bautista M, Jiménez B, Ibarra JE (2003) Cloning, sequencing and expression of the chitinase gene chiA74 from Bacillus thuringiensis. Appl Environ Microbiol 69:1023–1029

    Article  CAS  Google Scholar 

  • Barboza-Corona JE, Vázquez-Acosta H, Bideshi D, Salcedo-Hernández R (2007) Bacteriocin-like inhibitor substances production by Mexican strains of Bacillus thuringiensis. Arch Microbiol 187:117–126

    Article  CAS  Google Scholar 

  • Barboza-Corona JE, Reyes-Rios DM, Salcedo-Hernández R, Bideshi D (2008) Molecular and biochemical characterization of an endochitinase (ChiA-HD73) from Bacillus thuringiensis subsp. kurstaki HD-73. Mol Biotechnol 39:29–37

    Article  CAS  Google Scholar 

  • Barboza-Corona JE, la Fuente-Salcido N de, Alva-Murillo N, Ochoa-Zarzosa A, Lopez-Meza JE (2009a) Activity of bacteriocins synthesized by Bacillus thuringiensis against Staphylococcus aureus isolates associated to bovine mastitis. Vet Microbiol 138(1):179–183

    CAS  Google Scholar 

  • Barboza-Corona JE, Ortiz-Rodríguez T, de la Fuente-Salcido N, Ibarra J, Bideshi DK, Salcedo-Hernández R (2009b) Hyperproduction of chitinase influences crystal toxin synthesis and sporulation of Bacillus thuringiensis. Antonie Van Leeuwenhoek 96:31–42

    Article  CAS  Google Scholar 

  • Barreteau H, Delattre C, Michaud P (2006) Production of oligosaccharides as promising new food additive generation. Food Technol Biotechnol 44:323–333

    CAS  Google Scholar 

  • Bhattacharya D, Nagpure A, Gupta RK (2007) Bacterial chitinases: properties and potential. Crit Rev Biotechnol 27:21–28

    Article  CAS  Google Scholar 

  • Bhunia AK, Johnson MC, Ray B (1988) Purification, characterization and antimicrobial spectrum of a bacteriocin produced by Pediococcus acidolactici. J Appl Bacteriol 65:261–268

    Article  CAS  Google Scholar 

  • Casique-Arroyo G, Bideshi D, Salcedo-Hernández R, Barboza-Corona JE (2007) Development of a recombinant strain of Bacillus thuringiensis subsp. kurstaki HD-73 that produces the endochitinase ChiA74. Antonie Van Leeuwenhoek 92:1–9

    Article  CAS  Google Scholar 

  • Castañeda-Ramírez C, Cortes-Rodríguez V, de la Fuente-Salcido N, Bideshi DK, Barboza-Corona JE (2011) Isolation of Salmonella spp. from lettuce and evaluation of its susceptibility to novel bacteriocins synthesized by Bacillus thuringiensis and antibiotics. J Food Protect 74:274–278

    Article  Google Scholar 

  • Chehimi S, Delalande F, Sablé S, Hajlaoui MR, Van Dorsselaer A, Limam F, Pons AM (2007) Purification and partial amino acid sequence of thuricin S, a new anti-Listeria bacteriocin from Bacillus thuringiensis. Can J Microbiol 53:284–290

    Article  CAS  Google Scholar 

  • Cherif A, Ouzari H, Daffonchio D, Cherif H, Ben Slama K, Hansen A, Jaous S, Boudabous A (2001) Thuricin 7: a novel bacteriocin produced by Bacillus thuringiensis BMG1.7, a new strain isolated from soil. Lett Appl Microbiol 32:243–247

    Article  CAS  Google Scholar 

  • Cherif A, Chehimi S, Limem F, Hansen BM, Hendriksen NB, Daffonchio D, Boudabbous A (2003) Detection and characterization of the novel bacteriocin entomocin 9, and safety evaluation of its producer, Bacillus thuringiensis subsp. Entomocidus HD9. J Appl Microbiol 95:990–1000

    Article  CAS  Google Scholar 

  • Cherif A, Rezgui W, Raddadi N, Daffonchio D, Boudabous A (2008) Characterization and partial purification of entomocin 110, a newly identified bacteriocin from Bacillus thuringiensis subsp. Entomocidus HD110. Microbiol Res 163:684–692

    Article  CAS  Google Scholar 

  • Chernin L, Ismailov Z, Haran S, Chet I (1995) Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. Appl Environ Microbiol 61:1720–1726

    CAS  Google Scholar 

  • De la Fuente Salcido NM, Barboza-Corona JE (2006) Duality of Bacillus thuringiensis: bioinsecticide and biopreservative. Cienc Acierta 6:27–28. (In Spanish)

    Google Scholar 

  • De la Fuente-Salcido N, Salcedo-Hernández R, Alanis-Guzmán MG, Bideshi DK, Barboza-Corona JE (2007) A new rapid fluorogenic method for measuring bacteriocin activity. J Microbiol Methods 70:196–199

    Article  Google Scholar 

  • De la Fuente-Salcido N, Alanís-Guzmán MG, Bideshi DK, Salcedo-Hernández R, Bautista-Justo M, Barboza-Corona JE (2008) Enhanced synthesis and antimicrobial activities of bacteriocins produced by Mexican strains of Bacillus thuringiensis. Arch Microbiol 190:633–640

    Article  CAS  Google Scholar 

  • Delgado A, Brito D, Fevereiro P, Tenreiro R, Peres C (2005) Bioactivity quantification of crude bacteriocin solutions. J Microbiol Methods 62:121–124

    Article  CAS  Google Scholar 

  • Driss F, Rouis S, Azzouz H, Tounsi S, Zouari N, Jaoua S (2011) Integration of a recombinant chitinase into Bacillus thuringiensis parasporal insecticidal cristal. Curr Microbiol 62:281–288

    Article  CAS  Google Scholar 

  • Favret ME, Yousten AA (1989) Thuricin: the bacteriocin produced by Bacillus thuringiensis. J Invertebr Pathol 53:206–216

    Article  CAS  Google Scholar 

  • Gálvez A, Abriouel H, Lucas López R, Ben Omar N (2007) Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol 120:51–70

    Article  Google Scholar 

  • Gray EJ, Lee KD, Souleimanov AM, Di Falco MR, Zhou X, Ly A, Charles TC, Driscoll BT, Smith DL (2006) A novel bacteriocin, thuricin 17, produced by plant growth promoting rhizobacteria strain Bacillus thuringiensis NEB17: isolation and classification. J Appl Microbiol 100:545–554

    Article  CAS  Google Scholar 

  • Hammami R, Zouhir A, Le Lay C, Ben Hamida J, Fliss I (2010) BACTIBASE second release: a database and tool platform for bacteriocin characterization. BMC Microbiol 10:22. d

    Article  Google Scholar 

  • Ibrahim MA, Griko N, Junker M, Bulla LA (2010) Bacillus thuringiensis. A genomic and proteomics perspective. Bioeng Bugs 1:31–50

    Google Scholar 

  • Jan J, Valle F, Bolivar F, Merino E (2001) Construction of protein overproducer strains in Bacillus subtilis by an integrative approach. Appl Microbiol Biotechnol 55:69–75

    Article  CAS  Google Scholar 

  • Kamoun F, Mejdoub H, Aouissaoui H, Reinbolt J, Hammami A, Jaoua, S (2005) Purification, amino acid sequence and characterization of Bacthuricin F4, a new bacteriocin produced by Bacillus thuringiensis. J Appl Microbiol 98:881–888. d

    Article  CAS  Google Scholar 

  • Kamoun F, Zouari N, Saadaoui I, Jaoua S (2009) Improvement of Bacillus thuringiensis bacteriocin production through culture conditions optimization. Prep Biochem Biotechnol 39:400–412

    Article  CAS  Google Scholar 

  • Kamoun F, Ben Fguira I, Ben Hassen NB, Mejdoub H, Lereclus D, Jaoua S (2011) Purification and Characterization of a New Bacillus thuringiensis Bacteriocin active against Listeria monocytogenes, Bacillus cereus and Agrobacterium tumefaciens. Appl Biochem Biotechnol 165:300–314

    Article  CAS  Google Scholar 

  • Kumazaki T, Ishii S (1982) A simple photometric method for determination of the activity of pyrocin R 1. J Biochem 91:817–823

    CAS  Google Scholar 

  • Lee KD, Gray EJ, Mabood F, Jung WJ, Charles T, Clark SRD, Ly A, Souleimanov A, Zhou X, Smith DL (2009) The class IId bacteriocin thuricin-17 increases plant growth. Planta 229:747–755

    Article  CAS  Google Scholar 

  • Martínez-Cardeñas JA, De la Fuente-Salcido NM, Salcedo-Hernández R, Bideshi DK, Barboza-Corona JE (2012) Effects of physical culture parameters on bacteriocin production by Mexican strains of Bacillus thuringiensis after cellular induction. J Ind Microbiol Biotechnol 39:183–189

    Article  Google Scholar 

  • Mayr-Harting A, Herges AJ, Berkeley CW (1972) Methods for studying bacteriocins. In: Norris JR, Ribbons DW (eds) Methods in microbiology. Academic Press, New York

    Google Scholar 

  • Morales de la Vega L, Barboza-Corona JE, Aguilar-Uscanga MG, Ramírez-Lepe M (2006) Purification and characterization of an exochitinase from Bacillus thuringiensis ssp. aizawai and its action against phytopathogenic fungi. Can J Microbiol 52:651–657

    Article  Google Scholar 

  • Morgan S, Ross RP, Hill C (1995) Bacteriolytic activity caused by the presence of a novel lactococcal plasmid encoding lactococcins A, B, and M. Appl Environ Microbiol 61:2995–3001

    CAS  Google Scholar 

  • Murphy K, O’Sullivan O, Rea MC, Cotter PD, Ross RP, Hill C (2011) Genome mining for radical SAM protein determinants reveals multiple sactibiotic-like gene clusters. PLoS One 6:e20852

    Article  Google Scholar 

  • Olempska-Beer ZS, Merker RI, Ditto MD, DiNovi MJ (2006) Food-processing enzymes from recombinant microorganism- a review. Regul Toxicol Pharmacol 45:144–158

    Article  CAS  Google Scholar 

  • Ortiz-Rodríguez T, de la Fuente-Salcido N, Bideshi DK, Salcedo-Hernández R, Barboza-Corona JE (2010) Generation of chitin-derived oligosaccharides toxic to pathogenic bacteria using ChiA74, an endochitinase native to Bacillus thuringiensis. Lett Appl Microbiol 51:184–190

    Google Scholar 

  • Paik HD, Bae SS, Park SH, Pan JG (1997) Identication and partial characterization of tochicin, a bacteriocin produced by Bacillus thuringiensis subsp. tochigiensis. J Ind Microbiol Biotechnol 19:294–298

    Article  CAS  Google Scholar 

  • Park HW, Federici BA (2009) Chapter 12. Genetic engineering of bacteria to improve efficacy using the insecticidal proteins of Bacillus species. In: Stock SP, Vandenberg J, Glazer I, Boemare N (eds) Insect pathogens-molecular approaches and techniques. CABI Publishing, Cambridge, pp 275–305

    Chapter  Google Scholar 

  • Park HW, Ge B, Bauer LS, Federici BA (1998) Optimization of Cry3A yields in Bacillus thuringiensis by use of sporulation-dependent promoters in combination with the STAB-SD mRNA sequence. Appl Environ Microbiol 64:3932–3938

    CAS  Google Scholar 

  • Park HW, Federici BA, Sakano Y (2006) Inclusion proteins from other insecticidal bacteria. In: Shively JM (ed) Microbiology monographs, Volume 1, “Inclusions in Prokaryotes”. Springer, Heidelberg, pp 321–330

    Google Scholar 

  • Rea MC, Sit CS, Clayton E, O’Connor PM, Whittal RM, Zheng J, Veredas JC, Ross P, Hill C (2010) Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proc Natl Acad Sci USA 107:9352–9357

    Article  CAS  Google Scholar 

  • Rojas Avelizapa LI, Cruz-Camarillo R, Guerrero MI, Rodríguez-Vázquez R, Ibarra JE (1999) Selection and characterization of proteo-chitinolytic strain of Bacillus thuringiensis able to grow in shrimp waste media. World J Microbiol Biotechnol 15:299–308

    Article  Google Scholar 

  • Siegel JP (2001) The mammalian safety of Bacillus thuringiensis-based insecticides. J Invertebr Pathol 77:13–21

    Article  CAS  Google Scholar 

  • Suzuki K, Mikami T, Okawa Y, Tokoro A, Suzuki S, Suzuki M (1986) Antitumor effect of hexa-N-acetylchitohexaose and chitohexaose. Carbohydr Res 151:403–408

    Article  CAS  Google Scholar 

  • Tagg JR, McGiven AR (1971) Assay system for bacteriocins. Appl Microbiol 21:943

    CAS  Google Scholar 

  • Tamez-Guerra P, Valadez-Lira JA, Alcocer-Gonzalez JM, Oppert B, Gomez-Flores R, Tamez-Guerra R, Rodriguez-Padilla C (2008) Detection of gene encoding antimicrobial peptides in Mexican strains of Trichoplusia ni (Hübner) exposed to Bacillus thuringiensis. J Invertebr Pathol 98:218–227

    Article  CAS  Google Scholar 

  • Thamthiankul S, Suan-Ngay S, Tantimavanich S, Panbangred W (2001) Chitinase from Bacillus thuringiensis subsp. pakistani. Appl Microbiol Biotechnol 56:395–401

    Article  CAS  Google Scholar 

  • Watanabe T, Kobori K, Miyashita K, Fujii T, Sakai M, Uchida M, Tamaka H (1993) Identification of glutamic acid 201 and aspartic 200 in chitinase A1 of Bacillus circulans WL-12 as essential residues for chitinase activity. J Biol Chem 268:18567–18572

    CAS  Google Scholar 

  • Weijers CA, Franssen MC, Visser GM (2008) Glycosyltransferase-catalyzed synthesis of bioactive oligosaccharides. Biotechnol Adv 26:436–456

    Article  CAS  Google Scholar 

  • Yamabhai M, Emrat S, Sukasem S, Pesatcha P, Jaruseranee N, Buranabanyat M (2008) Secretion of recombinant Bacillus hydrolytic enzymes using Escherichia coli expression systems. J Biotechnol 133:50–57

    Article  CAS  Google Scholar 

  • Yeh CM, Wang JP, Su FS (2007) Extracellular production of a novel ice structuring protein by Bacillus subtilis-a case of recombinant food peptide additive production. Food Biotechnol 21:119–128

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Barboza-Corona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Barboza-Corona, J.E., de la Fuente-Salcido, N.M., León-Galván, M.F. (2012). Future Challenges and Prospects of Bacillus thuringiensis . In: Sansinenea, E. (eds) Bacillus thuringiensis Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3021-2_19

Download citation

Publish with us

Policies and ethics